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Abstract 

For a system with redundant sensors, the estimated state 
from the Kalman filter is biased if sensor mounting error 
existed. To remove this bias, the mounting errors must be 
compensated first before using the Kalman filter. It is 
shown that only the projection part of the sensors errors 
in the measurement space needs to be compensated. If the 
state of a system is unavailable, a neurofuzzy network can 
be used to estimate the compensation term. This method 
is simpler, as it does not re uire a model for the errors as 
that proposed in [ 2 ] .  A su%-optimal Kalman filter with 
measurement compensation that restrains each row of the 
Kalman gain matrix to be in the measurement space is 
also derived. An example is presented to illustrate the 
performance of the proposed methods. 

Keywords: Kalman filter, Redundant sensors, Measure- 
ment compensation, Neural networks. 

1. Introduction 

For a system to have high reliability, not only the 
reliability of each of its components is high, redundant 
sensors are often required. In aerospace technology, 
inertial navigation systems are constructed with 
redundant sensors that are mounted in orthogonal and 
skewed positions to improve its reliability. An obvious 
advantage of using redundant sensors is that sensors with 
low reliable can be used without jeopardizing 
unnecessarily the overall reliability of the system. This is 
the main motivation for developing Fault Detection and 
Isolation (FDI)  techniques. Several FDZ methods are 
proposed for systems with redundant sensors. The 
common ones are model-based methods, whilst 
knowledge-based methods are becoming more popular. 

As sensor mounting errors can cause the configuration 
matrix of the system to deviate from the designed value, 
F D f  methods involving residuals generated analytically 
may give false alarms. To avoid this problem, the 
measurement, and hence the residuals, must be compen- 
sated before it is analyzed. The parity vector compen- 
sation for F D f  using Kalman Filter ( K F )  [ 2 ] ,  and the 
separated-bias estimation method [3] are proposed to 
solve this problem. In [4], a nonlinear filter is used with a 
parity vector to estimate the sensor errors. However, 
these methods assumed that the model of the errors is 
known, thus limits their application in practice. 

Methods to compensate for mounting error are proposed 
here. If the state of the system is available, then the 
estimation error of its state can be used directly to 
compensate for the mounting error. If, however, the state 
is not available, a neurofuzzy network is roposed to 
estimate the compensated term. The K J  using the 

measurement with mounting error compensation, denoted 
by MCKF, is then applied. The implementation of MCKF 
is presented, and its performance is illustrated by an 
example. 

2. Problem Formulation 

Consider a linear discrete system with redundant sensors, 
x, = A,X,_~ + Btu,., + f.c. + w, 
Y k  = Hxk + f y C v  + ' k  

(1) 
( 2 )  

where x k  E R" , uk E R' and y k  E R" are respectively the 
state, control and measurement vectors; w k  und v k  are 
independent white noise with zero mean, and covariance 
matrices Qk and Rk respectively; A ,  and Bk are constant 
real matrices of appropriate dimensions, H is the 
configuration matrix with full column rank, f, is the 
actuator fault event vector, and f, is a sensor fault event 
vector, which is often, though not always, a unit vector; 
c, and c, are time-varying scalar functions of the 
actuator and the sensor faults respectively [5] .  When there 
are no actuator and sensor faults , i.e., cu =cv = O  , the 
well-known standard KF gives 

' t j t - 1  = ' i i k - , j k - !  + B i u k  

P+-i = 4 <+-,A,' f Q, 
xi,, = xq,., f K ,  ( Y ,  - H%,,-, ) 

(3) 
(4) 
( 5  1 

(6) 

(7) 

A A  

Pki, =(Iw -KtHjPtl,-I(Ir# -K,ffY 
+ K,  R, K,' 

K,  = P,lk-IH'( HP,,_,H' + R, T' 
where I ,  is the n x n identity matrix. If modeling error, 
actuator or sensor fault exists, the estimated state from the 
KF is no longer optimal and is biased, as shown below. 
Let H , ,  ER""" and Hmc ER""" be respectively the 
mounting error, and the scaling factor and input 
misalignment errors, then y k  becomes 

where b is the sensor bias vector. Let 
Y ,  = ( I m  + H _  )( H + H_ h, +b+ f,c. + v ,  (8) 

H = (  I~ + H , ~  H + H _  ) 

b, = Hex,  + b 

y, = Hx, +b, + f v c v  +v, 

H< = HleH+ H_ + H,* H_ = F -  H 
(9) 

(10) 
(8) becomes - 

Let %k and y k  be respectively the error of the estimated 
state and the output, 

X, ~ 1 -  2, I = ( I- - K ,  H )( A,:,-, + fucx  + W, ) 
- K,& - K,  f,c, - K,v, 

y, = Hz, + f"C, + V ,  
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Ek can be expressed in terms of as 

1 = I + f"C" (12) 
k If C, = C, = 0, then E[Zk] = -Ci=IY?iKiE, , which is 

generally non-zero, indicating that even if there is no 
actuator or sensor faults, the estimated state from the KF 
is biased, and no longer optimal, as E[?, ] # 0 ,  and hence 
E[  yk ] # 0 . Clearly, false alarms can arise from mounting 
error. To reduce the possibility of false alarms, the mea- 
surement of the sensors should be suitably compensated 
first before applying the KF, as proposed in this paper. 

