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Abstract

For a system with redundant sensors, the estimated state
from the Kalman filter is biased if sensor mounting error
existed. To remove this bias, the mounting errors must be
compensated first before using the Kalman filter. It is
shown that only the projection part of the sensors errors
in the measurement space needs to be compensated. If the
state of a system is unavailable, a neurofuzzy network can
be used to estimate the compensation term. This method
is simpler, as it does not require a model for the errors as
that proposed in [2]. A sub-optimal Kaiman filter with
measurement compensation that restrains each row of the
Kalman gain matrix to be in the measurement space is
also derived. An example is presented to illustrate the
performance of the proposed methods.

Keywords: Kalman filter, Redundant sensors, Measure-
ment compensation, Neural networks.

1. Introduction

For a system to have high reliability, not only the
reliability of each of its components is high, redundant
sensors are often required. In aerospace technology,
inertial navigation systems are constructed with
redundant sensors that are mounted in orthogonal and
skewed positions to improve its reliability. An obvious
advantage of using redundant sensors is that sensors with
low reliable can be used without jeopardizing
unnecessarily the overall reliability of the system. This is
the main motivation for developing Fault Detection and
Isolation (#DI) techniques. Several FDI methods are
proposed for systems with redundant sensors. The
common ones are model-based methods, whilst
knowledge-based methods are becoming more popular.

As sensor mounting errors can cause the configuration
matrix of the system to deviate from the designed value,
FDI methods involving residuals generated analytically
may give false alarms. To avoid this problem, the
measurement, and hence the residuals, must be compen-
sated before it is analyzed. The parity vector compen-
sation for FDI using Kalman Filter (KF) [2], and the
separated-bias estimation method [3] are proposed to
solve this problem. In [4], a nonlinear filter is used with a
parity vector to estimate the sensor errors. However,
these methods assumed that the model of the errors is
known, thus limits their application in practice.

Methods to compensate for mounting error are proposed
here. If the state of the system is available, then the
estimation error of its state can be used directly to
compensate for the mounting error. If, however, the state
is not available, a neurofuzzy network is proposed to
estimate the compensated term. The KF using the
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measurement with mounting error compensation, denoted
by MCKEF, is then applied. The implementation of MCKF
is presented, and its performance is illustrated by an
example.

2. Problem Formulation

Consider a linear discrete system with redundant sensors,

X& = Akxk~l + Bkukfl + f;cu + Wk (1)

Yo = Hx, + fie, +v, @
where x, € R", u, € R"and y, € R™ are respectively the
state, control and measurement vectors; w, and v, are
independent white noise with zero mean, and covariance
matrices Oy and R, respectively; A, and B, are constant
real matrices of appropriate dimensions, H is the
configuration matrix with full column rank, f, is the
actuator fault event vector, and f, is a sensor fault event
vector, which is often, though not always, a unit vector;
c,and ¢, are time-varying scalar functions of the
actuator and the sensor faults respectively [5]. When there
are no actuator and sensor faults , i.e., ¢, =c, =0, the
well-known standard KF gives

K- = Akikd/k—l + Bkuk (3)
P =AP A +0Q 4)
Xop = il]k»l + K,(y, - ka/k-: ) (5)
Pux =(1n - KRH)R/k-I(In - KkH)l
. (6)
+K.RK!
K, =P, H(HF, H +R)" 0

where [, is the nxnidentity matrix. If modeling error,

actuator or sensor fault exists, the estimated state from the
KF is no longer optimal and is biased, as shown below.

Let H, e R™" and H, € R™" be respectively the
mounting error, and the scaling factor and input
misalignment errors, then y, becomes
yo=({, +H NH+H_)x,+b+frc, +v, ®)

where b is the sensor bias vector. Let

H=(I,+H,(H+H,)

H=HH+H_+H H_=H-H

b =Hx, +b ©)
(8) becomes _

Yy, =Hx, +b, + f.c, +v, (10)
Let X, and ¥, be respectively the error of the estimated
state and the output,

X, =x—Xo=(L-KH}AX_  +fc +w,)

- Kb =K, fe - Ky,
y. =HX, +fc +v,



Xy can be expressed in terms of X as

- k - K
xwﬂ]%m—&mmm+2m3m—gmw
+ zisl\Pi I, ~KHf,c, - EM YiK;b

X k
- 2. BKife, - zizl\{liKiVi
i =

I i=k

where ¥, = K .
{Hj_zm(ln—KjH)Aj i<k
If %= 0, the expectations of % and ¥, are

BI%]=-3 ¥, -KDic,

. - K . (11)
B i=1lPiKibi ‘Zizl\}’iKif"c"

