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ABSTRACT 

ost classical approaches to the determination 
of geodesics (such as the calculus of variations) 
are difficult to apply except for simple 
surfaces. Genetic algorithms are therefore used 
to provide a general methodology for the 
computation of geodesics. 

used to provide a general methodology for the 
computation of geodesics. The outputs of the 
sets of Cartesian co-ordinates from this genetic 
procedure are in a form immediately suited to 
such practical tasks as the programing of 
CNC machme tools or industrial robots. The 
effectiveness of this genetic methodology is 
illustrated by reference to a spherical surface, 
for whch theoretical results are known. 

1 .  INTRODUCTION 
2. GENETIC METHODOLOGY 

Many important problems in 
engineering involve the computation of 
geodesics (ie, lines of shortest distance) on 
three-dimensional curved surfaces. Thus, for 
example, it may be required to position a 
robotically operated riveting machine so as to 
produce a set of equally spaced rivets along the 
geodesic joining two points on the curved 
hselage of an aircraft under manufacture. 
However, most classical approaches to the 
determination of geodesics (such as the 
calculus of variations) are difficult to apply 
except for simple surfaces. In addtion, the 
outputs from such procedures are usually in the 
form of mathematical functions and not in the 
form of discrete sets of Cartesian co-ordinates 
suitable for numerical control (or, more 
generally, for use in digitised form withm any 
CAD/CAM system). 

The general methodology for the 
genetic computation of geodesics can be 
conveniently described in relation to a curved 
surface, Z, described by the equation 

A % Y A  = 0 . . . . ( I )  

in three-dimensional Cartesian space. In 
equation (l), P = (x,y,z) is a point referred to 
fixed rectangular Ox,Oy,Oz axes with 0 as 
origin. It is desired to find the line of shortest 
length joining the points 

and 

The need to generate geodesics in such 
digitised forms has been addressed by, for 
example, Kiryati and Szekely [l]. However, it 
is considered that such procedures are 
relatively difficult to apply (particularly in the 
case of complicated curved surfaces). In this 
paper, genetic algorithms [2] [ 3 ]  are therefore and 

which lies on the surface described by equation 
(1). Since the points A and B lie on this 
surface, it is evident that 
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It is convenient to define the geodesic joining A 
and B on E in terms of n equally spaced 
interior points 

P, = ( X I J l , Z i )  ( i  = 1,2,. ..) n) . . . . . (5) 

Thus, if 

Z j  =d(Pi-l,Pi) (i =2,3, ..., n) , . . . . (6b) 

and 

(6c) 

are the lengths of rectilinear segments lbetween 

respectively, these interior points are required 
to be such that 

A and P I , P I  and Pz, ..., and Pn and B ,  

*I 
I =  I: li 

i=l 
. . . ( ; y  

is a minimum where 

I ,  = 12 = ... = I n + ,  . . . . (CV 

and 

f(xi,yj, Z i )  = 0 (i = 1,2!, . . .) n) . . . . . (9) 

This constrained minimisation problem 
is equivalent to determining the Cartesian 
co-ordinates of the n interior points 
P1,P2, ..., Pn such that this cost function 

+p35 If(xi,yizi)l . . . . (IO) 
i=l 

is minimised. In equation (lo), 

and p1~p.2, and p3 are positive weighting 
parameters. It is evident that, in the case of 
curved surfaces for which geodesics are 
uniquely defined, the Cartesian co-ordinates of 

the n interior points that minimise r will 
produce a space-polygonal approximation to 
the required geodesic in which the sides of the 
space polygon are of equal length and its 
vertices lie on E .  In order to use genetic 
algorithms to determine this geodesic, it is 
necessary only to encode the Cartesian 
co-ordinates of the n triples (x 1 ,  y 1, z I ) , 
(~2,y2,z2) ,  . . . , (xn,yn, 2,)  in accordance with a 
system of concatenated, multi-parameter, 
mapped, fixed-point coding [ 3 ] .  Thus, each 
ordered set of n such triples is represented by a 
string of binary digits with 3n sub-strings. 
Then, following any choice of an initial 
generation of such strings, successive 
generations of strings can be readily obtained 
using the basic genetic operations of selection, 
crossovlcr, and mutation [3]. In particular, by 
d e w g  the 'fitness' of each such string as 

