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Abstract - In this paper, modeling and analysis of chaotic 
behavior in switched reluctance (SR) motor drives using voltage 
PWM regulation is presented. The key is to derive a PoincarP 
map that is based on the nonlinear flux linkage model. Its 
Jacobian matrix can be evaluated by solving the corresponding 
variational equation. Based on the Poinear4 map and its 
Jacobian matrix, the analysis of chaotic behavior is presented. 
Furthermore, bifurcation diagrams are also figured out. They 
facilitate to determine the stable range of various system 
parameters so as to avoid the occurrence of chaos. Both 
computer simulations and experimental measurements are given 
to verify the theoretical modeling and analysis. 

I. INTRODUCTJON 
In recent years, switched reluctance (SR) motor drives 

have been recognized to have promising industrial 
applications. Their simplicity in both motor construction and 
power converter requircmcnt offers the prospect of low-cost 
fully controllable brushless motor drives [ I ] .  Rccenrly. the 
research on SR motor drives has been focused on motor 
design, converter topology and control strategy. However, the 
itwestigation into the nonlinear dynamics, namely chaotic 
behavior, of SR motor drives has been surprisingly rare [2]. 
The major reason should be duc to the coniplexity of 
aiialytical formulation and high noiilinearities of SR motor 
drives. 

Chaos is a common phenomenon in power converters 
when they operate under feedback control [3]-[4]. Chaotic 
behavior in switching mode power supplies has been actively 
invcstigatcd for a number of years. Chaos in induction and 
brushless dc motor drivcs has also becn discussed [SI-[6]. 
Very recently, the nonlinear dynamics and chaotic behavior of 
industrial dc motor drives have been investigated, by using 
numerical simulation and analytical modeling [7]. It has been 
identified that the nonlinear dynamics of the dc motor drive 
system is mainly die to the switching nonlinearity caused by 
voltage PWM regulation. Although the SR motor drive using 
voltage PWM rcgulation operates like the dc motor drive. its 
nonlinear dynamics are much more complicated, hence more 
prone to chaos. 

The purpose of this paper is to develop the modeling of 
chaos in the SR motor drive, which includes the formulation of 
the system modeling, the derivation of the Poincari: map and 
its Jacobian matrix. Based on the Poincare map and its 
Jacobian inatnx, the analyses of periodic solutions and chaotic 
behavior are also discussed. In order to attain the insight of 
chaotic behavior, both time-domain waveforms and phase- 
planc trajcctories arc investigated. Morcover. bifurcation 
diagrams are also figured out so as to dctcnnine stable regions 
ofthc system parameters. 

In Section 11, the system modeling of the SR motor drive 
using the voltage PWM regulation is presented. Thcn, the 
PoincarC map and its Jacobian matrix are derived in Section 
111. Analysis of chaotic behavior and computer simulations 
are respectively discussed in Sections IV and V. Finally, 
experimental measurements are given to verify the theoretical 
modeling and analysis in Section VI. 

11. MODELING OF SR MOTOR DRIVES 
As shown in Fig. 1, an adjustablc speed m-phasc SR 

motor drive is used for exemplification. The corresponding 
speed control is achieved by applying PWM chopping of its 
three-phase motor voltages. The commutation logic uses 
rotor position feedback to select the tim-on angle 8, and 
turn-off angle 8, of thosc lower-leg power switches (Az, U3 
and C2). In order to simplify the control circuit, the dwell 
angle 0, = 0, -0,, of each phase winding is selected to be 
equal to the commutation angle 0, = 2x/(miVr ) , where N ,  
is the number of rotor poles. 
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Fig. I .  Schematic diagmm of SR motor drive. 