E[5,]1= HE[X ]+ f.c, (12)

If ¢, =c, =0, thenE[%;]=-Y, WK;b; which is
generally non-zero, indicating that even if there is no
actuator or sensor faults, the estimated state from the KF
is biased, and no longer optimal, as E[X, ]# 0, and hence
E[¥,1#0. Clearly, false alarms can arise from mounting
error. To reduce the possibility of false alarms, the mea-

surement of the sensors should be suitably compensated
first before applying the KF, as proposed in this paper.

3. Compensation of modeling error in the
measurement space

From (11), only b_, given by (9) needs to be compensat-
ed, if there are no sensor and actuator faults. There are
several approaches to compensate for b,. A common

approach is to estimate the unknown error, such as the
misalignment etror of the sensors, the error in the scaling
factor, and the sensor bias, or a combination of these
errors [2,3,4]. It is shown in [2] that only 3n-9 linear
combinations of the 3n elements of H can be determined
uniquely from sensor measurement data. Similarly, only
n-3 of the n elements of b can be determined. This is
because the errors from different sensors may be
combined in such a way that the resulting measurement
may appear to be without any errors, making it difficult to
estimate all the sensor errors. Consequently, only a sub-
matrix with a dimension of (n—3)Xxn, and a sub-vector
of dimension n-3 can be estimated using a model of the
errors. Assuming the errors can be adequately modeled
by a discrete-time Markov process, these estimates can be
obtained from the KF [2]. Indeed, if H,,, H,, and b are
random variables, then the Extended Kalman Filter
(EKF) involving augmenting the state variable and the
sensor errors can be used to estimate the sensor errors
[5]. However, these compensation methods assume the
model of the sensor errors existed. In this section, a direct
compensation of sensor errors is presented.

Before proceeding further, the concept of measurement
space is introduced first. Let S(H) be a measurement
space spanned by all the column of H, and
SWVY=S8*(H)={vIWH =0}, its orthogonal comple-
ment or the parity space, where the column vectors of V
are the parity vector [7]. As H is of full column rank, the
orthogonal projection matrices of S(H) and S(V) are:
P, =H(H'H)"H',and P, =1, ~ Py respectively. Let
Z; =¥, & be the new measurement vector, where &,
is the measurement compensation vector. Methods to
determine & for both known and unknown state of the

system are presented below. Assuming R’ exists, the

Kalman filter gain (KGM)given in (7) can be expressed as
K, =P HR’ (13)
For simplicity, the sensors are identical with the same

variance of ¢ 2. Then R, becomes

R =01, (14)
Substituting (14) into (13) yields

K, =07 P, H’ (15)
Rewrite &, as

& =&, +E, (16)

where &, € S(H), &, €S(V). The state updated using
the new measurement is
)’Ek/k = £k//(-: + Kk(yk + ék - Him-; )

= J’em-J + Kk(yk + gm - Hik/k-) )
Clearly, only the projection of b, in the measurement
space need to be compensated. Note that K, &, =0 from
the definition of S(V), the one-step ahead estimate of the
state, X, is no longer unbiased, as E[¥,, ]1#0. Let
& = HX,;,_, , which is a vector in S(H) and can be con-

sidered as a measurement compensation with known state
as shown in Fig.1. Equations (3) to (7) remain un-
changed, except (5) now becomes

Xk/k :ik/k—l +Kk(yk +‘§k “H'i:k/kfl ) (18)
If the state is not available, the compensation can be
achieved by a B-spline neural network, as discussed in the
next section.
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Fig.1: Measurement compensation based
on the available state

4. B-spline neurofﬁzzy network

To estimate the state, neurofuzzy networks based on B-
spline functions, denoted by BSNN, are used. The BSNN is
shown in Fig. 2, and its output, y(¢),is given by

y(t)=2:=lw,s,(x,) (19)
where x is the input, and w;, j=1,...,q, the weights of the
hidden layer, and s(x) = (s, (x) 5,(x))’ is the multi-
variate basis function given by tensor product [9].

