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Abstract

This paper considers the problem of robust sta-
bilization for stochastic time-delay systems with
convex polytopic uncertainties. Suflicient condi-
tions for the solvability of the problem are obtained
by using parameter-independent and parameter-
dependent Lyapunov functionals, respectively. It
is shown that the result derived by a parameter-
dependent Lyapunov functional is less conservative.
A desired state feedback controller can be designed
by solving a set.of linear matrix inequalities.

1 Introduction

Stochastic systems with time delays have received
much attention since such systems has come to play
an important role in many branches of science and
engineering applications [2, 4{. The problems of ro-
bust stability analysis and stabilization for uncertain
stochastic time-delay systems have been studied in
the literature and a great number of results on these
topics have been reported. For example, via differ-
ent approaches, robust stability analysis results were
obtained in [3] and [5], respectively. The robust sta-
bilization problem was discussed in {7], where a linear
matrix inequality (LMI) approach is developed and

state feedback controllers were designed. The corre-

sponding results for the discrete case can be found
in [8]. It is worth mentioning that the parameter
uncertainties considered in all these works are time-
varying norm-bounded.

Recently, convex polytopic uncertainties have
been considered. It has been shown that poly-
topic uncertainties can arise when the uncertain ma-
trix in norm-bounded uncertainties provide some a
prior known structures of uncertainties. Therefore,
polytopic-type uncertainty can be regarded as an
important class of parameter uncertainties. When
such a kind of parameter uncertainties appears in
a deterministic discrete system, the problems of ro-
bust stability and stabilization have been studied and
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LMI based approaches have been developed; see, e.g.,
[1, 6], and the references therein, To date, however,
there is no available results on robust stabilization
for stochastic delay systems with polytopic uncer-
tainties. This motivates the present investigation. -

In this paper, we are concerned with the problem
of robust stabilization for stochastic systems with
time delays and polytopic uncertainties, The prob-
lem to be addressed is the design of state feedback
controllers such that the resulting closed-loop system
is mean-square asymptotically stable. Firstly, a suf-
ficient condition based on a parameter-independent
Lyapunov functional is obtained. Then, in order to
reduce the conservatism, we derive a sufficient condi-
tion by using a parameter-dependent Lyapunov func-
tional. A desired state feedback controller can be
constructed by solving a set of LMIs.

Notation. Throughout this paper, for symmetric
matrices X and Y, the notation X > Y (respec-
tively, X > Y) means that the matrix X — Y is posi-
tive semi-definite (respectively, positive definite); 7 is
the identity matrix with appropriate dimension; M7T
represents the transpose of the matrix M; £{-} de-
notes the expectation operator with respect to some
probability measure P; Matrices, if not explicitly
stated, are assumed to have compatible dimensions.

2 Problem Formulation

Consider the following uncertain stochastic system
with time-delay:

[A{a)=z(t) + A1(a)z(t — T) + B(o)u(t)] dt

(Z): da(t) =
+E1(a)x(t — T)dw(t), (1)
z(t) = ¢(t), vt e [-h,0] (2)

where z(t) € R™ is the state, u(¢) € R™ is the con-
trol input, w(t) is a one-dimensional Brownian mo-
tion satisfying £ {dw(t)} = 0 and £ {dw(¢)?} = dt.
The vector o € R™ is an uncertain parameter and the
scalar T > 0 is the delay of the system, which is not
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known, The matrices A(a), A1(a), B(a) and E{w)
are not precisely known, which are assumed to be-
long to a convex bounded {polytopic type) uncertain
domain T given by

T {(AvAl»BsEl) (a), 5
: ~
(A, A1, B, B} (a) = ZO‘“(As A1, B, E1),,

i=1

N
Za,-:l; a; = 0} (3
i=1
where A;, Ay, Bi, F1;,i=1,..., N, are known real
constant matrices.