For the sake of synchronizing the voltage PWM 
regulation with the phase commutation, the PWM carrier 
signal ramp voltage v, for each phase winding is a function 
o f  the instantaneous rotor displacement 0: 

where v,  and v,, are the lower and upper bounds of the rany, 
voltage, 0,. = 0, in ,  is its period. and n, is an integer. As 
the op-amplifier OA has a feedback gain g, the speed control 
signal v,. can be expressed as: 

v,, = V ,  +(v , ,  -~,)[(0-8,,)m0d8,.]i0,. (1) 
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v, =g(w-o, 1 (2) 
whcrc w and w, are thc instantaneous and command specd 
ofthe SR motor drive. Then, both v, and v, are fed into the 
comparator CM which outputs the signal to tum on or off 
those upper-leg power switches (Al, €3, and Cl), depending 
on the phasc commutation. Whcn thc control voltagc cxceeds 
the ramp voltage, the upper-lcg switch bcing thc same phase 
of the turn-on lower-leg switch is of6 otherwise it is on. The 
other phase switches remain off. 

Since the dwell angle is equal to the commutation angle, 
only two adjacent phase windings have currents at the same 
timc. For the sake of clarity and simplicity, m phase windings 
conducted in turn are represented by two virtual phase 
windings activated alternatively. Whcn tkc winding is 
conducted. it is called the activated winding; otherwise it is 
called the inactivated winding. Thus, considering the winding 
2 lags behnd the winding I in the commutation angle e,, the 
systcm equation of the SR motor drivc is givcn by: 1 p=* 

(3)  

v~&(i7r(e)- l~~ ) ( e m o d 2 8 , ) ~  [e,,,e,, +e , )  
-V,&(vk) ( 8 m o d 2 8 , ) ~  [8,,+8,.8,, + 2 8 , )  

where itI, IS the phase voltage, iI is the phase current. \vk is 
the phase flux linkage, 12 is the phase resistance, L is the 
phase inductance, B is the viscous damping, J is the load 
incrtia. is the load torque, and E is a unit step function. i, 
is expressed by an interpolation function of 0 and yL . 

By dcfining thc statc vcctor X = (0, o, y l ,  t+f2)' and thc 
output vector Y = (e, CO, i )  , where i = i, + i 2 .  (3) can be 
rewritten as: 

( 5 )  

111. POINCARE MAP AND ITS JACOBIAN MATRIX 
In order to derive the PoincarC map, a plane is defined as: 

C:={X:[(0-0, )mod0,]= O }  t 7) 
The trajectory of X under observation repeatedly passes 
through thc C when 8 increascs monotonically. The scquence 
of C crossing defines the PoincarC map: 

p :  913 3 s3 9 (@,VI > V X + ,  = P((av,,Yr, If 1 (8) 
Actually. the orbit of this map is a sequence of samples at the 
beginning of the dwell aiigle of each phase winding. In order 
to avoid the calculation of the plane crossing, the rotor 
displacement 8, rather than time t, is selected as the 
independent variable of the system. The next crossing of the 
planc O,r+l =e,  +(n+1)8, can bc directly calculatcd by 
integrating from e,, = e, +ne,  to 0,,+1 . To make 0 as an 
independent variable, (3) is expressed as: 

(%W Wz ,e, ) - TI, ) / ( JW)  6 = (-Bo + 
3,  = (-Ril (e,yl ) + uI (e))/* (9) 1 q2 = ( -~ i , (e  -O,,Y.J + u2(e -0, ))/CO 

By redefining thc state vector X(e) = ( ~ \ ~ ~ , t + f ? ) ~  and output 

vector \'(e) = (0, iJ7 , (9) can be rewritten as: 

The Poincarb map (8) can also be rewritten as: 

(1 1) 

Since the solution to (10) is continuous, P is also continuous. 
It should be noted that the map M in (10) is a 

noninvcrtible map within thc whole sct of thc solution. For 
example, if v, and w 1  are simultaneously nonzcro, X is a 
multivalued function of Y. However, the map M in (11) is 
homeomorphism, namely M and -.' are continuous, 
because one of VI and yz of X,, is zero. Thus, the orbits 
{X, ) and {Y,,) are topologically equivalent. 

