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Abstract — In this paper, modeling and analysis of chaotic
behavior in switched reluctance (SR) motor drives using voltage
PWM regulation is presented. The key is to derive a Poincaré
map that is based on the nonlinear flux linkage model. Its
Jacobian matrix can be evaluated by solving the corresponding
variational equation. Based on the Poincaré map and its
Jacebian matrix, the analysis of chaotic behavior is presented.
Furthermore, bifurcation diagrams are also figured out. They
facilitate to determine the stable range of various system
parameters so as to aveid the occurrence of chaos. Both
computer simulations and experimental measurements are given
to verify the theoretical modeling and analysis.

I. INTRODUCTION

In recent years, switched reluctance (SR) motor drives
have been recognized to have promising industrial
applications. Their simplicity in both motor construction and
power converter requirement offers the prospect of low-cost
fully controllable brushless motor drives [1]. Recently, the
research on SR motor drives has been focused on motor
design, converter topology and control strategy. However, the
investigation into the nonlinear dynamics, namely chaotic
behavior, of SR motor drives has been surprisingly rare [2].
The major reason should be due to the complexity of
analytical formulation and high nonlinearities of SR motor
drives.

Chaos is a common phenomenon in power converters
when they operate under feedback control [3}-[4]. Chaotic
behavior in switching mode power supplies has been actively
investigated for a number of years. Chaos in induction and
brushless dc motor drives has also been discussed [5]-[6].
Very recently, the nonlinear dynamics and chaotic behavior of
industrial dc motor drives have been investigated, by using
numerical simulation and analytical modeling [7]. 1t has been
identified that the nonlinear dynamics of the dc motor drive
system is mainly due to the switching nonlinearity caused by
voltage PWM regulation. Although the SR motor drive using
voltage PWM regulation operates like the dc motor drive, its
nonlinear dynamics are much more complicated, hence more
prone to chaos.

The purpose of this paper is to develop the modeling of
chaos in the SR motor drive, which includes the formulation of
the system modeling, the derivation of the Poincaré map and
its Jacobian matrix. Based on the Poincaré map and its
Jacobian matrix, the analyses of periodic solutions and chaotic
behavior are also discussed. In order to attain the insight of
chaotic behavior, both time-domain waveforms and phase-
planc trajectorics are investigated. Moreover, bifurcation
diagrams are also figured out so as to determine stable regions
of the system parameters.
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In Section II, the system modeling of the SR motor drive
using the voltage PWM regulation is presented. Then, the
Poincaré map and its Jacobian matrix are derived in Section
1. Analysis of chaotic behavior and computer simulations
are respectively discussed in Sections IV and V. Finally,
experimental measurements are given to verify the theoretical
modeling and analysis in Section VI

1. MODELING OF SR MOTOR DRIVES

As shown in Fig. 1, an adjustablc speed m-phase SR
motor drive is used for exemplification. The corresponding
speed control is achieved by applying PWM chopping of its
three-phase motor voltages. The commutation logic uses
rotor position feedback to select the turn-on angle 6, and
turn-off angle 0, of those lower-leg power switches (A,, B
and C,). In order to simplify the control circuit, the dwell
angle 6, =0, -0, of each phase winding is selected to be
equal to the commutation angle 0, =2n/(mN_ ), where N,
is the number of rotor poles.

PWM Generator

Commutation
Logic

Fig. 1. Schematic diagram of SR motor drive.

For the sake of synchronizing the voltage PWM

regulation with the phase commutation, the PWM carrier
signal ramp voltage v, for each phase winding is a function
of the instantaneous rotor displacement 6:
v, =v, +(v, —v,){(6~0 Imod6,}/0, (1)
where v, and v, are the lower and upper bounds of the ramp
voltage, 8, =0, /n, is its period, and n, is an integer. As
the op-amplifier OA has a feedback gain g, the speed control
signal v, can be expressed as:



v, =g(w~w,) 2)
where ® and ®, are the instantaneous and command speed
of the SR motor drive. Then, both v, and v, are fed into the

comparator CM which outputs the signal to turn on or off
those upper-leg power switches (A, B, and C,), depending
on the phase commutation. When the control voltage exceeds
the ramp voltage, the upper-leg switch being the same phase
of the turn-on lower-leg switch is off; otherwise it is on. The
other phase switches remain off.

