
Multimedia Object Placement for
Transparent Data Replication

Keqiu Li, Hong Shen, Francis Y.L. Chin, and Weishi Zhang

Abstract—Transparent data replication is a promising technique for improving the system performance of a large distributed network.

Transcoding is an important technology which adapts the same multimedia object to diverse mobile appliances; thus, users’ requests

for a specified version of a multimedia object could be served by a more detailed version cached according to transcoding. Therefore, it

is particularly of theoretical and practical necessity to determine the proper version to be cached at each node such that the specified

objective is achieved. In this paper, we address the problem of multimedia object placement for transparent data replication. The

performance objective is to minimize the total access cost by considering both transmission cost and transcoding cost. We present

optimal solutions for different cases for this problem. The performance of the proposed solutions is evaluated with a set of carefully

designed simulation experiments for various performance metrics over a wide range of system parameters. The simulation results

show that our solution consistently and significantly outperforms comparison solutions in terms of all the performance metrics

considered.

Index Terms—Web caching, multimedia, object placement, transcoding, transparent data access, optimization.

Ç

1 INTRODUCTION

THE World Wide Web has become the most successful
application on the Internet since it provides a simple way

to access a wide range of information and services. However,
due to the dramatic growth in demand, considerable access
latency is often experienced in retrieving Web objects from
the Internet, and popular Web sites are suffering from
overload. An efficient way to overcome such deficiencies is
Web caching, by which multiple copies of the same object are
stored in geographically dispersed caches. An overview of
Web caching can be found in [29]. As many mobile appliances
are divergent in size, weight, I/O capabilities, network
connectivity, and computing power, differentiated devices
should be employed to satisfy their diverse requirements. In
addition, different presentation preferences from users make
this problem more serious. Transcoding, used to transform a
multimedia object from one form to another, frequently
through trading off object fidelity for size, is a technology that
can meet these needs [5], [8], [25], [28].

Transparent data replication [13], [27], [31] has been
advocated by both academic and industrial communities
because of its low management overheads. Early studies on
data replication [7], [30] showed that considerable manage-
ment overheads were incurred for identifying the optimal
locations for the replica before each request was served. For
transparent data replication, caches are placed transparently
ON both the servers and the clients. Each cache intercepts any

request that passes through its associated node and either
satisfies the request by sending the requested object to the
client or forwards it upstream along the path to the server
until it can be satisfied. In [9], [17], [27], [31], the authors have
studied the problem of Web object caching (placement and
replacement) from different points of view. Here, a Web
object can be viewed as a single-version multimedia object. It
has also been shown that different versions of the same
multimedia object cannot be simply treated as different
objects due to the aggregate effect of caching multiple
versions of the same multimedia object [6]. Therefore, the
solutions that are only applicable for Web objects cannot be
simply applied to solve the same problem for multimedia
objects. We also studied the problem of multimedia object
caching in [16], where the cost loss caused by cache
replacement is considered as an input for deriving an optimal
solution. Since the cache replacement problem is NP hard, it is
difficult to evaluate the cost loss; thus, the solution is firmly
dependent on the accuracy of the cost loss evaluation. In this
paper, we address the problem of multimedia object
placement for transparent data replication, i.e., to determine
the exact version of the same multimedia object to be placed at
EACH node in the network such that the total access cost is
minimized, which is of great importance for cache content
initialization. Obviously, our solution is completely indepen-
dent OF cache replacement, which can be solved by applying
the most widely used LRU algorithm if necessary. Although
dynamic programming is also applied to derive an optimal
solution in this paper, the essence of the algorithm is
completely novel and there is not any overlap with existing
solutions. An example of the problem to be solved in this
paper is shown as follows:

Example. Consider a simple network which has only four
nodes, v0, v1, v2, and v3, and a multimedia object which
has two versions (A1 and A2) as shown in the left part of
Fig. 1. In this example, two cases with different access
frequencies are also shown in the right part of Fig. 1. We

212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

. K. Li and W. Zhang are with the College of Computer Science and
Technology, Dalian Maritime University, 1 Linghai Road, Dalian, 116026,
China. E-mail: keqiu_01@163.com, wszhang@dmu.edu.cn.

. H. Shen is with the School of Computer Science, The University of
Adelaide, Adelaide, SA 5005, Australia. E-mail: hong@cs.adelaide.edu.au.

. F.Y.L. Chin is with the Department of Computer Science and Information
Systems, University of Hong Kong, Pokfulam Road, Hong Kong.
E-mail: chin@cs.hku.hk.

Manuscript received 11 Oct. 2005; revised 22 Feb. 2006; accepted 17 Mar.
2006; published online 27 Dec. 2006.
Recommended for acceptance by K. Nakano.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0428-1005.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

assume that the transmission cost on each edge is 1 and
the transcoding cost from A1 to A2 is 0.5.

We can easily obtain the following results as shown in
Table 1: The column denotes the placement decision and
the relevant access cost for different cases. For instance,
the fourth column denotes the decision is placing A2, A1,
A2 at nodes v1, v2, and v3, respectively, for Case 1 and the
access cost is 2.5. Let us consider the last instance of
Case 2 in Table 1, i.e., placement A1, A1, and A2 at nodes
v1, v2, and v3, respectively. The access costs for request-
ing versions A1, A1, and A2 at nodes v1, v2, and v3 are
zero, while the access cost for version A2 at node v1 is
1� 0:5 ¼ 0:5 (transcoding from version A1 at node v1),
the access cost for version A2 at node v2 is 2� 0:5 ¼ 1
(transcoding from version A1 at node v2), and, finally, the
access cost for version A1 at node v3 is 3� 1 ¼ 3 (served
by version A1 at node v2). So, the total access cost is 4.5.

Obviously, the access cost for each case is different
with different placement. So, the same version should
not be simply cached at each node that the request passes
by as it returns to the client.

From the above example, we can conclude that the
placement of different versions of a multimedia object at
different nodes has a significant influence on network
performance. Therefore, the study of the multimedia object
placement strategies for transparent data replication has
made significant contributions to both theory and practice.
In this paper, we address the problem of multimedia object
placement for transparent data replication, i.e., determining
exactly which version should be placed at each node such
that the total access cost is minimized. The main contribu-
tions of this paper are summarized as follows:

. We present a model for the problem of multimedia
object placement for transparent data replication,
formulated as an optimization problem. In our model,
multimedia object placement decisions are made
based on both transcoding and transmission cost.

. We propose dynamic programming-based solutions
to compute the optimal versions to be cached for
different cases.

. We give an extensive and detailed analysis on the
proposed solutions and show that our solutions are
optimal and low-cost.

. We evaluate our model on various performance
metrics through extensive simulation experiments.
The implementation results show that our solution
consistently and significantly outperforms existing
solutions.