The Jacobian matrix DP(X,, )  of the Poincare map Y with 

rcspcct to X,, is thc solution Zn+l = Z(~,+,)E 913 x%' of 
the variational equation of its underlying system as gi\/eii by: 

x,, I = P ( X , ,  ) 1 y,, = M ( X , )  

Consider that the winding 1 is inactivated, it yields: 

I ai, I ai2 
JW ae -- JO a0 'i -- -T,+T, 

(14) 

where Fe is a Dirac delta function that is the derivative of E. 
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Remark: 
(i). For an arbitrary nonzero point X, , the corresponding 

initial value 2, is usually an identity matrix. However. since 
the winding 2 is activated, namely wz = 0 ,  the partial 
derivative of this zero flux linkage with respect to X,, is also 
a zero vector. Hence, the third row and column of Z,, are 
zero vectors. It results that the third column of Z,+, is also a 
zero vector because the variational equation of each column 
ofZ(0) is linear and homogeneous. 

(ii). Thc rotor displacement 0, of (14) is thc position in 
which y,(O,) = 0 .  & ~ , ( O , y f , ) i a y f ,  can be derived from that 
the partial derivatives of this flux linkage with respect to X,, 
remain a zero vector after 0 , .  Therefore, the second row of 
Z,,, is always cqual to zero. 

(iii). The rotor displaccmcnt 0, of ( I  5) is thc intersection 
point in which v , ( O , , )  - V~ (e,) = 0 .  Duc to thc 6, pulsc in 
(14) and (15), U8) is discontinuous at 8, and e,, . But Zncl 
IS continuous over Z,, if 6, is continuous over Z , .  
However, Z,,, is discontinuous over Z, if 0, locates at the 
changing point between pulsing and skipping cyclcs, namely 
v, (0 , , )=  v,, . where 3 u , ( $ , ~ ) i a o  is given by (IS)  at e,, 
whereas &,(O,o)!acu = 0 at 0;. The Poincare map that its 
dcrivativc is continuous over distinct regions in  thc state 
bpacc but it is discontinuous in thc bordcr of thcsc rcgions is 
called a piecewise smooth map. 

Iv. ANALYSIS OF CHAOTIC BEHAVIOR 
Since the Poincar6 map and its Jacobian matrix are 

derived from the numerical solution of the underlying 
differential equations, the modeling of chaos of the SR motor 
drivc nccds to resort to thc numerical simulation. A natural 
numerical tool to obtain the stcady-statc solution of thc 
Poincar5 map is the brutc-forcc method - repeating the 
iteration of the map until the transient has died out or the 
steady state has bccn reached [8]. This method has thc 
advantagc of simplicity, but may suffcr from tedious 
simulation due to long-live transients. The more efficient 
approach to obtain the periodic solutions is to locate the 
corresponding fixed points of the Poincark map by using the 
NeWon-Raphson algorithm. Hence, the stablc regions of the 
systcm paranieters can also be figurcd out by using this 
Newton-Raphson algorithm and calculating the 
corresponding charactcristic multiplicrs that arc cigcnvalucs 
of-the Jacobian matrix. However, the niost effective approach 
to locate chaotic solutions is still the brute-force method. The 
bifurcation diagrams are also figured out by using the brute- 
forcc method. 

A.  Fundanaetatal Operation 
Actually, the period of yf, aid yf? of X is always 20, 

instead of 0, .  In order to attain the period-1 orbit of P, the 
winding I always stands for the inactivated winding at each 
iteration of P. resulting that y ~ ,  and y f 2  must exchange their 

values after each iteration of P. Thus, the fixed point X' of P 
and its Jacobian matrix are defined as: 

xw = C P ( X * )  (16) 

J ,  = CDP(X') (17) 

where C =  0 0 1 . i: T :] 
The fixed point X' of P can also be locatcd by using the 

Ncwton-Raphson algorithm as givcn by: 
X"+l' = X(" -(cDP(x~")-l)-~(cP(x~~')- X(')) (18) 

where DP(X"') can be evaluated from (12) and (1 5). 
By checking thc characteristic multiplicrs, thc stable 

rcgions of thc fundamcntal opcration can be figurcd out. 
Howcvcr, It should bc noted that the leading magnitude of thc 
characteristic multipliers on the boundary of the stable 
regions may be not equal to unity, because it may jump from 
the interior of the unit cycle to the exterior due to the 
discontinuity of J ,  . 