Since the dwell angle is equal to the commutation angle,
only two adjacent phase windings have currents at the same
time. For the sake of clarity and simplicity, m phase windings
conducted in turn are represented by two virtual phase
windings activated alternatively. When the winding is
conducted, it is called the activated winding; otherwise it is
called the inactivated winding. Thus, considering the winding
2 lags behind the winding 1 in the commutation angle 6, the
system equation of the SR motor drive is given by:

do
— =
dt
d /
fmz(-Bm+ﬂ,(9,W),‘V2’9x)“7~))’J
ddt 3
v —Ri, (0,¢,)+u,(0)
dt
4y, =-Ri,(6—-6,_,y,)+u,(6-6)
dt i i ‘
- u '_i Wk _ _
T, =Y ( SOJO L (8- (k-18 .,y )dy) 4)

k=i
[ rem,®-v)  (8mod20,)e(6,,0,+8,) )
YT -vey,) (6mod28,)e 6, +6,.8, +26,)
where u, is the phase voltage, i, is the phase current, Y, is

the phase flux linkage, R is the phase resistance, L is the
phase inductance, B is the viscous damping, J is the load
inertia, 7, is the load torque, and € is a unit step function. j,

is expressed by an interpolation function of 8 and vy, .

By defining the state vector X =(6, o, l}li,\p:)T and the

output vector Y =(0,w,i), where i=i +i,, (3) can be
rewritten as:
X = £,X) ©
Y = M(X)

1II. POINCARE MAP AND ITS JACOBIAN MATRIX
In order to derive the Poincaré map, a plane is defined as:
X :={X:[(6-6,)mod8 ]=0} N
The trajectory of X under observation repeatedly passes
through the X when 6 increascs monotonically. The sequence
of X crossing defines the Poincaré map:
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PR R, (@,9,,¥, ), = PUOY,,Y,),) t)
Actually, the orbit of this map is a sequence of samples at the
beginning of the dwell angle of each phase winding. In order
to avoid the calculation of the plane crossing, the rotor
displacement 8, rather than time ¢ is selected as the
independent variable of the system. The next crossing of the
plane 0, =6, +(n+1)8, can be directly calculated by
itegrating from 9, =8, +n0, to 6,,. To make 6 as an
independent variable, (3) is expressed as:
o=(-Bo+ Z'(G’WI’WZ’e_v) —T)/(Jw)

W, = (~Ri,(0,y,) +1,(8))/ ® %

‘i’l :("Riz(e'ex,\&lg)+u2(9—~9x))/c)
By redefining the state vector X(8) =(®,y,,¥,)" and output

vector Y(8) = (®,i)", (9) can be rewritten as:

Y = M(X)
The Poincaré map (8) can also be rewritten as:
X, =P(X
n+i ( n ) (1 l)
Y, =M(X,)

Since the solution to (10) is continuous, P is also continuous.

1t should be noted that the map M in (10) is a
noninvertible map within the whole set of the solution. For
example, if ¢, and y, are simultaneously nonzero, X is a
multivalued function of Y. However, the map M in (11) is
homeomorphism, namely M andM ™ are continuous,
because one of Yy, and y, of X, is zero. Thus, the orbits
{X,} and {Y,} are topologically equivalent.

The Jacobian matrix DP(X,) of the Poincaré map P with
=7(8,,,)€ R xR of
the variational equation of its underlying system as given by:

9, (X(8).6)

respect to X, is the solution Z

n+l

Z(e) = .)X Z(O), Z(en ) = Zn (12)
L
Consider that the winding 1 is inactivated, it yields:
STAT, LA 1d
‘ Jo’ Jw 08 Jo 98
Yo _ Ri, —u, —i 10w R 0 a3
oX o’ ®oY, Oy,
_1_a_u2_+Ri2-vu2 0 R di,
o 0w ®’ ® vy,
du,
—=-0,(8,-9 14
v, (0, —9) (14)
duy _ gV.8,(8-9,)
90 g(-Bw8,)+T,(8,)~T,)/(JoX8,)~ (v, ~v,)/6;
1s)

where §; is a Dirac delta function that is the derivative of €.



