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Abstract—In last few years, in order to overcome some
limitations of the short time Fourier transform (STFT),
while avoiding the cross-terms that make the Wigner
distribution difficult to interpret, some signal-dependent
time-frequency representations(SDTFR) have been proposed.
In this paper, we introduce a computationally efficient
signal-dependent time-frequency method which is suitable
for on-line analysis. This SDTFR uses a Gaussian window
(GW) similar to STFT, but varies the parameter ¢ of the GW
with time to achieve high signal concentration and high
resolution in time. The parameter ¢ can be automatically
calcuiated by the slope of instantaneous frequency (IF) and
instantaneous bandwidth (IB) at that time.

[. INTRODUCTION

In signal theory, either time or frequency analysis alone is
not good enough for nonstationary signal, because each one
does not fully describe what is happening, To obtain time-
varying information, it is necessary to study the signal
density simultaneously both in time and frequency. The most
familiar TFR method is the STFT [1]. There is an inherent
trade off between time and frequency resolution in STFT.
Other time-frequency representations (TFR) that overcome
the limitation of the spectrogram have been developed. The
first of these was the distribution proposed by Wigner [2].
The inherent bilinear structure of Wigner distribution causes
undesirable interfering cross terms.

In 1993, Baranink {3] proposed an optimal-kernel
SDTFR. 1n his methods, in order to obtain a good
performance, a weighting function must be designed such
that it can pass the auto-components and suppress the cross-
components in the ambiguity plane. Since different signal
gives different ambiguity function, and for each signal, a
weighting function must be designed to filter the cross-
components. In his method, he proposed a new procedure
for selecting a signal-dependent weighting function.

In this paper, we present a simple computationally
efficient scheme for computing a single parameter for a
TFR. This TFR is called fast signal-dependent time-
frequency representation (FSDTFR). This method is very
suitable for band-limited signal and can be used for real-time
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analysis. The basic idea of this representation is very similar
to the STFT, but the window is changed with the change of
signal. If the signal is very stable, then we can use a long
window. If the signal is fast changing, then we must use a
short window. In other words, the window must be changed
with the change of the signal. IF and IB can well be used to
describe the change of the signal. A new FSDTFR which
uses a Gaussain window similar to STFT, but varies a single
parameter ¢ of Gaussian window can be automatically
calculated by the slope of the IF and IB at that time.

II. METHODS
The short-time Fourier transform, defined as

STFT(t,w)= TS(T)}’I(T— tye 7?7 dr | 1)

in which s¢#) is the signal and A¢?) is the window function.
Window function can be considered as a window that selects
a particular portion of the signal centered around the given
time location, and the Fourier transform of the windowed
signal yields the frequency content of the signal at the given
time. Gabor and Janssen [4] found that Gaussian window
achieves minimum time-frequency uncertainty.

Since the Gaussian window achieves minimum time-
frequency uncertainty, in my time-frequency method, GW ~
which is the normalized Gaussian time window

2/

1 e‘ J az(t) (2)
Jro(1)

will be used . The basic idea of my FSDTFR is similar to the
STFT, but the shape of the GW is change with the change of
signal. The change of the signal can be described by IF and
IB. In other words, the parameter ¢ of the GW is related to
the IF and IB. Barber and Ursell [5] have determined the
optimal bandwidth of the window for signal with time-
varying frequency to be roughly equal to the square root of
the time derivative of the IF of the signal.

In order to maintain the basic frequency resolution, the
parameter o can only change between the largest value and
the smallest value which depend on the basic frequency
resolution. When the time derivative of the IF and IB are
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large, corresponding to the fast changing of the signal, then
small parameter ¢ corresponding to the sharpening of the
GW must be used. But how does the parameter ¢ change
with the derivative of IF and IB between the largest value
and smallest value? We choose that parameter ¢ changing
with the derivative of IF and IB by exponential function
which is simple and easily understood between those two
value. We define the parameter of) of GW in terms of

oft) = 4™ 4 o )

where f; is the IF. Tt was yielded by calculation of the first
moment with respect to frequency

[ fot2, fraf
= T 4
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Since the IF is an averaged quantity, IB seems reasonable to
inquire about its standard deviation, or spread. The classical
bandwidth definition is the spread of frequencies about the
average given by
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in equation (3), A, B and C are constants. C is the smallest
value of parameter ¢ of the GW. Constant A+C is the

largest value of the parameter 6. A fast signal-dependent
time-frequency representation is defined as
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where s(7) is the signal, h(#-7) is the rectangular window.

In equation (3), C is chosen depending on the basic
frequency resolution which depend on the width of the
rectanguiar window and the sampling frequency of the
signal. When C is established, the biggest ¢ is depending on
the constant A. The highest sidelobe level of the GW is
depending on the Gaussian parameter . In general, o must
be smaller than 0.3. In our experiment, we set the largest
parameter o as 0.14 which means the constant A is equal to
0.10. If a large constant B is chosen in equation (3), then
parameter ¢ changes quicker to the smallest value with the
derivative of IF and IB. If constant B is small, then,
parameter o changes slowly. In our study, B=0.4 has been
chosen for our testing signal and biomedical signal.

FSDTFR = j s()h(t -

III. RESULT

Different testing signal was used to compare the
performance of different TFR, including STFT, Wigner-
Ville, Baranink's TFR and our FSDTFR. The testing results
[6-7] show that STFT is incapable of providing high
resolution simultaneously in time and frequency. The
analysis results using Wigner-Ville method are highly
concentrated, but the cross-terms between the various

- components make this plot difficult to interpret.

Although
there are some cross-components in testing result using
Baranink's method, but the cross-components energy is very
small and the auto-components are highly concentrated.

Our FSDTFR is superior to the fixed window (with fixed
parameter o) STFT. Although the auto-components are less
concentrated than in the Wigner-Ville method, the FSDTFR
lacks the cross-components. This FSDTFR has been
successfully used to -analyze ‘the Precordial Doppler
Ultrasound signal for detecting venous air embolism [7]

IV. CONCLUSIONS

We presented a simple, computationally efficient TFR. A
single parameter depends on the time derivative of IF and 1B
as in equation (3). In this equation, Constant C is selected
depending on the basic frequency resolution. Constant A
relates to the minimizing sidelobe level, and constant B is
the sensitivity of parameter o changing with the time
derivative of IF and IB. The results showed that FSDTFR
gave better performance than others. Since the FSPTFR
requires a simple procedure which requires only two or three
times the computational cost of a fixed-window STFT to
automatically calculate the parameter of the window, it is
suitable for use in real-time application. In this study, we
have successfully used this method to analyze Doppler heart
sound signal and surface EMG signal {6-7].
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