For the uncertain stochastic delay system (X)), we
consider the state feedback controller

u(t) = Kz(t). (4)

Then, the resulting closed-loop system can be ob-
tained as

dz{t) = [Afo)z()+ Ar(a)z(t —)}dt
+Eq(a)x{t — 7)dw(t), (5)
where
Aila) = A(a) + B{a)K. (6)

The purpose of the robust stabilization problem to
be addressed in this paper is the design of a state
feedback controlier (4) such that the resulting closed-
loop system {5) is mean-square asymptotically stable
for every (A, 4;, B, Ey)(a) € T.

3 Main Results

We first provide a sufficient condition for the solv-
ability of the robust stabilization problem by using
a parameter-independent Lyapunov functional can-
didate.

Theorem 1 Consider the uncertain stochastic time-
delay system (). Then, there exists a state feedback
controller (4) such that the resulting closed-loop sys-
tem (§) is mean-square asymptotically stable if there
erist matrices Y, P > 0 and Q > 0 such that the
Jollowing LMIs hold fori =1,... | N,

AP+ PAT+BY+YTBI +Q AuP 0

paf; -@ PEL | <o
0 EuP -P
(7)
In this cuse, a desired feedback gain can be chosen as
- K=YPL (8)

Proof. By (7), it is easy to show that

N
Z a,-A,; <0,

=1
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where
AP+PAT +BY+Y"Bl +Q AuP 0
A; = PAT, -Q PE;
0 EuP -P
with (8), we have
Af)P + A (a)TP+ Q@ A(a)P 0
PA ()T -Q PE(a)T | <
0 E(a)P -P
(9)
where
Ay = A;+BYP ' i=1,...,N,
N
Ac(a) = Z aiAci-
=1
Let . _ o
P=pt Q=PQpr.
Then, pre- and post-multiplying (9) by
diag (}3, 15, 13'), we obtain
PAfa)+ Ac(a)TP+Q PA(a) 0
A(@)TP —Q  Ei(a)TP
0 PEl (Ct) —P

By applying the Schur complement formula to the
above inequality, we have

}w.

J(a) <0, (10)

where
Ha) = PAc(a) + Ac(a)"P +Q PAi(e)
o [ A1(a)TP Ei(a)T PE1(a) — Q

Now, define the following Lyapunov functional can-
didate for the closed-loop system in (5):

Viz(t),t) = ()7 Palt) + ft | 2(9)" Qa(s)ds. (1)

Then, by Tté’s formula, we obtain the stochastic dif-
ferential as

dV (2(1),) = LV (2(2), )dt+22(6)T PE) (o) z(t—7)dw(t)

where

LV (z(t),1) 25(t)T B [Ac(a)z(t) + A1(e)z(t ~ 7))
+2(8)T Qx(f) — a(t — )T Qu(t — 1)
+z(t — 1) Ei(a)T PE\(a)z(t — 7)

[ 2T a(t-nT | J(a) [ z(f(i)

Noting (10), we have
LV (z(t),t) < 0.

By this and [2], we have that the resulting closed-loop
system (5) 15 mean-square stable. This completes the
proof. g

-



Theorem 1 provides a sufficient condition for the
solvability of the robust stabilization stochastic time-
delay systems with polytopic uncertainties and a
parameter-independent Lyapunov functional candi-
date is used. Usually the result obtained by such a
method is conservative. To reduce the conservatism,
we provide a solvability condition in the following
theorem by using a parameter-dependent Lyapunov
functional candidate.

Thecrem 2 There erists a state feedback controller
{4} such that the resulting closed-loop system (5) s
mean-square asymptotically stable if there exist ma-
trices F, G, 8, Y, Q, H;, ®;,i=1,...,4 and P; > (),
@ >0,5=1,...,N, such that the following LMIs
hold fori=1,... N,

Iy AuHT —AuHT — ®1Fy;

HAL —Q: FEyu

—H3AT, — EL®T ELFT P — &:E; - EL®;

ef 0 —P1E;
HT 4+ 8547, P, - HT HY — ®4Ey;
of P—F o7 + QT Ey,
(=F Hy + A ST &,
Q P; — Hq E-F
—EL®T H;— ELe®T &+ ELOT <0
—F=EF H, &y E
HT -§-457 By
T &7 -0-a7
where

I, = Q;+AGT +GAT + ByY
+¥TBY — B AT, - AHT,
9, = P —G—I—AiGT ‘"Alz'HI-

In this case, o desired feedback gain can be chosen as
K=YGT. T {13)