3. Compensation of modeling e r ro r  in the 
measurement space 

From (1 I), only b, given by (9) needs to be compensat- 
ed, if there are no sensor and actuator faults. There are 
several approaches to compensate for 6. A common 
approach is to estimate the unknown error, such as the 
misalignment error of the sensors, the error in the scaling 
factor, and the sensor bias, or a combination of these 
errors [2,3,4]. It is shown in [2] that only 3n-9 linear 
combinations of the 3n elements of H can be determined 
uniquely from sensor measurement data. Similarly, only 
n-3 of the n elements of b can be determined. This is 
because the errors from different sensors may be 
combined in such a way that the resulting measurement 
may appear to be without any errors, making it difficult to 
estimate all the sensor errors. Consequently, only a sub- 
matrix with a dimension of ( n  - 3) x n , and a sub-vector 
of dimension n-3 can be estimated using a model of the 
errors. Assuming the errors can be adequately modeled 
by a discrete-time Markov process, these estimates can be 
obtained from the KF [2]. Indeed, if H m e ,  H,, and b are 
random variables, then the Extended Kalman Filter 
(EKF) involving augmenting the state variable and the 
sensor errors can be used to estimate the sensor errors 
[SI. However, these compensation methods assume the 
model of the sensor errors existed. In this section, a direct 
compensation of sensor errors is presented. 

Before proceeding further, the concept of measurement 
space is introduced first. Let S(H) be a measurement 
space spanned by all the column of H ,  and 
S(V)  = S ' ( H )  = {vlv'H = 0)  , its orthogonal comple- 
ment or the parity space, where the column vectors of V 
are the parity vector [7 ] .  As H is of full column rank, the 
orthogonal projection matrices of S(H) and S(V) are: 
PH = H ( H '  H)- '  H' , and pv = I,, - pH respectively. Let 
z ,  = y k  +e,  be the new measurement vector, where 5, 
is the measurement compensation vector. Methods to 
determine 5, for both known and unknown state of the 
system are presented below. Assuming R,' exists, the 

Kalman filter gain (KGM)given in (7) can be expressed as 

For simplicity the sensors are identical with the same 
(13) 

R, =o' ' I , "  (14) 

(15) 

(16) 

K, = Pklk H'R;' 

varianceof o i . Then R, becomes 

Substituting (14) into (13) yields 

Rewritet, as 

where tH, E S ( H )  , <,, E S ( V )  . The state updated using 
the new measurement is 

K, = & . P H' 
k l k  

5, = L E  + 5, 

- , .  
(17) 

X k / k  = %I,., + K,  t Yx + 5, - H%/fi., 1 
= kP., + K ,  ( Y ,  + L, - HiklX., ) 

Clearly, only the projection of b, in the measurement 
space need to be compensated. Note that KkSVk = 0 from 
the definition of S(V), the one-step ahead estimate of the 
state, ,tk,k-, is no longer unbiased, as E[x",,,-,] # 0 .  Let 
5, = which is a vector in S ( H )  and can be con- 
sidered as a measurement compensation with known state 
as shown in Fig.1. Equations (3) to (7) remain un- 
changed, except (5) now becomes 

If the state is not available, the compensation can be 
achieved by a B-spline neural network, as discussed in the 
next section. 

(18) 
A . .  

x*/, = xq., + K,  t Y ,  + 5, - Hi+, 1 

State 
Prediction 

Fig. 1 : Measurement compensation based 
on the available state 

4. B-spline neurofuzzy network 

To estimate the state, neurofuzzy networks based on B- 
spline functions, denoted by BSNN, are used. The BSNN is 
shown in Fig. 2, and its output, i ( t )  ,is given by 

where x is the input, and w, , j = l ,  ..., q, the weights of the 
hidden layer, and s(x) = (sI (x) sq (x))' is the multi- 
variate basis function given by tensor product [SI. 

Yt t = x;=, w,s, (x, ) (19) 

... 