The rest of this paper is organized as follows: Section 2
introduces some preliminary concepts used for latter
analysis. In Section 3, we formulate the problem of

multimedia object placement for transparent data replica-
tion followed by related work. Section 4 presents optimal
solutions for the different cases considered. The simulation
model and performance evaluation are described in Sec-
tions 5 and 6, respectively. Section 7 summarizes our work
and concludes the paper.

2 PRELIMINARY CONCEPTS

To facilitate our analysis later in this paper, we introduce
some preliminary concepts in this section. Object transcod-
ing is described in Section 2.1, and the transparent data
replication model is depicted in Section 2.2.

2.1 Web Object Transcoding

Transcoding is used to transform a multimedia object from
one form to another, frequently trading off object fidelity for
size for the prevailing operating environments. The relation-
ship among different versions of a multimedia object can be
expressed by a weighted transcoding graph [6]. An example
of such a graph is shown in Fig. 2.

In Fig. 2, we can see that the original version A1 can be
transcoded to each of the less detailed versionsA2,A3,A4, and
A5. It should be noted that not every Ai can be transcoded to
Aj since it is possible thatAi does not contain enough content
information for the transcoding fromAi toAj. In the example,
transcoding cannot be executed between A4 and A5 due to
insufficient content information. The transcoding cost of a
multimedia object from Ai to Aj is denoted by tðAi;AjÞ.
Obviously, tðAi;AiÞ ¼ 0. The number beside each edge in
Fig. 2 is the transcoding cost from one version to another. For
example, tðA1; A2Þ ¼ 6 and tðA3; A4Þ ¼ 8. If a version cannot
be transcoded from another version, we consider the
transcoding cost as infinity. For instance, tðA2; A1Þ ¼ 1 and
tðA4; A5Þ ¼ 1. If version Aj can be transcoded from

LI ET AL.: MULTIMEDIA OBJECT PLACEMENT FOR TRANSPARENT DATA REPLICATION 213

Fig. 1. A simple example.

TABLE 1
Access Costs with Different Placement

Fig. 2. A weighted transcoding graph.

versionAi through versionAk with i < k < j, then tðAi;AjÞ �
tðAi;AkÞ þ tðAk;AjÞ (triangularity property) because
version Ak is always an option if the transcoding cost
tðAi;AjÞ is too large. For example, tðA1; A4Þ � minftðA1; A2Þ
þtðA2; A4Þ; tðA1; A3Þ þ tðA3; A4Þg. �ðAiÞ is the set of all the
versions that can be transcoded from Ai, including Ai. For
example, �ðA1Þ¼fA1; A2; A3; A4; A5g, �ðA2Þ ¼ fA2; A4; A5g,
and �ðA4Þ ¼ fA4g.

2.2 Transparent Data Replication Model

As mentioned in previous sections, transparent data
replication is a promising technique for improving the
system performance of a large distributed network, which
can overcome the management overheads that are incurred
in early studies for identifying the optimal locations for the
replica before each request is served. In general, there are
two basic approaches for transparent data replication: en-
route caching [13], [27] and hierarchical caching [23], [24].
Similar to [31], we address the problem of multimedia
object placement on a hybrid transparent data replication
model by combining both en-route and hierarchical cach-
ing. In this model, transcoding proxies are organized in a
hierarchical manner as in hierarchical caching, and each
request from a client is routed on the access path from the
client to the server as in en-route caching. Fig. 3 shows an
example of such a transparent data replication model [31].

3 PROBLEM FORMULATION AND RELATED WORK

In this section, we first introduce the problem formulation
followed by related work.

3.1 Problem Formulation

The network topology in this paper is modeled as a graph
G ¼ ðV ;EÞ, where V ¼ fv0; v1; � � � ; vng is the set of nodes or

vertices, and E is the set of edges or links. For a multimedia
objectO, we assume that it hasmversions:A1; A2; � � � ; Am. For
each version of objectO, we associate each link ðu; vÞ 2 Ewith
a nonnegative cost Lkðu; vÞ, which is defined as the cost of
sending a request for version Ak and the relevant response
over the link ðu; vÞ. In particular,Lkðu; uÞ ¼ 0. If a request goes
through multiple network links, the cost is the sum of the cost
on all these links. The cost in our analysis is calculated from a
general point of view. It can be different performance
measures such as delay, bandwidth requirement, and access
latency, or a combination of these measures. Let fi;j be the
access frequency of version Aj from node vi.

Now, we start to formulate the problem of multimedia
object placement for data transparent replication (MOP
problem). Consider the snapshot when a request for a specified
version of a multimedia object is being served (see Fig. 4).
Here, v0 denotes the content server which contains all
versions of object O. vn is the client and v1; v2; � � � ; vn�1 are
the nodes on the path from the client to the server. We can see
that a request for a version of a multimedia object from a node
can be satisfied either by this node or by upstream nodes
(transcoding if necessary) until it arrives at the server at which
no transcoding is necessary. Therefore, the total access cost
can be decomposed into two parts: transcoding cost and
transmission cost. Our objective is to find the exact version of
a multimedia object to be placed at each node on the path from
v1 to vn so that the total access cost is minimized. Note that all
requests at node v0 can be satisfied at zero cost. If we denote
Adi ðdi 2 f1; 2; � � � ;mgÞ1 as the version cached at node vi, then
the total access cost of caching Ad1

; Ad2
; � � � ; Adn , denoted by

CðXÞ, is defined as follows:

CðXÞ ¼
Xn
i¼1

Xm
j¼1

fi;j min
0�k�i

Ljðvi; vkÞ þ T ðAdk ; AjÞ
� �

; ð1Þ

where X ¼ ðAd1
; Ad2

; � � � ; AdnÞ and

T ðAdk ; AjÞ ¼
0 if k ¼ 0
tðAdk ; AjÞ if k 6¼ 0:

�

Obviously, our objective is to obtain X� ¼ ðAd�
1
; Ad�

2
;

� � � ; Ad�nÞ such that CðX�Þ ¼ min
X
fCðXÞg.

Before we solve the MOP problem based on the cost
function as given in (1), we can make the following
assumptions:

. Assumption 1. Ljðvi; vkÞ ¼ ði� kÞL for all 1 � j � m as
there are i� k links on the path between nodes vi and
vk, and the cost on each link for each version is L.

. Assumption 2. The transcoding graph is a linear array
and the transcoding cost between any two adjacent
versions is constant, i.e.,

ðAi;AjÞ ¼
Xj�1

k¼i
tðAk;Akþ1Þ ¼ ðj� iÞþT;

where xþ ¼ x if x � 0, else xþ ¼ 1.
. Assumption 3. ð� � 1ÞT � L, and �T > L for some

positive integer �.