Fig.2: BSNN for scalar output

To compute the multi-step ahead prediction of dynamic
systems, a BSNN with a recurrent structure (BSRNN), as



shown in Figs. 3 and 4, is used. The system shown in Fig.
3 is based on available measurement, whilst that in Fig. 4,
the state is estimated by a BSRNN with the state x,, and
the control u, as input, and the next state (Fig. 3), or the
measurement (Fig. 4) as output. To train the BSRNN, the
following performance index is used.
E=Y, (v -56) 20)

where (i) is the output vector of the BSRNN. The

weights can be updated using the steepest decent
algorithm as given below.

w(k }=w(k—1)+nS AY*-" @1
where 8 =(s(x) s(x)), AY® =y_y®,
Y=(, o, Y=Y - 3PWY. To

improve the convergence rate in the training of the
network, the learning rate 77 is updated at each iteration
as follows [10].

7} =S’ AV IF IS AV *II2 (22
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Fig. 3: BSRNN for known measurement
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Fig. 4: BSRNN for estimated state

5. Compensation for measurement error

Let x;, and & = H(x; —X,) be respectively the state,
and the measurement compensation using the BSRNN,
where &, can be considered as an estimate of the project-
ion of l;k in the measurement space. Then z, is given by
z, =y, +& =Hx, +v, (23)
The implementation of MCKF is shown in Fig.5. Let &/

be a noise sequence that is uncorrelated with the dynamic
noise w, , the measurement noise v, and the estimate of

the initial state estimate X,. Its mean and covariance
matrix are

E[E]=m, (24)
E{(& -m NE -m, ) ]=230, (25)
where §,;is the Kronecker function. Replacing &, by

m, , the modified measurement is now given by
g=y, tm =y, +§ )~(& -m,)
=Hx, +v,
where v, =v, — (& ~m,) is a zero-mean noise with a

(26)
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covariance matrix of (R, +Q,).
unknown, they can be estimated by
=LY H(x-%,.,)
Q=if(L-1) Y H(x =5, (x; =%, ) H’
where L is the number of training data. The MCKF is
given below, and its implementation is shown in Fig. 6,

whilst the network for computing the KGM with
measurement compensation is shown in Fig. 7.

If m,,Q, are

Xk/k-l = Akxk»l/kd + Bkuk
’
Pm_, = Ak })kfl/k—lAk +Qk
Z, =y, +m

By = Xy, + K (2,

kfk

- Hj&k}k—l )

B,=(1,-KH)P, (I,-KH)
+K,R K +K,QK!
K, =P, H'(HP,

H +R +8)"

fe-1
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Fig.6 Implementation of MCKF
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Fig.7 Computing KGM with measurement compensation
6. Sub-optimal Kalman filter

From (14), each row of K, belongs to the measurement
space for the special case that the measurement accuracy
of all sensors are identical. In practice, it is enough to
constrain each row of the KGM to be in S(H) for a
system with redundant sensor. Let
A’k =Y ™ ka/k—l (27)

the so-called innovation sequence. In the ideal case, (27)
can be written as

A =Hi,, , +v, (28)
Substituting (28) into (3) yields
/Qk/ﬁ = £k/n-l + Kkﬂ'k
29)

X = xk/k—l + K: H}A/lx—l + Kkvk
As v, is the measurement noise, the third term on the



right hand of (29) is much smaller than the first two
terms. The update of the state estimate is mainly from the
second term, suggesting that only the projection of the
rows of K, in S(H) need to be considered in the MCKF.
The resulting KF is referred to as a sub-optimal KF for
convenience. To constrain each row of the KGM to be in
the measurement space, the KGM s first expressed as

K, =DH (30)
where D, € R™",is random. Each of its row is called a
coordinate vector of its corresponding row of K, in S(H)
that forms a basis of all the columns of H. It can be
shown that D, is given by

D, =R, G(GP, ,G'+H(R +Q)H) €29
where G = H’H . The minimum variance estimate of x,
conditioned on y,, X , has the following form

Xy =Ky, +d, (32)
When each row of K, is changed in the whole m-

dimensional space R™, the resulting optimal estimate is
the standard KF estimate. For the constrained condition
given by (30), (32) can be rewritten as
X, =Dy, +d, (33)
where y, = H'y,. From (26), the measurement with
measurement compensation is given by
v, =Gx, +v;
where v;" is a zero-mean noise with a covariance matrix
of H'(R, +Q,)H . From the standard KF, (31) can be

obtained readily. The computation of the KGM with the
constrained condition (30) 1s shown in Fig. 8.