Remarks:
(i). For an arbitrary nonzero point X, the corresponding

initial value Z, is usually an identity matrix. However, since
the winding 2 is activated, namely w, =0, the partial
derivative of this zero flux linkage with respect to X is also
a zero vector. Hence, the third row and column of Z, are
zero vectors. [t results that the third column of Z , is also a
zero vector because the variational equation of each column
of Z(0) is linear and homogeneous.

(i). The rotor displacement 6,, of (14) is the position in
which y,(8,)=0. 0u,(8,y,)/dy, can be derived from that
the partial derivatives of this flux linkage with respect to X,
remain a zero vector after 6, . Therefore, the second row of
Z,,, is always equal to zero.

(ii1). The rotor displacement 9, of (15) is the intersection
point in which v,(8,)~v,(8,)=0. Due to the 3, pulse in
(14) and (15), Z(9) is discontinuous at 6, and 6. But Z,
is continuous over Z, if &, is continuous over Z,.
However, Z,, is discontinuous over Z, if 6, locates at the
changing point between pulsing and skipping cycles, namely
v,(0,)=v,, where du,(0,0)/dw is given by (15) at 8,

whereas du,(0,0)/dw = 0 at 0,,. The Poincaré map that its

derivative is continuous over distinct regions in the state
space but it is discontinuous in the border of these regions is
called a piecewise smooth map.

IV. ANALYSIS OF CHAOTIC BEHAVIOR

Since the Poincaré map and its Jacobian matrix are
derived from the numerical solution of the underlying
differential equations, the modeling of chaos of the SR motor
drive needs to resort to the numerical simulation. A natural
numerical tool to obtain the steady-state solution of the
Poincaré map is the brute-force method — repeating the
iteration of the map until the transient has died out or the
steady state has been reached [8]. This method has the
advantage of simplicity, but may suffer from tedious
simulation due to long-live transients. The more efficient
approach to obtain the periodic solutions is to locate the
corresponding fixed points of the Poincaré map by using the
Newton-Raphson algorithm. Hence, the stable regions of the
system parameters can also be figured out by using this
Newton-Raphson  algorithm  and  calculating  the
corresponding characteristic multipliers that are cigenvalues
of the Jacobian matrix. However, the most effective approach
to locate chaotic solutions is still the brute-force method. The
bifurcation diagrams are also figured out by using the brute-
force method.
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A. Fundamental Operation

Actually, the period of y, and y, of X is always 20,
instead of 8. In order to attain the period-1 orbit of P, the
winding 1 always stands for the inactivated winding at each
iteration of P, resulting that y, and y, must exchange their

values after each iteration of P. Thus, the fixed point X" of P
and its Jacobian matrix are defined as:

X" =CP(X") (16)
J, =CDP(X") an
1 00
where C={0 0 1
010

The fixed point X of P can also be located by using the
Newton-Raphson algorithm as given by:
X(iH) = X" —(CDP(X(”)- ].)—I(Cp(x(i))_ Xu‘))
where DP(X”Y can be evaluated from (12) and (15).

By checking the characteristic multipliers, the stable
regions of the fundamental operation can be figured out.
However, It should be noted that the leading magnitude of the
characteristic multipliers on the boundary of the stable
regions may be not equal to unity, because it may jump from
the interior of the unit cycle to the exterior due to the
discontinuity of J,.