If there does not exist � such that Assumption 3 can be
satisfied, i.e., L� T or T � L. Obviously, these are two

214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

Fig. 3. Transparent data replication model. (a) En-route model.
(b) Hierarchical model. (c) Hybrid model.

1. Ad0
is a virtual version such at T ðAd0

; AjÞ ¼ 0 for 1 � j � m.

special cases. If L� T , then version Adi should be cached so
that no transmission cost is necessary to incur, where
di ¼ minfjjfi;j > 0; 1 � j � mg. If T � L, this case is not
trivial and is equivalent to the en-route caching problem of
caching m objects on a linear network of n nodes, where the
transcoding cost is prohibited.

With the above assumptions, the MOP problem can be
simplified as follows:

CðXÞ ¼
Xn
i¼1

Xm
j¼1

fi;j min min
1�k�i

ði� kÞLþ ðj� dkÞþT
� �

; iL

� �
:

ð2Þ

3.2 Related Work

Transparent data replication has been advocated by both
academic and industrial communities because of its low
management overheads. The performance of transparent
data replication mainly depends on two issues, i.e., cache
location/proxy placement and cache content management.

A lot of work has been done for solving the problem of
cache location/proxy placement for transparent data
replication. In [14], the authors addressed the problem of
proxy placement for linear topology. In [10], [11], [15], [18],
the authors studied the problem of proxy placement for tree
networks from different points of consideration. In [13], the
authors addressed the problem of cache location from a
general point of view and analyzed several cases for
different network topologies. In [19], [20], we addressed
the problem of transcoding proxy2 placement for tree and
linear topologies, respectively.

In this paper, we concentrate on the second issue, i.e.,
cache content management. Currently, two kinds of objects,
i.e., Web objects and multimedia objects, are studied in
cache content management for transparent data replication.
Since a multimedia object has at least two different versions,
from this point of view, a Web object can be viewed as a
single-version multimedia object. In [6], the authors have
shown that it is not applicable to view different versions of
the same multimedia object as different Web objects since
the aggregate profit of caching multiple versions of the
same multimedia object is not the simple summation of
their individual profits. The current research on cache
content management for transparent data replication can be
classified from different points of view. If it is classified
according to the kinds of objects, then it can be classified
into two groups, i.e., Web object-based research and
multimedia object-based research. If it is classified accord-
ing to the kinds of network topologies, then it can also be
classified into two groups, i.e., linear topology-based
research and tree topology-based research. If it is classified

according to the kinds of actions, then it can be classified
into three groups, i.e., object placement-based research,
object replacement-based research, and object content
update-based research. If it is classified according to the
kinds of cache storages, then it can be classified into two
groups, i.e., limited storage-based research and unlimited
storage-based research. Table 2 clearly illustrates the
differences among the current research for solving the
problem of cache content management for transparent data
replication, where we denote Web Object by WO, Multi-
media Object by MO, Linear Topology by LT, Tree
Topology by TT, Object Placement by OP, Object Replace-
ment by OR, Object Content Update by OCU, Limited
Cache Storage by LCS, and Unlimited Cache Storage by
UCS. In Table 2, “Y” means that the item on the column is
addressed in the paper on the row.

From Table 2, we can see that in [9], [12], [17], [21], [27],
[31], the authors have studied the problem of Web object
caching (placement and replacement) from different points
of view. Here, a Web object can be viewed as a single-
version multimedia object. It has also been shown that
different versions of the same multimedia object cannot be
simply treated as different objects due to the aggregate
effect of caching multiple versions of the same multimedia
object [6]. Therefore, the solutions that are only applicable
for Web objects can not be simply applied to solve the same
problem for multimedia objects. We also studied the
problem of multimedia object caching in [16], where the
cost loss caused by cache replacement is considered as an
input for deriving an optimal solution. Since the cache
replacement problem is NP hard, it is difficult to evaluate
the cost loss; thus, the solution is firmly dependent on the
accuracy of the cost loss evaluation. In this paper, we
address the problem of multimedia object placement for
transparent data replication, i.e., to determine the exact
version of the same multimedia object to be placed at EACH
node in the network such that the total access cost is
minimized, which is of great importance for cache content
initialization. Obviously, our solution is completely inde-
pendent of the cache replacement, which can be solved by
applying the most widely used LRU algorithm if necessary.
Although dynamic programming is also applied to derive
an optimal solution in this paper, the essence of the
algorithm is completely novel and there is not any overlap
with existing solutions.

Table 3 shows the comparison of our research on
transparent data replication.

4 DYNAMIC PROGRAMMING-BASED SOLUTIONS

In this section, we first consider the case of n ¼ 1, i.e., there
is only one node, and then discuss the case of n > 1.

LI ET AL.: MULTIMEDIA OBJECT PLACEMENT FOR TRANSPARENT DATA REPLICATION 215

Fig. 4. System model for multimedia object caching.

2. A transcoding proxy is a proxy with the functionality of transcoding.

4.1 The Case of n ¼ 1

Before presenting the optimal solutions, we give a brief

explanation of the significance for solving the MOP

problem for the case of n ¼ 1. For the cache replacement

problem, a crucial thing is to determine the objects to be

removed so that the cost loss is minimized and the free

space is enough to accommodate the new object. The

following solutions are of great importance in deciding the

objects to be removed for transcoding-enabled cache

replacement problem.

First, we begin by computing the access cost of caching

only one versionAk at node v1 with 1 � k � m. Intuitively, all

the requests for version Ai with i < k will be handled by

server v0, while some of the requests for Ai with i � k,

depending on the transcoding cost and the transmission cost,

will be taken care of by transcoding from versionAk. Based on

the cost function defined by (2), the total access cost of caching

only version Ak at node v1 is computed as follows:

CðAkÞ ¼
Xk�1

i¼1

f1;iLþ
Xm
i¼k

f1;i minfði� kÞT; Lg: ð3Þ

Since version Ak is cached at node v1, we can see (with

Assumption 3) that � is such a parameter that the request

for version Ai will be served by the local node if

0 < i� k < �, and the request for version Ai will be served

by the server if i� k � �.
Based on (3), CðAkÞ can be further defined as follows:

CðAkÞ ¼

Pk�1

i¼1

f1;iLþ
Pkþ��1

i¼k
f1;iði� kÞT

þ
Pm

i¼kþ�
f1;iL if kþ � � m

Pk�1

i¼1

f1;iLþ
Pm
i¼k

f1;iði� kÞT if kþ � > m:

8>>>>>>><
>>>>>>>:

ð4Þ

It is easy to see that CðA1Þ can be calculated in OðmÞ
time.