B. Suhhurnionics 
The period? orbit {X;,....X*,j is defined as: 

Xi+, =CP(X;)  ( k  = I ; . - ,p -  1). Xi = CP(Xi)  (19) 
Thcy arc a sct of fixed points of the p-fold iterative map, 
which can be expressed as: 

The corresponding Jacobian matrix J 
x; = ( c P ) ' q x ; )  ( k = l ; . . , p )  (20) 

J I' = c D r ( x ; ) . . . c u P ( x ; )  (21) 

-( J:) - l ) - ' ( ( C p ~ ( p ) ( x ( ' ) ) - X ( ' ) )  (22) 

J ::' CDP(X;' ). . .CDP( Xl ' ) (23) 

is given by: 

The fixed point X; can be located by using the Newton- 
Raphson algorithm given by: 
X(I+II = XU' 

wherc: 

According to Remarks (i) and (ii), one of eigenvalues of 
J ,  and J,  must bc zero. Thercfore, it can be identified that 
thc three-dimensional Poincark map P is only of thc sccond- 
order dynamics. This is also another evidence for two orbits 
{X,, 1 and {Y,,} with differcnt dimcnsionality arc 
topologically equivalent. Nevertheless, in order to analyze the 
dynaiiiics without rough assumption, the third-dimensional 
Poincark map P is still needed. 
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v .  COMPUTER SIMULATIONS 
The computer simulations and experimental verifications 

are carried out by using the 3-phase SR motor drive that is 
designed for an electric vehicle 191. The selected motor drive 
is with the following practical component and parameter 

0. lSR, B = 0.0005Nndrads~'. J =  0.025kgm'. L:s = 150V, I:, 

= 5V. v, = 1V, 0,= 10, 0,. = 1.5'; g = 3.5Viradi1, 0,. = 

50radis. = 8". 
#en g = 1.5V/radi1, the steady-state behavior of the SR 

motor drive is a fundamental operation. The corresponding 
waveforms of I?,, v, and i as well as the phase-plane 
trajectory of i versus w are shown in Fig. 2, in which 0 is 
expressed as the integer multiple of the commutation angle 
8,. . As shown in Fig. 2(a), there is no skipping cycle during 
PWM regulation. namely v,. crosses every I,,. . Since 
ne = 10, i has ten peaks within each Nso. the 
distributions of i are of periodic oscillatioii as shown in Fig. 
2(b). This oscillation includes two components - one 
corresponds to the commutation frequency and another 
corresponds to the P WM fiequency. Since w and v, have the 
same shape and obey a linear relationship as given by (2 ) ,  the 
oscillation of o, as shown in Fig. 2(a), is mainly of 
commutation frequency. indicating that the speed oscillation is 
insensitive to the current component with the PWM 
frequency. The phase-plane trajectory of this periodic solution 
is a cycle having ten peaks as shown in Fig. 2(c). The 
boundary of w is from 52.7rad's to 53.0radk whereas the 
boundary o f i  is from 20A to 60A. 

When g = 4.4Virad11, the SR motor drive operates in 
chaos. The chaotic waveforms and trajectory are shown in 
Fig. 3. Different from the periodic solution, it has skipping 
cycles within each 0, as shown in Fig. 3(a). Furthermore, the 
number of skipping cycles within each O,T is a random-like 
variablc. It follows that the oscillating magnitudes of i and w 
are all fluctuating as shown in Figs. 3(a)-(b), respectively. As 
shown in Fig. 3(c), the trajectory of i versus w is a random- 
like bounded phase portrait. The boundary of w is still 
acceptable (from 50.7radis to 5 1 Arads), whereas the 
boundary of i is exceptionally large (from OA to 120A). 