Proof. First, from the LMI in (12}, it can be seen
that

-G-GT <0,
which implies that G is invertible. Therefore, (13)

is well-defined when the LMIs in (12) are feasible.
Now, by (12), it is easy to see that

(12)

T A HT —AuHT - ®1Ey;
N H, AT -0 FE;
3 —-H3AT, — ETeT ELFT —P. —&:E;; — EL®T
N el 1] —®aFs
HT + 547, P — HY HY — ®4En
o7 P -F o7 + QT By
e, Hy, + A; ST &,
0 P, — H; P-F
T T T T T AT
w(_fl_'qéj‘r s Hf“q"* 8 +¢E3“Q <0 (14)
H{ -5 - 57 &,
$T o7 —-07
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Let

s
i

A-+B-YG—T z':l,...,N,

Afa) = Za A, PO!) 201 is

Z o Q.
i=1

Then, the inequality in {14) can be re-written as

Q(a) + CAL)T + Ac(@)GT — HiA1(a)” — Ar(a) HT
H}AJ{(O:)
—HgAr{(CI) —F; (Q)T@?
Pla) — GT +CGA ()T — HiA{a)T

&
&
I

HT + 8AT (o)
H
Ay (@) HT —41(e)HT — B1E\(e)
—Q(a) FEi(a)
Ei(e)TFT  —P(a) - &:F1(a) — Bi(a)” @7
0 —&3 Fy (C!)
P{o) ~ H Hi — ®4E1(a)
Pla)~F &7 + 0T E(w)

Pl{a) ~ G + Ad(a)GT — Ai(a) HT
0

—Ey(a)T®]
-G-G7
HY
@3
Hi+ Ay (G)ST By
Pla) — Ha Plo)-F
Hy— Ei(e)T8] @2+ Ei(a)T07
H, ®, < 0(15)
-5-57 b4
of —0-0F
Note that
I 0 0 Afo) A{e) 0
Ma)=|0 T 0 0 0 0
0c 07 0 0 Ea)T

is of full row rank., Then, pre- and post-multiplying
(15) by A{a) and A{a)T, respectively, we obtain

Ada)P(a) + P(a)A ()T + Qo) Ai(a)P(a)

Pla)As(e)” —Qla)
0 El (Q)P(Oi)
0
P(a)Ei(e)T | <0 (16)
—P{a)

Considering P(a) > 0, we can set

P(a) = P(a)™".
Pre- and post-multiplying (16) by
ding (P(0), P(a), P(a)) give

P(a)As(a) + Ac(@)T Pla) + Q) P(a)A(a)
Ai(@)T P(a) _—Qla)
0 Pla}Ey (o)



b
El(a)TIB(a) j‘ <0

—P(a)

where
Q(a) = P(a)Q(a)}P(a).

By applying the Schur complement formula to (17),
we have

Pla)Ada) + Ada)T Pla) + Q(a)
Al(a)TP(a)

Pla)Ai(e)
~ O() ] < 0 (18)

Ei{(a)T P() By (o)
Now, define the following Lyapunov functional can-
didate for the closed-loop system*in {5):

V(z(t),t) = ()T Pla)x(t) -i-ft 2(s)T Qa)x(s)ds.

t—7
(19)
Then, by using (18) and following similar line as in
the proof of Theorem 1 we have that the resulting
closed-loop system (5) is mean-square stable. This
completes the proof. N |

Remark 1 In the proof of Theorem 2, it can be seen
that the solvability condition is obtained by using a
parameter-dependent Lyapunov functional candidate.
Furthermore, it can be shown that Theorem 1 is a
special case of Theorem 2. Therefore, Theorem 2 is
less conservative than Theorem 1.

4 Conclusion

This paper has studied the problem of robust stabi-
lization for stochastic time-delay systems with poly-
topic uncertainties. Solvability conditions based
on parameter-independent and parameter-dependent
Lyapunov functionals have been proposed, respec-
tively. It can be shown that the parameter-
dependent result is less conservative than the
parameter-independent one.
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