216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

TABLE 2
Classification of Current Research

TABLE 3
Comparison of Our Research

CðAkþ1Þ ¼

CðAkÞ þ f1;kL�
Pkþ��1

i¼kþ1

f1;iT

þf1;kþ�ðð� � 1ÞT � LÞ if kþ � � m

CðAkÞ þ f1;kL�
Pm

i¼kþ1

f1;iT if kþ � > m

8>>>>><
>>>>>:
¼CðAkÞ þ EðkÞ;

where

EðkÞ ¼

f1;kL�
Pkþ��1

i¼kþ1

f1;iT

þf1;kþ�ðð� � 1ÞT � LÞ if kþ � � m
f1;kL�

Pm
i¼kþ1

f1;iT if kþ � > m

8>>>><
>>>>:

and

Eðkþ 1Þ ¼
EðkÞ � f1;kLþ f1;kþ1ðLþ T Þ
�f1;kþ�ð�T � LÞ þ f1;kþ�þ1ð� � 1Þ
T � f1;kþ�þ1L if kþ � < m;

EðkÞ � f1;kLþ f1;kþ1ðLþ T Þ
�f1;kþ�ð�T � LÞ if kþ � ¼ m;
EðkÞ � f1;kLþ f1;kþ1ðLþ T Þ if kþ � > m:

8>>>>>>>><
>>>>>>>>:

Thus, each CðA2Þ; CðA3Þ; � � � ; CðAmÞ can be done in
constant time. Therefore, the MOP problem can be solved
in OðmÞ time. With regard to the time complexity of solving
the MOP problem, we have the following theorem:

Theorem 1. Based on the cost function as given in (3), the MOP
problem for fA1; A2; � � � ; Amg by caching only one version
(i.e., n ¼ 1) can be solved in OðmÞ time.

Proof. Since the cost function as given in (4) is equivalent to
the cost function as given in (3) and the MOP problem
based on the cost function as given in (4) can be solved in
OðmÞ time, the MOP problem based on the cost function
as given in (3) can also be solved in OðmÞ time. tu
The second step is to extend the above solution to

compute the optimal solution for caching two versions, Ak1

and Ak2
, at the same time at node v1.

Suppose that Ak1
and Ak2

are the two optimal versions to
be cached. The key observation here is that Ak1

is also an
optimal solution for the problem with fA1; A2; � � � ; Ak2�1g if
k1 < k2 because the requests for fAk2

; Ak2þ1; � � � ; Amg can
only be served by Ak2

. With regard to this observation, we
have the following lemma:

Lemma 1. Assume that Abp and Abq are the optimal solutions for
the problem of caching only one version from the set of
fA1; A2; � � � ; Ap�1g and fA1; A2; � � � ; Aq�1g, respectively, then
we have bp � bq if p < q.

Proof. Without loss of generality, it is sufficient for us to prove
that bp � bpþ1, where 1 � bp � p� 1 and 1 � bpþ1 � p. The
proof is by contradiction. Assume that we have bp > bpþ1.
As Abp is the optimal version to be cached, we have
C1;pðAbpÞ < C1;pðAbpþ1

Þ. Let C1;pðAiÞ denote the access cost
of caching Ai for the MOP problem with fA1; A2; � � � ;
Ap�1g. From the definition of the access cost function C1;p

as given in (3), addingAp to the set fA1; A2; � � � ; Ap�1gwill
increase both C1;pðAbpÞ and C1;pðAbpþ1

Þ by f1;p minfðp�
bpÞT; Lg and f1;p minfðp� bpþ1ÞT; Lg, respectively. The

increase to C1;pðAbpþ1
Þ is no less than that to C1;pðAbpÞ

because bp > bpþ1. So, we have C1;pþ1ðAbpÞ < C1;pþ1ðAbpþ1
Þ,

which contradicts the fact that C1;pþ1ðAbpþ1
Þ is the mini-

mum access cost of caching Abpþ1
for the problem with

fA1; A2; � � � ; Ap�1; Apg. tu
Based on Lemma 1, we can see that the feasible range of the

optimal solution for the problem with fA1; A2; � � � ; Aqg can be
reduced if the optimal version for the problem with
fA1; A2; � � � ; Apg has been obtained. So is the other case when
the optimal solution for the problem with fA1; A2; � � � ; Aqg is
known; the feasible range of the optimal solution for the
problem with fA1; A2; � � � ; Apg is also reduced. Therefore, we
can find Abp and compute C1;pðApÞ by divide and conquer.

Let DðkÞp;q denote the minimum access cost of caching

k versions for the MOP problem with q � p versions, i.e.,

Ap;Apþ1; � � � ; Aq�1, where 1�p<q�m. Thus,D
ð1Þ
1;p ¼ C1;pðAbpÞ

and D
ð1Þ
1;mþ1 ¼ min

1�k�m
fC1;mþ1ðAkÞg. Based on Lemma 1, we

have the following theorem on the time complexity of

computing D
ð1Þ
1;p for 1 < p � m:

Theorem 2. All the p MOP problems for fA1; A2; � � � ; Apg,
where 1 � p � m, i.e., D

ð1Þ
1;p for 1 < p � m, can be computed

in Oðm logmÞ time.

Proof. Assume that there exists an integer � such thatm ¼ 2�.

Based on Theorem 1, we can compute D
ð1Þ
1;12m

in OðmÞ time.

Assume thatAbm
2

is the optimal solution for the problem of

caching only one version with fA1; A2; � � � ; Am
2�1g; then, we

can find the optimal solution for the problem of caching

only one version for fA1; A2; � � � ; Am
4
g in OðmÞ time.

Similarly, D
ð1Þ
1;3m4

can also be computed by solving the

problem of caching only one version with fA1; A2; � � � ;
A3m

4 �1g. As we have already computed C1;m2
ðAyÞ, where

y ¼ minðbm
2
; m2 � 1Þ, we can base on this result to compute

C1;3m4
ðAyÞ for fA1; A2; � � � ; A3m

4 �1g (by adding at most

m
4 terms to C1;m2

ðAm
2�1Þ. We then compute C1;3m4

ðAyÞ; C1;3m4

ðAyþ1Þ; � � � ; C1;3m4
ðA3m

4 �1Þ in at most Oð3m4 � yÞ time. So, it

takes at most OðmÞ time to compute D
ð1Þ
1;m4

and D
ð1Þ
1;3m4

.

According to the similar decomposition, D
ð1Þ
1;m8

, D
ð1Þ
1;3m8

, D
ð1Þ
1;5m8

,

and D
ð1Þ
1;7m8

can all be solved in OðmÞ time. To be precise, let

Az1
; Az2

; Az3
be the optimal versions for fA1; A2; � � � ; Am

4�1g,
fA1; A2; � � � ; Am

2�1g, and fA1; A2; � � � ; A3m
4 �1g, respectively.