- 

Fig.2: BSNN for scalar output 

To compute the multi-step ahead prediction of dynamic 
systems, a BSNN with a recurrent structure (BSRNN),  as 
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shown in Figs. 3 and 4, is used. The system shown in Fig. 
3 is based on available measurement, whilst that in Fig. 4, 
the state is estimated by a BSRNN with the state x k  , and 
the control uk as input, and the next state (Fig. 3), or the 
measurement (Fig. 4) as output. To train the BSRNN, the 
following performance index is used. 

where j ( i )  is the output vector of the BSRNN. The 
weights can be updated using the steepest decent 
algorithm as given below. 

where S = ( s (x , )  ... ~ ( x , . ) ) '  , Af' , )  = Y - f(k), 
Y = ( y ,  ... y L ) ' ,  ? k )  =[j','(l) ... $'k)(L)l', TO 
improve the convergence rate in the training of the 
network, the learning rate 77 is updated at each iteration 
as follows [ 101: 

where G = S'S . 

E = x r = l ( y ,  - V(i)l2 (20) 

w( k ) = w( k - 1 ) + qSfA?-'' (21) 

( = 11 y ~ y ' ~ - ' '  I 12 /I\ s l i - l )  I 1; (22) 
................................ 

i u  -Ll i : 
.............................. SRNN 
Fig. 3: BSRNN for known measurement 

I ,  I 

x , ( 1 )  j 5 1- 1: 
Fig. 4: BSRNN for estimated state 

5. Compensation for measurement error 

Let xi, and 4; = H ( x ;  - 2,) be respectively the state, 
and the measurement compensation using the BSRNN, 
where 5; can be considered as an estimate of the project- 
ion of b, in the measurement space. Then zk is given by 

The implementation of MCKF is shown in Fig.5. Let 5; 
be a noise sequence that is uncorrelated with the dynamic 
noise wk , the measurement noise v, and the estimate of 
the initial state estimate;,,. Its mean and covariance 
matrix are 

z ,  = y ,  + 5,' = Hx,  + V ,  (23) 

E [ C  I = m, (24) 
E[(  5,' - m, )( 5,' - m, 1'1 = a, 6 ,  (25) 

where S,, is the Kronecker function. Replacing 4; by 
mk , the modified measurement is now given by 

z ;  = Y ,  +m, = ( Y ,  +5,* )-(ti -m, 
= Hx,  +v; 

where v i  = v k  - (5; - m, ) is a zero-mean noise with a 

covariance matrix of ( R ,  +a2,). If m, , Q k  are 
unknown, they can be estimated by 

~ = w C : = , H ( X :  

~ = I / (  L - I ). x:=, H( X: - ; . / .-I  1( X: - i,l,.i 1'H' 
where L is the number of training data. The MCKF is 
given below, and its implementation is shown in Fig. 6, 
whilst the network for computing the KGM with 
measurement compensation is shown in Fig. 7. 

' k , k - l  = A i i k - I / k - i  + B k u k  

Pxjk- ,  = 4 Pk.ilk.14' + Q, 
z; = y ,  +h 

Xxlr  = x+, + K, (2; - H ~ y r - i  1 
e/& = ( I,, - K, H ,e/,., ( I?4 - K, fiJ Y 

+K,R,K:+K,&K; 

A A  

K, = PkIk.,HJ( HPxlk.,H' + R, + si)-' 
I Y k  

w u  
Fig. 5 KF with neural network-based compensation 

Fig.6 Implementation of MCKF 

I I I  

1 
Fig.7 Computing KGM with measurement compensation 

6. Sub-optimal Kalman filter 

From (14), each row of K ,  belongs to the measurement 
space for the special case that the measurement accuracy 
of all sensors are identical. In practice, it is enough to 
constrain each row of the KGM to be in S(H) for a 
system with redundant sensor. Let 

the so-called innovation sequence. In the ideal case, (27) 
can be written as 

Substituting (28) into (3) yields 

n, = Y ,  - HkIk-, (27) 

(28) 

(29) 

4 = f%lk.l + Vk 

' k / k  = ' k / k - i  + Ki ' k  

= ' k / k - I  ' K k  = k / k - I  K k v k  

As vk  is the measurement noise, the third term on the 
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right hand of (29) is much smaller than the first two 
terms. The update of the state estimate is mainly from the 
second term, suggesting that only the projection of the 
rows of K ,  in S(H) need to be considered in the MCKF. 
The resulting KF is referred to as a sub-optimal KF for 
convenience. To constrain each row of the KGM to be in 
the measurement space, the KGM is first expressed as 

where D, E R""" , is random. Each of its row is called a 
coordinate vector of its corresponding row of K ,  in S(H)  
that forms a basis of all the columns of H. It can be 
shown that D, is given by 

where G = H'H . The minimum variance estimate of x ,  
conditioned on y k  , i,,, , has the following form 

When each row of K ,  is changed in the whole m- 
dimensional space R" , the resulting optimal estimate is 
the standard KF estimate. For the constrained condition 
given by (30), (32) can be rewritten as 

where y ;  = H'  y, . From (26), the measurement with 
measurement compensation is given by 

y ;  = G x ,  f v ,  
where vi* is a zero-mean noise with a covariance matrix 
of H'(R, + Q 2 , ) H .  From the standard KF, (31) can be 
obtained readily. The computation of the KGM with the 
constrained condition (30) is shown in Fig. 8. 