By using the brute-force method to compute the PoincarC 
map ( 1  I), the bifurcation diagrams of i and o with respect to 
g and T, are shown in Figs. 4(a)-(c), respectively. They can 
depict the periodic and chaotic orbits. illustrating how to 
route to chaos. As shown in Figs. 4(a)-(b), both i and o 
bifurcate from the period-1 orbit to the period-2 orbit at g = 
3.92V/rads-', then to the period4 orbit at g - 4.13V/rads-', 
then to the period-8 orbit at g = 4.25V/radi1, and finally 
route to chaos at g = 4.33Viradi'. As shown in Fig. 4(c), i 
deviates fiom the period-1 orbit to the period-2 orbit at = 

1 I", then to the period-4 orbit at - 1 1.4Nm, and finally 

values: N ,  - 12 N - 8 Q - 0  - 15' Q - 375" R - 3 r 3 d - s  - 0  . ?  

jump to chaos. Therefore, the route to chaos of the SR motor 
drive includes not only the period-doubling, but also the 
abnormality (directly from the period4 orbit to chaos), the 
so-called borderline collisions in the piecewisc smooth map 
[lo]. 

By using Newton-Raphson algorithm, the period- 1 orbit 
of i with respect to g is shown in Fig. S(a), which includes the 
stable and unstable period-I orbits. Their characteristic 
multipliers of I h, I and 1 h, 1 with respect to g are shown in 
Figs. 5(b)-(c), in which 1 h, lis greater than unity when g > 
3.92Virads-'. It indicates that the period-1 orbit is unstable 
when g > 3.92Virads-'. Similarly. thc period-2 orbit of i with 
respect to g is shown in Fig. 6(a), which includes the stable 
period-] orbit as well as stable and unstable period-', orbits. 
Their characteristic niultipliers of I h, I and [ h, 1 with 
respect to g are shown in Figs. 6(b)-(c), in which 1 h, 1 is 
greater than unity when g > 4.13V!rads". It indicates that the 
period-;! orbit is unstable when g > 4.13Virads-I. It should be 
noted that the above results using Necl.ton-Raphson algorithm 
agree closely with the bifurcation diagrams using the brute- 
forcc mcthod as given by Fig. 4. The Newton-Raphson 
algorithm facilitates the identification of the desired stable 
operating regions for different system parameters and 
conditions. 

From bifurcation diagrams as shown in Figs. 5-6, it can be 
concludcd that thc Poincark map of the SR motor drive has 
two key features. One is that its Jacobian matrix and hence 
characteristic multipliers are discontinuous over the system 
parameters even though the map is continuous over the 
system parameters, namely the Poincark map is a piecewise 
smooth map. In this kind of maps, the bifurcation point 
occurs at not only the points whose characteristic multipliers 
locatc in the unity cyclc, but also thc discontinuity points 
whose characteristic multipliers jump fiom the interior of the 
unit cycle to its exterior. The second feature is that one of 
characteristic multipliers is much smaller than the other one if 
they are both real numbers. Morcovcr, for the unstable 
pcriodic orbit, this small charactcristic multiplier is ncarly 
zero, resulting that chaotic behavior will has very strong 
phase space contraction in this direction. 

VI. EXPERIMENTAL VERIFICATIONS 
For the sake of siniplicity and clarity, the speed feedback 

control voltage v, is measured instead of the actual motor 
speed. The measured trajectory and waveforms of i and v< 
with g = 1.5Virads" are shown in Fig. 7. This illustrates that 
the SR motor drive operates in thc period-1 orbit. Also, it can 
be found that i lies roughly between 20A and 60A while v, 

lies between 4V and 4.W (equivalent to w between 52.6radIs 
and 53rad/s). By comparing these results with the waveforms 
and trajectory shown in Fig. 2, the measured results and the 
theoretical prediction have a good agreement. 
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Morcovcr, by selecting g - 4.4V/radi1, the measured 
trajectory and waveforms of i and v, , as shown in Fig. 8, 
illustratc that thc SR motor drive opcrates in chaos. It can 
be found that the boundaries of L and I]< lie roughly 
between OA and 120A and between 2V and 8V (equivalent 
to o between 50.45rad~s and 5 1.8rad/s), respectively. 
Different to the pcriod-1 orbit in which the measured 
trajectory and wavefornis are directly coniparcd with thc 
theoretical prediction, the chaotic trajectory and 
wavcforms nieasurcd in thc cxpcrimcnt can hardly match 
with the theoretical ones because the chaotic behavior is 
not periodic such that the period of measurement can not 
be the same with that of theoretical analysis. Also, its 
characteristics are extremely sensitivc to the system initial 
conditions. Ncverthclcss, it can be found that thc nieasurcd 
boundanes of the chaotic trajectory shown in Fig. 8 
resemble to the theoretical prediction in Fig. 3.  