The first step is to compute C1;m8
ðA1Þ, and then C1;3m8

ðAz1
Þ,

C1;5m8
ðAz2
Þ, and C1;7m8

ðAz3
Þ from C1;m4

ðAz1
Þ, C1;m2

ðAz2
Þ, and

C1;3m4
ðAz3
Þ, respectively. As the computation of each item

takesOðm8 Þ time, this step takesOðmÞ time in total. Then, we

can search the optimal solutions for fA1; A2; � � � ; Am
8�1g,

fA1;A2;� � � ;A3m
8 �1g, fA1;A2; � � � ; A5m

8 �1g, and fA1; A2; � � � ;
A7m

8 �1g in the ranges ð1;minfz1;
m
8 � 1gÞ, ðz1;minfz2;

3m
8 � 1gÞ, ðz2;minfz3;

5m
8 � 1gÞ, and ðz3;

7m
8 � 1Þ, respec-

tively. Since each step takes constant time, all these

LI ET AL.: MULTIMEDIA OBJECT PLACEMENT FOR TRANSPARENT DATA REPLICATION 217

searches take no more than OðmÞ time in total. After

repeating thisprocess logm times, wecanfinishcomputing

D
ð1Þ
1;p for 1 < p � m. tu

Now, we can accomplish the problem of caching two
versions in the following three steps:

. Step 1: Evaluate D
ð1Þ
1;p for 1 < p � m, where D

ð1Þ
1;p

denotes the minimum access cost of caching only
one version for the MOP problem with p� 1
versions, i.e., A1; A2; � � � ; Ap�1. In particular, D

ð1Þ
1;mþ1

¼ min
1�k�m

fC1;mþ1ðAkÞg.
. Step 2: Evaluate Dp for 2 � p � m, where Dp is the

access cost for versions Ap;Apþ1; � � � ; Am if Ap is
cached at node v1. Dp is defined as follows:

Dp ¼

Ppþ��1

i¼p
f1;iði� pÞT þ

Pm
i¼pþ�

f1;iL if pþ � � m

Pm
i¼p

f1;iði� pÞT if pþ � > m:

8>>><
>>>:

. Step 3: Compute D
ð2Þ
1;m, where D

ð2Þ
1;m is the minimum

access cost of caching two versions for the problem
with fA1; A2; � � � ; Amg. Dð2Þ1;m is calculated as follows:

D
ð2Þ
1;m ¼ min

2�p�m
fDð1Þ1;p þDpÞg:

The following theorem shows that D
ð2Þ
1;m is the minimum

access cost of caching two versions of the MOP problem:

Theorem 3. D
ð2Þ
1;m is the minimum access cost of caching two

versions for the MOP problem.

Proof. Assume that

D
ð2Þ
1;m ¼ D

ð1Þ
1;p� þDp� ¼ min

2�p�m
fDð1Þ1;p þDpÞg:

It is obvious from the computation ofD
ð2Þ
1;m that bp� andAp�

are the two versions which achieve the minimum access
cost of caching two versions, where D

ð1Þ
1;p� ¼ C1;p� ðbp� Þ. tu

The following theorem shows the time complexity of
computing D

ð2Þ
1;m:

Theorem 4. D
ð2Þ
1;m can be computed in Oðm logmÞ time.

Proof. Since Step 1 can be computed in Oðm logmÞ time
(Theorem 2) and Steps 2 and 3 both take OðmÞ time, the
total time for computing D

ð2Þ
1;m is Oðm logmÞ. tu

After we have calculated D
ð1Þ
1;p for 1 � p � m in Step 1,

we can obtain D
ð2Þ
1;p for all 2 � p � m in another Oðm logmÞ

time by divide and conquer, where D
ð2Þ
1;p is the minimum

access cost of caching only two versions for the problem

with p� 1 versions. The main idea is similar to Lemma 1

in the finding of D
ð1Þ
1;p. Assume that Abp1

and Abp2
with

1 � bp1
< bp2

< p are the two optimal versions cached in

node v1 for A1; A2; � � � ; Ap�1 to achieve the optimal access

cost D
ð2Þ
1;p. Similarly, Abq1

and Abq2
with 1 � bq1

< bq2
< q are

the two optimal versions cached in node v1 for

A1; A2; � � � ; Aq�1 to achieve the optimal access cost D
ð2Þ
1;q .

We can show with a similar argument with Lemma 1 that

bp2
� bq2

if p < q and this property limits the range of

searching for the optimal solutions. As in Theorem 2, the

two optimal solutions in D
ð2Þ
1;m2

can be found in OðmÞ time

after knowing the optimal versions of D
ð1Þ
1;p for 1 < p � m;

then, D
ð2Þ
1;m4

and D
ð2Þ
1;3m4

in another OðmÞ time; then, D
ð2Þ
2;m8

,

D
ð2Þ
1;3m8

, D
ð2Þ
1;5m8

, and D
ð2Þ
1;7m8

in another OðmÞ time until D
ð2Þ
1;p for

2 < p � m are found after logm times. Therefore, the

minimum access cost of caching three versions, denoted

by D
ð3Þ
1;m, can be computed similarly, i.e., D

ð3Þ
1;m ¼

min
3�p�m

fDð2Þ1;p þ DpÞg, with at most Oðm logmÞ time (similar

to Theorem 5). Using the same idea, we can solve the

problem of caching K versions in OðKm logmÞ time.
Let D

ðKÞ
1;m denote the minimum access cost of caching

K versions from m versions, i.e., A1; A2; � � � ; Am; then, we
have the following theorem on the time complexity of
computing D

ðKÞ
1;m:

Theorem 5. D
ðKÞ
1;m can be computed in OðKm logmÞ time.

Proof. Based on the above analysis, we have

D
ðKÞ
1;m ¼ min

K�p�m
fDðK�1Þ

1;p þDpÞg:

Since Dp can all be computed in OðmÞ time and we have

showed thatD
ð1Þ
1;p can be computed inOðm logmÞ time, we

can easily prove that D
ðKÞ
1;m can be computed in

OðKm logmÞ time by induction. Note that in the induction

step, D
ðK�1Þ
1;p for K � 1 < p � m is computed in OððK �

1Þm logmÞ time. tu

4.2 The Case of n > 1

When n > 1, the problem of multimedia object placement
can be visualized as given in Fig. 5a. We can see that the
requests can be served in one of the following ways: 1) A
request is served by the exact versions at its local cache or
one of the upstream caches. 2) A request is served by more
detailed versions according to transcoding at its local cache
or one of the upstream caches. 3) A request is served by the
original server (no transcoding is executed since all versions
are stored at the server).