(18)

B. Subharmonics
The period-p orbit {X,‘,---.X;} is defined as:
X =CP(X}) (k=Ll-,p=1) X/ =CP(X,) (19

They are a set of fixed points of the p-fold iterative map,
which can be expressed as:

X; = (CP)U’;(X;) (k=1,---,p) (20)
The corresponding Jacobian matrix J, is given by:
J, =CDP(X)---CDP(X]) @n

The fixed point X, can be located by using the Newton-
Raphson algorithm given by:

X(H-l) =X __(Jg’) _1)~!((CP)(P)(x(f)) _ X(i)) (22)
where:
J¢ = CDP(XY))---CDP(X") (23)

According to Remarks (i) and (ii), one of eigenvalues of
J, and J must be zero. Therefore, it can be identified that
the three-dimensional Poincaré map P is only of the second-
order dynamics. This is also another evidence for two orbits
{X,} and {Y,} with different dimensionality are
topologically equivalent. Nevertheless, in order to analyze the
dynamics without rough assumption, the third-dimensional
Poincaré map P is still needed.



V. COMPUTER SIMULATIONS
The computer simulations and experimental verifications
are carried out by using the 3-phase SR motor drive that is
designed for an electric vehicle [9]. The selected motor drive
is with the following practical component and parameter

0.15Q, B = 0.0005Nmvrads™, J = 0.025kgm?’, ¥, = 150V, v,
=5V, v, =1V, 0,=10, 8, = 1.5, g = 3.5V/rads”", o, =
50rad/s. 7, = 8Nm.

When g = 1.5V/rads, the steady-state behavior of the SR
motor drive is a fundamental operation. The corresponding
waveforms of v., v, and i as well as the phase-plane
trajectory of ¢ versus w are shown in Fig. 2, in which 6 is
expressed as the integer multiple of the commutation angle
0, . As shown in Fig. 2(a), there is no skipping cycle during

PWM regulation, namely v, crosses every v, . Since

ny =10, [ has ten peaks within cach 6 . Also, the
distributions of i are of periodic oscillation as shown in Fig.
2(b). This oscillation includes two components — one
corresponds to the commutation frequency and another
corresponds to the PWM frequency. Since ® and v, have the
same shape and obey a linear relationship as given by (2), the
oscillation of ®, as shown in Fig. 2(a), is mainly of
commutation frequency, indicating that the speed oscillation is
insensitive 10 the current component with the PWM
frequency. The phase-plane trajectory of this periodic solution
is a cycle having ten peaks as shown in Fig. 2(c). The
boundary of w is from 52.7rad/s to 53.0rad/s, whereas the
boundary of / is from 20A to 60A.

When g = 4.4V/rads™, the SR motor drive operates in
chaos. The chaotic waveforms and trajectory are shown in
Fig. 3. Different from the periodic solution, it has skipping
cycles within each 8_ as shown in Fig. 3(a). Furthermore, the
number of skipping cycles within each 6, is a random-like
variable. [t follows that the oscillating magnitudes of i and ®
are all fluctuating as shown in Figs. 3(a)-(b), respectively. As
shown in Fig. 3(c), the trajectory of ; versus ® is a random-
like bounded phase portrait. The boundary of w is still
acceptable (from 50.7rad/s to 51.6rad/s), whereas the
boundary of i is exceptionally large (from 0A to 120A).

By using the brute-force method to compute the Poincaré
map (11), the bifurcation diagrams of / and ® with respect to
gand 7, are shown in Figs. 4(a)-(c), respectively. They can
depict the periodic and chaotic orbits, illustrating how to
route to chaos. As shown in Figs. 4(a)«(b), both / and ®
bifurcate from the period-1 orbit to the period-2 orbit at g =
3.92V/rads™, then to the period-4 orbit at g = 4.13V/rads™,
then to the period-8 orbit at g = 4.25V/rads™, and finally
route to chaos at g = 4.33V/rads”. As shown in Fig. 4(c), i
deviates from the period-1 orbit to the period-2 orbitat 7T, =
11Nm, then to the period-4 orbitat 7, = 11.4Nm, and finally
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jump to chaos. Therefore, the route to chaos of the SR motor
drive includes not only the period-doubling, but also the
abnormality (directly from the period-4 orbit to chaos), the
so-called borderline collisions in the piecewise smooth map
[10].