Fig. 7. Measured trajectory a id  wavcforn1s of feedback control voltage 
and total current during fundamental operation. 

f (1Onaidlv) 
Fig. 8. Mcasured trajcctory and waveforms of feedback control voltagc 

and total current during chaotic operation. 
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v11. CoxCLuSloK 
In this paper, the modeling and analysis of chaotic 

behavior in SR motor drives using the voltage PWM 
regulation is proposed. By selecting the flux linkage and 
rotor position as the state variable and independent 
variable, respectively, a Poincare map and its Jacobian 
matrix are constructed, which take the advantages to 
significantly reducc the computation time to analyze the 
pcriodic and chaotic bchavior. Thc bifurcation diagrams 
illustrate that the route to chaos of the SR motor drive 
includes not only the period-doubling, but also the 
abnormality (directly from the period-4 orbit to chaos). 
The theoretical niodeling and analysis are verified by using 
both computcr simulations and cxpcrimental 
measurements. The proposed approach and derived 
modeling can readily be applied or extended to other SR 
motor drives. 

ACK~OWLEDGMENT 
This work was supported by a grant from the Research 

Grants Couiicjl of Hong Kong Special Administrative 
Region, China (Project No. HKU 7128199E). 

REFERENCES 
P.J. Lawrenson, “A brief status review of switched reluctance 
drives.” EPLJoitrnul. Vol. 2. No. 3. 1992. pp.133-144. 
K.T. Chau, J.H. Cben, C.C. Chan. and Q. Jiang. “Suhlwmoi~ies and 
chaos in switched reluctance motor drives,” I’roceeding.v os EEC 
Internutionul Electric A4mhincv mid Driws Coi!lkrence. 1999, 

J.R. Wood. “Chaos: a real plienoinenon in power electronics,” 
Procwdings ?/‘lt%%‘ Applied Power Electronicx Conkremx; I 989, 
pp. 11 5-12?, 
D.C. Hamill. J.H.B. Deane, and D.J. Jefferies, “Modeling of chaotic 
dc-dc converters by iterated nonlinear mappings,” iEEE 
Tiairsactions on Power Efectroizic.s, Vol. 7, No. 1, 1991,. pp.1,S-36. 
1. NaEy, L. Matakas Jr. and E. Masach, “Application of the theoiy of 
chaos in PWM techniquc of induction motors.“ Pmceedings qf 
brrernutional Power. Electronics Coi!fer.ence, 1995, pp.58-63. 
N. Hemati, “Stnnge attractors in brushless DC motors.” IECE 
hriscrctioiis on Circirits und S’stc?ms-l: Fitndumc~ntcrl 7hi.ory rind 
App/icci/ion.s, Vol. 41. No. I ,  1994. pp.40-45. 
J.H. Chen, K.T. Chau, and C.C. Chan, “Chaos in voltage-mode 
control led dc drive system,” lnfernutionul Jozirnal of Electronics, 

T.S. Parker and L.O. Chm, Pructicul Numerical Al.yor.ithinu .for 
Chuofic Sixtems. Springer-Verlag, 1089. 
C.C. Chan, Y.  Zhan, Q. Jiang, and K.T. Chau, “A high performance 
switched reluctance motor dri\re for P-star EV project,”I”rc_rcee~~ifg~ 
of‘lnwrnurionul Electric Vehicle Svmposiirm. 1096, pp.78-83. 

~ ~ . ( 7 h  1-463. 

Vol. 86. NO. 7, 1999, pp. 857-874. 

~. 

[ 101 6. Yuan, S .  Banerjee, E. Ott, and’J.A. Yorkc. “Bordcr-collision 
bifurcation in the buck converter,” IEEE Punsaclions on Circuits 
a d  Systems-1: Eirnciameritcrl Thetin; und Appliculions. Vol. 45. No. 
7,  1998. pp. 707-716. 