In Fig. 5a, a square symbol at ðdi; iÞ indicates that version
Adi is cached at node vi and a dot indicates the request for a
specified version from a node. Each node has exactly one
such square symbol. A request for version Aj at node vi
might be either served at node vi by version Adi if j � di
with transcoding cost ðj� diÞT , or at node vi�1 with
additional transmission cost L. In the latter case, a new
request for Aj is created at node vi�1. This process can be
generalized as wði; jÞ ¼ minfðj� diÞþT;wði� 1; jÞ þ Lg if
i � 1; otherwise, wði; jÞ ¼ 0, where wði; jÞ is the access cost
for request Aj at node vi. In particular, if L > mT , then
wði; jÞ ¼ ðj� diÞT if j � di, i.e., transcoding is always
performed if possible. Therefore, we can solve this problem
using dynamic programming.

218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

Assume that version Aj is cached at node vi, and vk is the
smallest vertex, k > i, with a cached version, say Az, more
detailed than Aj, i.e, z � j (see Fig. 5b). Let Bi;j;k ¼ fð�; �Þj
i � � � k� 1; j � � � mg. We also assume thatAy is the most
detailed version in BlockBi;j;k, which is cached at node vx. Let
W ði; j; kÞdenote the minimum total access cost for serving all
the requests in BlockBi;j;k. It is obvious that all the requests in
Block C are served by version Aj at node vi because the
versions of all the requests in this block is more detailed than
Ay, i.e., there does not exist a version in BlockBi;j;k other than
Aj that can provide the requested versions in this block since
Ay is the most detailed version in Block Bi;j;k besides Aj.
Similarly, it is easy to see that the minimum total access cost
for serving all the requests in BlockA, i.e.,Bx;y;k and BlockB,
i.e., Bi;j;xþ1 (see Fig. 5b), is Wðx; y; kÞ þWði; j; y� 1Þ. With a
similar method for partitioning Block Bi;j;k, Blocks A and B
can be divided recursively until the minimum total access
cost for serving all the requests in each block, i.e., Wðx; y; kÞ
and Wði; j; y� 1Þ, can be finally determined.

Based on the above observation, Wði; j; kÞ is defined as
follows:

Wði; j; kÞ ¼
min

i�x<k;j�y�m
fWði; j; y� 1Þ þWðx; y; kÞþ

P
x��<k;j���y

f�;�ðð�� iÞLþ

ð� � jÞT Þ ðfor 0<i<k�n;

1 � j � mÞ

min
0<x�k;1�y�m

fW ð0; 1; y� 1Þ

þW ðx; y; kÞ þ
P

x��<k;1���y
�Lf�;� ðfor i ¼ 0; j ¼ 1Þ

0 ðfor i ¼ kÞ:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð5Þ

Now, let us refer to the first equation in the recurrence
formula above. The first term Wði; j; y� 1Þ is the total access
cost for the requests in Block B and D, the second term is
the total access cost for the requests in Block A, and the last
term is the total access cost for the requests in Block C. The

second equation is for the special case of i ¼ 0 which
denotes the original server, where transcoding is not
necessary since all versions are stored there. To obtain the
optimal solution, all possible values of i, j, and k must be
checked. The following theorem shows the correctness of
the above recurrence formula for Wði; j; kÞ:
Theorem 6. Formula (5) is the correct recurrence formula for

W ði; j; kÞ.
Proof. Without loss of generality, we only need to prove the

correctness of the first equation in (5) since the second

equation can be easily derived in a similar way and the

third equation is trivial.
Let

W 0ði; j; kÞ ¼ min
i�x<k;j�y�m

fW ði; j; y� 1Þ þWðx; y; kÞ

þ
X

x��<k;j���y
f�;�ðð�� iÞLþ ð� � jÞT Þ

denote the value of the right side of the first equation.

We now prove thatW 0ði; j; kÞ is the optimal access cost,

i.e., W 0ði; j; kÞ ¼W ði; j; kÞ. Suppose Ad�i
; Ad�iþ1

; � � � ; Ad�
k

is

the optimal placement in Block Bi;j;k, i.e., W ði; j; kÞ ¼
CðAd�i

; Ad�iþ1
; � � � ; Ad�

k
Þ. Thus, we can always divide Block

Bi;j;k into four parts according to y� (see Fig. 5b), where

y� ¼ max
j<y�m

fd�yg and version Ay� is cached at node vx� .

Therefore, we have

Wði; j; kÞ ¼ CðAd�i
; Ad�

iþ1
; � � � ; Ad�

k�1
Þ ¼Wði; j; y� � 1Þ

þWðx�; y�; kÞ þ
X

x���<k;j���y�
f�;�ðð�� iÞL

þ ð� � jÞT Þ � min
i�x<k;j�y�m

fWði; j; y� 1Þ

þWðx; y; kÞ þ
X

x��<k;j���y
f�;�ðð�� iÞL

þ ð� � jÞT Þ:

Now, we want to prove W 0ði; j; kÞ �Wði; j; kÞ. Sup-
pose there exists ðx0; y0Þ such that

LI ET AL.: MULTIMEDIA OBJECT PLACEMENT FOR TRANSPARENT DATA REPLICATION 219

Fig. 5. Request flow and block definition for multimedia object placement.

W 0ði; j; kÞ ¼ min
i�x<k;j�y�m

fWði; j; y� 1Þ þWðx; y; kÞ

þ
X

x��<k;j���y
f�;�ðð�� iÞLþ ð� � jÞT Þ

¼ min
i�x0<k;j�y0�m

fWði; j; y0 � 1Þ þWðx0; y0; kÞ

þ
X

x0��<k;j���y0
f�;�ðð�� iÞLþ ð� � jÞT Þ:

Thus, Block B�;� can be divided into four parts according
to x0 and y0. According to the definition of Wði; j; kÞ, we
have

Wði; j; kÞ � min
i�x0<k;j�y0�m

fWði; j; y0 � 1Þ þWðx0; y0; kÞ

þ
X

x0��<k;j���y0
f�;�ðð�� iÞLþ ð� � jÞT Þ

¼ min
i�x<k;j�y�m

fWði; j; y� 1Þ þWðx; y; kÞ

þ
X

x��<k;j���y
f�;�ðð�� iÞLþ ð� � jÞT Þ

¼W 0ði; j; kÞ:

Therefore, we have proved that W 0ði; j; kÞ ¼Wði; j; kÞ. tu
The original multimedia object placement problem, i.e.,

with the cost function based on (2), can be solved using
dynamic programming with these recurrences. We can also
see that the minimum access cost is Wð0; 1; nÞ. The detailed
algorithm is given in Table 4.

Regarding to the time complexity of Algorithm 1, we
have the following theorem:

Theorem 7. Algorithm 1 can terminate in Oðn3m2Þ time, where

n is the number of nodes and m is the number of versions.