By using Newton-Raphson algorithm, the period-1 orbit
of i with respect to g is shown in Fig. 5(a), which includes the
stable and unstable period-1 orbits. Their characteristic
multipliers of |A, | and | X, | with respect to g are shown in
Figs. 5(b)-(c), in which |2, |is greater than unity when g >
3.92V/rads”. 1t indicates that the period-1 orbit is unstable
when g > 3.92V/rads™. Similarly, the period-2 orbit of i with
respect to g is shown in Fig. 6(a), which includes the stable
period-1 orbit as well as stable and unstable period-2 orbits.
Their characteristic multipliers of |[A,;| and [A,| with
respect to g are shown in Figs. 6(b)-(c), in which |, |is
greater than unity when g > 4.13V/rads™. It indicates that the
period-2 orbit is unstable when g > 4.13V/rads™. It should be
noted that the above results using Newton-Raphson algorithm
agree closely with the bifurcation diagrams using the brute-
force method as given by Fig. 4. The Newton-Raphson
algorithm facilitates the identification of the desired stable
operating regions for different system parameters and
conditions.

From bifurcation diagrams as shown in Figs. 5-6, it can be
concluded that the Poincaré map of the SR motor drive has
two key features. One is that its Jacobian matrix and hence
characteristic multipliers are discontinuous over the system
parameters even though the map is continuous over the
system parameters, namely the Poincaré map is a piecewise
smooth map. In this kind of maps, the bifurcation point
occurs at not only the points whose characteristic multipliers
locate in the unity cycle, but also the discontinuity points
whose characteristic multipliers jump from the interior of the
unit cycle to its exterior. The second feature is that one of
characteristic multipliers is much smaller than the other one if
they are both real numbers. Morcover, for the unstable
periodic orbit, this small characteristic multiplier is ncarly
zero, resulting that chaotic behavior will has very strong
phase space contraction in this direction.

V1. EXPERIMENTAL VERIFICATIONS
For the sake of simplicity and clarity, the speed feedback
control voltage v, is measured instead of the actual motor

speed. The measured trajectory and waveforms of i/ and v,
with g = 1.5V/rads™ are shown in Fig. 7. This illustrates that
the SR motor drive operates in the period-1 orbit. Also, it can
be found that 7 lies roughly between 20A and 60A while v,

lies between 4V and 4.5V (equivalent to @ between 52.6rad/s
and 53rad/s). By comparing these results with the waveforms
and trajectory shown in Fig. 2, the measured results and the
theoretical prediction have a good agreement.
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Moreover, by selecting g = 4.4V/rads”, the measured
trajectory and waveforms of i and v_, as shown in Fig. 8,
illustrate that the SR motor drive operates in chaos. It can
be found that the boundaries of i and v, lie roughly
between 0A and 120A and between 2V and 8V (equivalent
to @ between 50.45rad/s and 51.8rad/s), respectively.
Different to the period-1 orbit in which the measured
trajectory and waveforms are directly compared with the
theoretical prediction, the chaotic trajectory and
waveforms measured in the experiment can hardly match
with the theoretical ones because the chaotic behavior is
not periodic such that the period of measurement can not
be the same with that of theoretical analysis. Also, its
characteristics are extremely sensitive to the system initial
conditions. Nevertheless, it can be found that the measured
boundaries of the chaotic trajectory shown in Fig. 8
resemble to the theoretical prediction in Fig. 3.
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VII. CONCLUSION

In this paper, the modeling and analysis of chaotic
behavior in SR motor drives using the voltage PWM
regulation is proposed. By selecting the flux linkage and
rotor position as the state variable and independent
variable, respectively, a Poincaré map and its Jacobian
matrix are constructed, which take the advantages to
significantly reduce the computation time to analyze the
periodic and chaotic bechavior. The bifurcation diagrams
illustrate that the route to chaos of the SR motor drive
includes not only the period-doubling, but also the
abnormality (directly from the period-4 orbit to chaos).
The theoretical modeling and analysis are verified by using
both  computer  simulations and  experimental
measurements. The proposed approach and derived
modeling can readily be applied or extended to other SR
motor drives.
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