Q =  i / r  . . . . (12) 

the successive generations of interior points 
P I , P ~ ,  ..., Pn produced by the genetic algorithm 
tend to exhibit progressively increasing 'fitness', 
a, as the cost function, r, decreases towards 
its minimum value. This methodology for the 
genetic computation of geodesics thus produces 
space-ptolygonal approximations to the required 
geodesics that satis@ the constraints expressed 
by equations (8) and (9) with increasing 
accuracy while " k i n g  the length defined 
by equation (7). Note that, although the 
constraint expressed by equation (8) is 
appropriate to many manufacturing 
applications of geodesics (in riveting, for 
example), this particular constraint is not 
fundamental to the gzneral methodology. Note 
also that planar problems, such as those 
involved in designing shop-floor layouts or in 
optimising the paths of remotely guided 
vehicles, can be solved according to this 
formaXisation simply by replacing equation (9) 
with the constraints 

zj = o  ( i=1 ,2  ,...,n). . . . . (9y 

3. ILLIJSTRATIVE EXAMPLE 

This general methodology for the 
genetic; computation of geodesics can be 
conveniently illustrated by reference to a 
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curved surface, E, for which theoretical results 
are known. Thus, for example, consider the 
case of a sphere with centre at the origin and of 
unit radius for which it is required to determine 
the geodesic joining the points 

A = ( l , 0 , 0 )  . . . . (13a) 

and 

B=(O, 1 , O )  . . . . . (13b) 

In this case, let it be desired to determine the 
three interior points 

and 

which satisfy the constraints expressed by 
equations (8) and (9), and which minimise the 
length defined by equation (7), in case n = 3 .  
The results of the genetic computation in t h s  
case are shown in Figures 1 and 2 over 
100,000 generations for a population size 
N =  100, a crossover probability p c  =0.6,  a 
mutation probability p m  = 0.001, and a string 
length h= 90. In Figure 1, the 
best-of-generation and generation-average 
values of the cost hnction, r, are plotted 
against generation number when 

= 2.5,  p2 = 1, and p3 = 1 ; whilst, in Figure 
2, the associated best-of-generation values of 
the nine Cartesian co-ordinates 
X I  , Y I ,  21, ~ 2 , y 2 ,  z 2 ,  ~ 3 ~ ~ 3 ,  z3 are plotted against 
generation number. It is thus evident that the 
optimal locations of the three interior points are 

Pi E (0.92375,0.38221, -0.00098) , 

. . . (15a) 

P2 E (0.70869,0.70478,0.00098) , 

and 

P3 E (0.38416,0.92179,0.00098) , 

. . . . (15c) 

for whch 

I =  1.55989 , . . . . (16) 

11 ~ 0 . 3 8 9 7 4  , . . . . (17a) 

12 =0.38769 . . . . . (176) 

l3  =0.39040 , . . . . (176) 

and 

14 ~ 0 . 3 9 2 0 4  . . . . . (17d) 

These genetically computed results are 
evidently close to the corresponding theoretical 
values 

and 

Pi E (0.92387,0.38268,0) , 

P 2  E (0.70710,0.70710,0) , 

. . . . (18b) 

P3 E (O.38268,0.!92387,0) , 

, . (18c) 

I =  1.56071 , . . . . (19) 

11 =0.39017 , . . . . (20a) 

12 ~ 0 . 3 9 0 1 7  , . . . . (20b) 

1 3  =0.39017 , . . . . (20c) 

14 ~ 0 . 3 9 0 1 7  . . . . . (20d) 

This accuracy can be improved, if desired, by 
using longer strings. Note that the outputs of 
the sets of Cartesian co-ordinates from this 
genetic procedure are in a form immediately 
suited to the programming of CNC machine 
tools or industrial robots. In addition, note that 
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the evolutionary process depicted in Figures 1 
and 2 can be accelerated by using more precise 
CI priori information regarding the adrnissible 
ranges of the Cartesian co-ordinates 
X i , Y i , Z i ( i  = 1,2, ..., 3) .  

4. CONCLUSION 

In this paper, genetic algorithms have 
been used to provide a geiieral methodology for 
the computation o f  geodesics; on 
three-dimensional curved surfaces. The 
effectiveness of this genetic methodology has 
been illustrated by reference to a spherical 
surface for which theoretical results are Iknown. 
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