Proof. The work of Procedure Blockði; j; kÞ is to compute
Wði; j; kÞ. It is easy to see that Wði; j; kÞ has n2m different
entries and each entry is computed only once (it simply
returns the value if it was computed before). Consider the
time complexity of computing an entry in Blockði; j; kÞ. It
takes two layers of loops to compute an element in
Blockði; j; kÞ. The outside for-loop on x iterates at most
n times, and the inner for-loop on y iterates at mostm times.
Thus, it takes at most Oðn2mÞ time of comparisons to
compute an entry. Therefore, it takes Oðn2m � nmÞ ¼
Oðn3m2Þ time to compute all entries in Blockði; j; kÞ. tu

5 SIMULATION MODEL

In this section, the simulation model used for performance
evaluation is described. We have performed extensive
simulation experiments to compare our solution with
existing solutions.

5.1 System Configuration

To the best of our knowledge, it is difficult to find true trace
data in the open literature to execute such simulations.
Therefore, we generated the simulation model from the
empirical results presented in [1], [2], [3], [4], [6].

The network topology was randomly generated by the
Tier program [4]. Experiments for many topologies with
various parameters were conducted and the performance of
our solution was found to be insensitive to topology

changes. Here, only the experimental results for one
topology are presented due to space limitations. The
characteristics of this topology and the workload model
are shown in Table 5, which were chosen from the open
literature and are considered to be reasonable.

The WAN (Wide Area Network) is viewed as a backbone
network to which no servers or clients are attached. Each
MAN (Metropolitan Area Network) node is assumed to
connect to a content server. Each MAN and WAN node is
associated with an en-route cache. The objects generated are
divided into two types: text and multimedia. Similar to the
studies in [3], [26], cache size is described as the total
relative size of all objects available in the content server. In
our experiments, the object sizes are assumed to follow a
Pareto distribution and the average object size is 6KB. We
also assume that each multimedia object has five versions
and that the transcoding graph is as shown in Fig. 2 in
Section 2.1. The sizes of each version are assumed to be
100 percent, 80 percent, 60 percent, 40 percent, and
20 percent of the original object size. The transcoding delay
is determined as the quotient of the object size to the
transcoding rate. In our experiments, the client at each

220 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

TABLE 4
Algorithm for MOP Problem ðn > 1Þ

MAN node randomly generates the requests, and the

average request rate of each node follows the distribution

of Uð1; 9Þ, where Uðx; yÞ represents a uniform distribution

between x and y. The access frequencies of both the content

servers and the objects maintained by a given server follow

a Zipf-like distribution [3], [22]. Specifically, the probability

of a request for object O in server S is proportional to

1=ði� � j�Þ, where S is the ith most popular server and O is

the jth popular object in S. The delay of both MAN links

and WAN links follows an exponential distribution; the

average delay for WAN links is 1.5 seconds and the average

delay for WAN links is 0.7 seconds.
The cost for each link is calculated by the access delay. For

simplicity, the delay caused by sending the request and the
relevant response for that request is proportional to the size of
the requested object. Here, we consider the average object
sizes for calculating all delays, including the transmission
delay and the transcoding delay. The cost function is taken to
be the delay of the link, which means that the cost in our
solution is interpreted as the access latency in our simulation.

We apply a “sliding window” technique, for estimating
access frequency, to make our model less sensitive to
transient workload [26]. Specifically, the access frequency is
estimated by N=ðt� tNÞ, where N is the number of accesses
recorded, t is the current time, and tN is the Nth most
recently referenced time (the time of the oldest reference in
the sliding window). N is set to 2 in the simulation.

5.2 Existing Models

In addition to the solution proposed in Section 4.2, we also

consider the following placement solutions for comparison

purposes:

. SV : SV stores the same version of a multimedia
object at each node when the request is sent back to
the client from the server. For example, when the
request is for A2 of a multimedia object, the decision
is to place A2 at each node on the path from the
client to the server.

. MV : MV stores the most referred version of a
multimedia object at each node as the request is
returned back to the client from the server. Specifi-
cally, if i� ¼ max

1�j�m
ffi;jg, then version Ai� is cached at

node vi.
. RV : RV randomly stores a version at each node.

6 PERFORMANCE EVALUATION

In this section, we compare the performance results of our
solution with those solutions introduced in Section 5.2 in
terms of several performance metrics. The performance
metrics we used in our simulation include delay-saving
ratio ðDSRÞ, defined as the fraction of communication and
server delays which is saved by satisfying the references
from the cache instead of the server; average access latency
ðAST Þ; request response ratio ðRRRÞ, defined as the ratio of
the access latency of the target object to its size; object hit
ratio ðOHRÞ, defined as the ratio of the number of requests
satisfied by the caches as a whole to the total number of
requests; and average server load ðASLÞ, defined as the
largest number of bytes served by the server per second. In
the following figures, SV , MV , and RV denote the results
for the three solutions introduced in Section 5.2, and OV
denotes the optimal solution proposed in Section 4.2.

6.1 Impact of Cache Size

In this experiment set, we compare the performance results
of different solutions across a wide range of cache sizes,
from 0.04 percent to 15.0 percent.

The first experiment investigates DSR as a function of
the relative cache size at each node and Fig. 6a shows the
simulation results. As presented in Fig. 6a, we can see that
our solution outperforms the others since it considers
multimedia object placement by determining the optimal
versions to be placed at each node, whereas existing
solutions, including SV , MV , and RV , consider multimedia
object placement heuristically or randomly. Specifically, the
mean improvements of DSR over SV , MV , and RV are
4.3 percent, 17.9 percent, 19.8 percent, and 24.5 percent,
respectively. Fig. 6b shows the simulation results of AST

LI ET AL.: MULTIMEDIA OBJECT PLACEMENT FOR TRANSPARENT DATA REPLICATION 221

TABLE 5
Parameters Used in Simulation

and RRR as a function of the relative cache size at each
node; we describe the results of RRR as a function of the
relative cache size at each node in Fig. 6c. Clearly, the lower
the AST or the RRR, the better the performance. As we can
see, all solutions provide steady performance improvement
as the cache size increases. We can also see that OV
significantly improves both AST and RRR compared to
SV , MV , and RV , since our solution determines the optimal
versions to be cached on the path from the client to the
server, while the others place multiple versions of a
multimedia object in a heuristic or random way. For AST
to achieve the same performance as OV , the other solutions
require two to eoght times as much cache size.

Fig. 7a shows the results of OHR as a function of the
relative cache size for different solutions. By computing the
optimal versions to be cached, we can see that our solution

produces better results than the others, especially for
smaller cache sizes. We can also see that OHR steadily
improves as the relative cache size increases, which con-
forms to the fact that more requests will be satisfied by the
caches as the cache size becomes larger. Fig. 7b shows the
results of ASL as a function of the relative cache size. It can
be seen that the ASL for our solution is lower than that for
the other solutions. We can also see that ASL decreases as
the relative cache size increases.

6.2 Impact of Object Access Frequency

This experiment set examines the impact of object access
frequency distribution on the performance results of the
various solutions. Fig. 8 shows the performance results of
DSR, RRR, and OHR, respectively, for the values of Zipf
parameter � from 0.2 to 1.0.