K, = D,H' (30) 

Dk = P,,.,G( GpIII.,G' -I- HI( R, + L ? ) H ) '  

'tit = Kt  Y k  ' d k  

(31) 

(32) 

klk = D, Y ;  + 4 (33)  

** 

a, 
a2 
a3 = 

a4 
as 

ri 

54.8363"' A' 72.0757" 
54.5361" p, 72.2497' 
55.2215" , 4 = 72.5857" 
54.7525" 4 71.7991" 
54.2504" f i  72.3569' 

I I 

Fig.8: Calculation of the KGM of the Sub-optimal KF with 
measurement compensation 

H = 

sin a 0 cos a 
sin a cos j3 sin a sin p cos a 
-sin a cos p sin a sin p/2 cos a 
- sin a cos p - sin sin p/2 cos a 

cos a sin a cos p - sin a sin p 

where Aa, - N(O,o : ) ,  and APL - N ( O , o ; ) .  Let 
a = sin-' ,/@ = 54.7356" and P = 72x1180 = 72",  and 

H,, =dkzg(h,, ... hm) ,  where h,, - N ( 0 , o ; ) .  The 
specifications of the system are given in Table 1, which is 
the same gyro used in [2]. 

H + H,, = 

sina, sin@, - p) cosa, 
sina, cosPz sina, sinp, cosaz 
- sina,cosp, sina, sinP,/2 cosc13 
- sina, cosp, - sina, sinp,/2 cosa, 
sina, cosp, - sina, sin& cosa, 

1.16511 I 

1.1648 Solid line---real value 
Dotted line---KF estimate with no compensation 

80 Time 60 20 40 
1.1648 

Fig. 9: Comparison between the real value and KF 
estimate with no compensation 

Solid line---real value 

1.1651 

1.1652 

I 
60 80 Time 20 40 

1.1 648' 

Fig.10: Comparison between the real value and MCKF 
estimate for the available state 
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When the state is not available, 100 data points were used 
to train the BSRNN yielding, 

fi = x 
[0.1013 0.4068 0.6941 0.7076 0.42871' 

$2 = 10' x 

0.7286 0.1 127 - 0.0950 0.2374 0.6505 
0.1 127 0.0632 0.0235 0.0279 0.0703 
- 0.0950 0.0235 0.0544 - 0.0182 - 0.0940 
0.2374 0.0279 - 0.0182 0.1 186 0.2493 
0.6505 0.0703 - 0.0940 0.2493 0.6258 

The estimate of the first element of the state using the 
proposed MCKF for unknown state is shown in Fig. 1 1. 

-1.5 - O : I  
' A  1.165 1 

-' 

Fig. 11: Comparison between the real value and MCKF estimate 
for the unavailable state 

The result obtained using the proposed sub-optimal 
MCKF method with an initial estimate value of 
iqo = (0.7842 - 1.4725 1.1741) , for k from 200 to 400 is 
shown in Fig. 12. The estimated error between the sub- 
optimal MCKF and the ordinary M C K F  is plotted in Fig. 
13, showing that the ordinary M C K F  can only com- 
pensate for the projection of the modeling error in the 
measurement space. 

-Lstnnate error of between sub-optimal MCKF an;. 
ordinary MCKF with measurement compensation 

Solid line---real talue 
Dotted line---Sub-optimal MCKF estimate 

1 
1.1649- 

1.1648- 

1.1648- 

1 . I  648. 

1.1648- 

1.1648- 

1 .I 647 - 

250 300 350 Time 
. I " _ ,  

200 
Test r c ~ u l l  

Fig.12: Comparison between the real value and the sub-optimal 
MCKF estimate for the unavailable state 

8. Conclusion 

It is shown that the conventional K F  gives a biased 
estimate and its corresponding state residual vector and 
measurement residual vector are biased if mounting 
errors of the sensors existed. Consequently, it may lead to 

false alarms, when it is used in fault detection. To 
overcome this problem, it is proposed that the mounting 
error of the sensors are compensated first before the KF is 
applied. For a system with redundant sensors, each row of 
KGM can be constrained in the measurement space so that 
only a vector in the measurement space can be considered 
as the desired measurement com ensation term. The 

illustrated by an example. 
performance of the proposed su g -optimal MCKF is 
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