Py - .
Prediction W A Covariance I ”k/kA
equation ___y| update

-1

Fig.8: Calculation of the KGM of the Sub-optimal KF with
measurement compensation

7. Example

Consider a system consisting of five sensors, some of
which are redundant sensors. The exact configuration
matrix H is,

sinco 0 cos o
sin¢ cos 3 sinasinf3  cosa
H=|-sinacosf sinasinfBf2 cosa

—sincos B —sinasinfB)2 cosa

sinccosB —sinasinf  cosa

where (o,f) are the exact angles. With sensor mounting
errors, the configuration matrix becomes

sino, sin(B, - B) cosol,
sina, cosp, sina, sinf3,  cosal,
H+H,, =|-sincycosP; sinossinBy /2 cosoy

~sinot, cosP, —~sino,sinB,/2 cosoy
sinascosfs  —sinogsinBs  cosos

where (o, ﬁi) (i=1,...,5) are the actual mounting angles

of the sensors, and can be written as follows.
o, =a+Aca;, B, =B+AB; ,for i=1,...5.

where Ao, ~ N(0,0;), and AB, ~N(0,0;). Let
o =sin"' |/2/3=547356" and B=727/180=72", and
H_ =diag(h, - h,), where h;, ~N(0,0}). The

specifications of the system are given in Table 1, which is
the same gyro used in [2].

Table 1: Nominal Ring-Laser Gyro Parameters

Parameter Value
Scale factor 131 328 pulses/rad
Misalignment 5x107rad (lo)
Bias 0.01deg/h (lo)
Scale-factor error Sppm (lo)

Let Q=o0.l,, R=o0ll,, A, =I,, B, =0,

ytm
0,=0,=1le~5,¢,=c,=0and

arn
o, 54.8363° B 72.0757°

o, 54.5361° B 722497
o, [=|552215 |, | B [=]| 725857
oy 54.7525° B 717991
s 54.2504° B 72.3569°

The initial state, its estimate and the covariance matrix are
x, =[11650 06268 0.0751)
Xy = (~79669 44799 05725)
P, =100l
The actual and the estimated values of the first element of
the state vector from the standard KF with no mea-
surement compensation are shown in Fig. 9, for k from 1
to 100, showing clearly a bias. The effect of compensation
using the MCKF for the case that the state variable is
available, is shown in Fig.10. The improvement over that
without measurement compensation is clearly seen.
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Fig. 9: Comparison between the real value and KF
estimate with no compensation
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Fig.10: Comparison between the real value and MCKF
estimate for the available state
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When the state is not available, 100 data points were used
to train the BSRNN yielding,

=107 x

{01013 04068 0.6941 07076 042877

0=10"x
07286 01127 -00950 02374 06505
01127 00632 00235 00279 00703
~00950 00235 00544 ~00182 —0.0940
02374 00279 -00182 01186 02493
06505 00703 —00940 02493 06258

The estimate of the first element of the state using the
proposed MCKF for unknown state is shown in Fig. 11.

1.165
1165}
11esf [
1165} f

1.1649

1.1649

1.1649

1.1649

1.1649

Real line---real value

Dotted line---KF estimate with compensation
20 40 60, 80

1.1648
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Fig.11: Comparison between the real value and MCKF estimate
for the unavailable state

The result obtained using the proposed sub-optimal
MCKF method with an initial estimate value of
£W0=(0.7842 —-14725 11741), for k from 200 to 400 is

shown in Fig. 12. The estimated error between the sub-
optimal MCKF and the ordinary MCKF is plotted in Fig.
13, showing that the ordinary MCKF can only com-
pensate for the projection of the modeling error in the
measurement space.
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Fig.12: Comparison between the real value and the sub-optimal
MCKF estimate for the unavailable state

8. Conclusion

It is shown that the conventional KF gives a biased
estimate and its corresponding state residual vector and
measurement residual vector are biased if mounting
errors of the sensors existed. Consequently, it may lead to
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false alarms, when it is used in fault detection. To
overcome this problem, it is proposed that the mounting
error of the sensors are compensated first before the KF is
applied. For a system with redundant sensors, each row of
KGM can be constrained in the measurement space so that
only a vector in the measurement space can be considered
as the desired measurement compensation term. The
performance of the proposed sub-optimal MCKF is
illustrated by an example.

x10°

stimate error of between sub-optimal MCKF ang
ordinary MCKF with measurement compensation

2300 210 220 230 240
Testing result
Fig.13: Estimate error between the sub-optimal MCKF and
ordinary MCKF for the unavailable state
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