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Abstract - In recent years, techniques such as dynamic 
programming, the maximum principle, linear 
programming, and genetic algorithms have been used to 
synthesise optimal control policies for manufacturing 
systems. However, such techniques are frequently rather 
opaque and often yield control policies that are 
implemented by open-loop rather than closed-loop 
control systems. In this paper, it is therefore shown that 
closed-loop systems incorporating hybrid fuzzylcrisp- 
logic controllers can be readily designed for 
manufacturing systems. This hybrid approach is 
illustrated by reference to the closed-loop control of a 
simple manufacturing system producing a single part 
type. 
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unable to function automatically for different part demand 
rates since they are implemented by open-loop rather than 
closed-loop control systems. In this paper, it is therefore 
shown that closed-loop systems incorporating hybrid 
fuzzykrisp-logic controllers can be readily designed for 
manufacturing systems. This hybrid approach is illustrated by 
reference to the closed-loop control of a simple manufacturing 
system producing a single part type. 

11. CLOSED-LOOP HYBRID CONTROL 

The manufacturing systems to be controlled comprise m 
machines (with n associated buffers) and produce p part types. 
The dynamical behaviour of such systems is governed by 
linear differential equations of the forms [6][9] 

I. INTRODUCTION 
q(t) = A, u ( t )+A2  i(t) (1) 

In modern industry, it is important that manufacturing 
systems be controlled so as to satisfy production schedules 
and to minimise manufacturing costs. Therefore, in recent 
years, various techniques such as dynamic programming, the 
maximum principle, and linear programming have been used 
to synthesise such optimal control policies for manufacturing 
systems [ I ]  - [6]. Such synthesis techniques are needed 
because the state and control vectors involved in the 
mathematical models of manufacturing systems must satisfy 
numerous complicated constraints, which create major 
difficulties both for the design and for the operation of 
conventional multivariable control systems. However, 
synthesis techniques like dynamic programming [ 13 and the 
maximum principle [5] entail rapidly escalating computational 
difficulties as system complexity increases. Such 
computational difficulties are avoided by the use of linear 
programming [6] to synthesise optimal control policies for 
manufacturing systems; but this tractability is achieved at the 
expense of having to deal only indirectly with the dynamical 
complexities of such systems. 

In order to circumvent these difficulties, it has recently 
been shown by Porter and Allaoui [7] that the genetic design 
methodology developed by Porter [8] can be readily used to 
synthesise optimal control policies for manufacturing systems. 
However, the optimal control policies thus obtained are 

and 

for the buffer dynamics and for the production dynamics, 
respectively. In these equations, q(t) E %" is the vector of 

buffer levels, x(t) E the vector of finished parts, 

u( t )  E '32" is the vector of buffer production rates, i(t) E %' 
is the vector of part release rates, and d(t) E '32' is the vector 

of part demand rates. In addition, A, €snXn is the buffer 
routing matrix such that A, u(t) represents the flows of parts 

between buffers; A, E %nxp is the buffer loading matrix 
such that A 2  i(t) represents the arrivals of external parts at 

the buffers; and A, is the output matrix such that 
A, u(t) represents the flow of finished parts. Finally, if 7, 

is the processing time of parts in buffer j and B(k) is the set of 
buffers for machine k(k=1,2,..,m), then the buffer production 
rates must satisfy the capacity constraints 
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This problem has, nevertheless, recently been solved by 
Porter and Allaoui [7] using the genetic design methodology 
developed by Porter [SI. However, the resulting genetically 

loop rather than closed-loop control systems. In order to 
facilitate the closed-loop control of manufacturing systems, it 
is possible to introduce hybrid fuzzyfcrisp-logic controllers. 
Since it is required that such controllers function 
automatically for different part demand rate vectors, 
d(t) E SP, it is convenient to control the vector of finished 

parts, x(t) E Sp, by using a fuzzy-logic controller to 

generate the vector of buffer production rates, u(t) E Sn ; 
and to control the vector of buffer levels, q(t) E Sn, by 
using a crisp-logic controller to generate the vector of part 

release rates, i(t) E SP . The design of both the fuzzy-logic 

controllers so as to ensure that both Ilx(t)ll+ 0 and 

11q(t)ll+ 0 is straightforward because of the special structure 

Of the linear 

T j u j ( t ) l l  (k=1,2,...m) . (3) 
jEB(k) 

In addition, the state and control vectors must satisfy the 'Ynthesised Optima' Policies are 'Pen- 
constraints 

(4) q(t> 2 0  9 

u ( t ) > O  . ( 5 )  

and 

i ( t ) > O  . (6) 

However, x(t), the state vector of finished parts, is not 
required to satisfy such a non-negativity constraint (Since 
there may be either a surplus or a Of finished parts). components and the crisp-logic components of such hybrid 

The control problem is to find, over some time period of 

duration T, the vectors i ( t ) E S P  and u ( t ) E S n  of part 
release rates and buffer production rates in response to a equations ( l)  and (2). 

specified vector d(t)  E SP of part demand rates. More 
precisely, the objective is to choose the control vectors 

111. ILLUSTRATIVE EXAMPLE 

i(t) E Sp and u(t) E %" so as to minimise the cost function This general approach to the hybrid fuzzykrisp-logic 
control of manufacturing systems can be conveniently 

T illustrated by considering a simple system in which m=2, 
n=2, and p=l [7]. In this case, equation (1) for the buffer 

0 dynamics assumes the scalar forms 
r = I [ % ( t ) + p + ~ + ( t ) + p - x - ( t ) ]  dt  , (7) 

x- ( t )  = max {-x(t),O} E S P  , (gb) whilst equation ( 2 )  for the production dynamics assumes the 
scalar form 

is the parts backlog vector, and 
h E %lxn,  p- E SJXp, p' E %Ixp are weighting vectors x(t) = uZ(t)-d(t) . 

for the buffer contents and the finished parts surplus or It is assumed that T1 = 0.5 and z2 = 0.5 so that, in view 

constraints 

backlog' It is evident that the i(t> E " and of the inequalities (3 ) ,  the production rates must satisfy the 
u(t) E Sn that minimise this cost function, r, are optimal in 
the sense that the entire cost function associated with work-in- 

surplus, and production backlog is minimised. However, the 
solution of this optimisation problem is non-trivial because 
the control vectors i(t) E SP and u(t) E %n must satisfy the 

constraints ( 3 ) ,  (S),  and (6) whilst the state vector q( t )  E %' 
must satisfy the constraint (4). 

progress (as measured by the buffer levels), production (t) 2 (12) 

and 

u 2 ( t ) 2 2  . (13) 
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In addition, it follows from the inequalities (4), (3, and (6) 
that the state variables and control variables must satisfy the 

CR4. If q2 = 0, then u1 = u2 . 

The hybrid controller embodying these nine rules provides a 
simpler means of controlling the multivariable manufacturing 
system than does a completely fuzzy controller. Indeed, it is 
evident from equation (9) that ql(t) depends directly on 
both i(t) and ul(t); and from equation (10) that q2(t) 
depends directly on both ul(t) and u2(t).  But the hybrid 
controller essentially decouples these control tasks by first 
using the fuzzy-logic controller to generate u2(t),  and then 
using the crisp-logic controller to generate u1 (t) in terms of 

(14) 

(15) 

(16) 

The initial state of the system is such that u2(t) and i(t) in terms of u,(t). 

x(0) = 0 . 

(174  

(171,) 

The results obtained when this hybrid fuzzylcrisp-logic 
controller is implemented are shown in Figs 1 and 2 when the 
system is in the initial state defined by equations (17) and the 
part demand rate is given by equation (18). Thus, the state 
variables ql( t ) ,  q2(t) ,  and x(t) are as shown in Figs l(a), 
l(b), and l(c), respectively; whilst the controls i(t), ul(t), 
and u2(t) generated by the hybrid controller are as shown in (17c) 
Figs 2(a), 2(b), and 2(c), respectively. It is evident that this 
closed-loop behaviour is very similar to the following 
behaviour of the optimally controlled system (for which the 
cost function, r, is equal to 62.5): 

It is assumed that control is to be exercised on the time 
interval [0,10], and that the part demand rate on this interval 
is 

d(t) = 1 ( 0 5  t 5 1 0 )  . (18) (i) e(t) reduces linearly from 5 to 0 when t = 5, and then 

The objective of such control is to generate i(t), ul(t), and 
~ 2 ( t )  so as to minimise the cost function in equation (7) with 

T = 10, h = [5,10] , and p+ = p- = 5 .  

In order to achieve this objective, the finished parts level, 
x(t), is controlled by a fuzzy-logic controller embodying the 
following five rules: 

FR1. 
FR2. 
FR3. 
FR4. 
FR5. 

If x is P, then Au2 is NB. 
If x is N, then Au2 is PB. 
If x is Z and x is Z, then Au2 is Z. 
I f x i s Z a n d  x isP,  then Au2 isNS. 
If x is Z and x is N, then Au2 is PS. 

remains equal to 0; 
(ii) q2(t) equals 0 when 0 It I 10; 
(iii) x(t) equals 0 when 0 I t I 1 0  ; 
(iv) i(t) equals 0 when 0 I t < 5 and 1 when 5 < t 510. 
(v) u , ( t )  equalslwhen O < t 5 1 0 ;  
(vi) u2(t) equals 1 when 0 I t 510 .  

However, it is important to note that the near-optimal results 
shown in Figs 1 and 2 were obtained automatically by the 
closed-loop system incorporating the hybrid fuzzylcrisp-logic 
controller. 

The ability of the same hybrid controller to deal 
when the automatically with the same part demand rate 

system is in the different initial state 

However, the buffer levels, ql(t) and q2(t),  are controlled q 1  (0) = 3 , ( 19a) 
by a crisp-logic controller embodying the following four 
rules: q2(0) = 3 7 

CR1. If q, >O, then i = 0 . 
CR2. If q, = 0, then i = u1 . 
CR3. If q2 > 0, then uI  = 0 . 

and 

x(0) = 1 
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is demonstrated by the results shown in Figs 3 and 4. Thus, 
the state variables q l ( t ) ,  q2( t ) ,  and x(t) in this case are as 
shown in Figs 3(a), 3(b), and 3(c), respectively; whilst the 
controls i(t), u l ( t ) ,  and u2(t)generated by the hybrid 
controller are as shown in Figs 4(a), 4(b), and 4(c), 
respectively. This hybrid controller is equally effective if the 
part demand rate is increased by 50%, such that 

d( t )  = 1.5 ( O I t l l O )  , (20) 

when the system is in the initial state defined by equations 
(19). Indeed, the state variables ql( t ) ,  q2 ( t ) ,  and X(t) in 
this case are as shown in Figs 5(a), 5(b), and 5(c), 
respectively; whilst the controls i(t), u l ( t ) ,  and u2( t )  
generated by the hybrid controller are as shown in Figs 6(a), 
6(b), and 6(c), respectively. 

IV. CONCLUSION 

Techniques for the synthesis of optimal control policies for 
manufacturing systems are frequently rather opaque and often 
yield control policies that are implemented by open-loop 
rather than closed-loop control systems. In this paper, it has 
therefore been shown that closed-loop systems incorporating 
hybrid fuzzylcrisp-logic controllers can be readily designed 
for such systems. This hybrid approach has been illustrated 
by reference to the closed-loop control of a simple 
manufacturing system producing a single part type. 

V. REFERENCES 

[ 11 S.B. Gershwin, Manufacturing Systems Engineering, 
Prentice-Hall, 1994. 

[2] J.G. Kimemia, and S.B. Gershwin, “An algorithm for the 
computer control of a flexible manufacturing system”, ZZE 
Transactions, vol 15, pp 353-362, 1983. 

[3] R. Akella, and P.R. Kumar, “Optimal control of 
production rates in a failure-prone manufacturing 
system”, IEEE Trans. Automatic Control, vol. AC-31, pp. 

[4] T. Bielecki, and P.R. Kumar, “Optimality of zero- 
inventory policies for unreliable manufacturing systems”, 
Operations Research, vol. 36, pp. 533-541, 1988. 

[5] J.B. Sousa, and F.L. Pereira, “A receding horizon 
strategy for the hierarchical control of manufacturing 
systems”, Proc. 4th International Conference on 
Computer Integrated Manufacturing and Automation 
Technology, pp 443-450, 1994. 

[6] A. Sharifnia, “Stability and performance of distributed 
production control methods based on continuous-flow 
models”, IEEE Trans. Automatic Control., vol AC-39, pp 
725-737, 1994. 

[7] B. Porter, and C. Allaoui, “Genetic synthesis of optimal 
control policies for manufacturing systems”, Proc. World 
Automation Congress, Montpellier, France, May 1996. 

[8] B. Porter, “Genetic design of control systems”, JSZCE, 

[9] K. Egilmez, and A. Sharifnia, “Optimal control of a 
manfacturing system based on a novel continuous-flow 
model with minimal WIP requirement”, Proc. 4th 
International Conference on Computer Integrated 
Manufacturing and Automation Technology, pp 113-1 18, 
1994. 

116-126, 1986. 

V O ~  34, pp 393-402, 1995. 

666 



Y 
0- 

Figure 1: Time-domain behaviour of q l  , q2 and x. [q1(0)=5, q2(0)=0, x(O)=O, d(t)=l] 
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Figure 2: Time-domain behaviour of i, u l  and u2. [q1(0)=5, q2(0)=0, x(O)=O, d(t)=l] 
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Figure 3: Time-domain behaviour of q l  , 92 and x. [q1(0)=3, q2(0)=3, x(O)=I I d(t)=l] 
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Figure 4: Time-domain behaviour of i, u l  and u2. [ql(O)=3, q2(0)=3, x(O)=I, d(t)=l] 
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Figure 5: Time-domain behaviour of q l  , 92 and x. [q1(0)=3, q2(0)=3, x(O)=I, d(t)=l.5] 
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Figure 6: Time-domain behaviour of i, u l  and u2. [q1(0)=3, q2(0)=3, x(O)=I, d(t)=l.5] 
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