222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

Fig. 6. Experiments for DSR, AST , and RRR.

Fig. 7. Experiments for OHR and ASL.

Fig. 8. Experiments for DSR, RRR, and OHR.

We can see that OV consistently provides the best

performance over a wide range of object access frequency

distributions. Specially, CV reduces or improves DSR by

30.4 percent, 24.4 percent, 21.3 percent, and 8.5 percent

compared toSV ,MV , andRV , respectively; the default cache

size used here (4 percent) is fairly large in the context of Web

caching due to the large network under consideration.

7 CONCLUSION

Transcoding is attracting increasing research interest in the

environment of mobile appliances, and transparent data

replication is receiving more and more attention since it is

capable of high system scalability. In this paper, we

addressed the problem of multimedia object placement for

transparent data replication. We studied this problem for

several cases with the objective of minimizing total access

cost by combining both transmission cost and transcoding

cost. A set of simulation experiments were conducted to

study the performance of our proposed solutions. The

simulation results showed that our solution can signifi-

cantly improve network performance compared with

existing solutions.

ACKNOWLEDGMENTS

This work was supported by the Japan Society for the

Promotion of Science (JSPS) under its General Research

Scheme B (Grant No. 14380139), National Natural Science

Foundation of China (Grand No. 60573087), and Hong

Kong RGC grant (Grant No. HKU 7142/03E). Hong Shen is

the corresponding author.

REFERENCES

[1] C. Aggarwal, J.L. Wolf, and P.S. Yu, “Caching on the World Wide
Web,” IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 94-
107, Jan. 1999.

[2] P. Barford and M. Crovella, “Generating Representive Web
Workloads for Network and Server Performance Evaluation,”
Proc. ACM SIGMETRICS ’98, pp. 151-160, 1998.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM ’99, pp. 126-134, 1999.

[4] K.L. Calvert, M.B. Doar, and E.W. Zegura, “Modelling Internet
Topology,” IEEE Comm. Magazine, vol. 35, no. 6, pp. 160-163, 1997.

[5] S. Chandra, C. Ellis, and A. Vahdat, “Application-Level Differ-
entiated Multimedia Web Services Using Quality Aware Trans-
coding,” IEEE J. Selected Areas in Comm., vol. 18, no. 12, pp. 2544-
2565, 2000.

[6] C. Chang and M. Chen, “On Exploring Aggregate Effect for
Efficient Cache Replacement in Transcoding Proxies,” IEEE Trans.
Parallel and Distributed Systems, vol. 14, no. 6, pp. 611-624, June
2003.

[7] B.D. Davison, “Comparative Models of the File Assignment
Problem,” ACM Computing Surveys, vol. 14, no. 2, pp. 287-313,
1982.

[8] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J.
Rubas, “Dynamic Adaptation in an Image Transcoding Proxy for
Mobile Web Browsing,” IEEE Personal Comm., vol. 5, no. 6, pp. 8-
17, 1998.

[9] X. Jia, D. Li, H. Du, and J. Cao, “On Optimal Replication of Data
Object at Hierarchical and Transparent Web Proxies,” IEEE Trans.
Parallel and Distributed Systems, vol. 16, no. 8, pp. 1-13, Aug. 2005.

[10] X. Jia, D. Li, X. Hu, and D. Du, “Optimal Placement of Web
Proxies for Replicated Web Servers in the Internet,” The Computer
J., vol. 44, no. 5, pp. 329-339, 2001.

[11] X. Jia, D. Li, X. Hu, W. Wu, and D. Du, “Placement of Web-Server
Proxies with Consideration of Read and Update Cost on the
Internet,” The Computer J., vol. 46, no. 4, pp. 378-390, 2003.

[12] A. Jiang and J. Bruck, “Optimal Content Placement for En-Route
Web Caching,” Proc. Second Int’l Symp. Network Computing and
Applications (NCA ’03), pp. 9-16, 2003.

[13] P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location
Problem,” IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 568-
582, 2000.

[14] B. Li, X. Deng, M.J. Golin, and K. Sohraby, “On the Optimal
Placement of Web Proxies in the Internet: The Linear Topology,”
Proc. Eighth IFIP Conf. High Performance Networking (HPN ’98),
pp. 21-25, 1998.

[15] B. Li, M.J. Golin, G.F. Italiano, X. Deng, and K. Sohraby, “On the
Optimal Placement of Web Proxies in the Internet,” Proc. IEEE
INFOCOM ’99, pp. 1282-1290, 1999.

[16] K. Li and H. Shen, “Coordinated En-Route Multimedia Object
Caching in Transcoding Proxies for Tree Networks,” ACM Trans.
Multimedia Computing, Comm., and Applications (TOMCAPP),
vol. 5, no. 3, pp. 289-314, 2005.

[17] K. Li, H. Shen, F. Chin, and S. Zheng, “Optimal Methods for
Coordinated En-Route Web Caching for Tree Networks,” ACM
Trans. Internet Technology (TOIT), vol. 5, no. 3, pp. 480-507, 2005.

[18] K. Li and H. Shen, “Optimal Methods for Proxy Placement in
Coordinated En-Route Web Caching,” IEICE Trans. Comm.,
vol. E88-B, no. 4, pp. 1458-1466, 2005.

[19] K. Li and H. Shen, “Optimal Proxy Placement for Coordinated En-
Route Transcoding Proxy Caching,” IEICE Trans. Information &
Systems, vol. E87-D, no. 12, pp. 2689-2696, 2004.

[20] K. Li and H. Shen, “Proxy Placement Problem for Coordinated En-
Route Transcoding Proxy Caching,” Int’l J. Computer Systems,
Science and Eng. (CSSE), vol. 19, no. 6, pp. 327-335, 2004.

[21] K. Li and H. Shen, “Optimal Methods for Object Placement in En-
Route Web Caching for Tree Networks and Autonomous
Systems,” Int’l J. High Performance Computing and Networking
(IJHPCN), a conf. special issue of GCC 2003, vol. 3, no. 4, pp. 211-
218, 2005.

[22] V.N. Padmanabhan and L. Qiu, “The Content and Access
Dynamics of a Busy Site: Findings and Implications,” Proc. ACM
SIGCOMM ’00, pp. 111-123, 2000.

[23] M. Rabinovich and O. Spatscheck, Web Caching and Replication.
Addison-Wesley, 2002.

[24] P. Rodriguez and S. Sibal, “Spread: Scalable Platform for Reliable
and Efficient Distribution,” Computer Networks, vol. 33, pp. 33-49,
2000.

[25] B. Shen, S.-J. Lee, and S. Basu, “Caching Strategies in Transcoding-
Enabled Proxy Systems for Streaming Media Distribution Net-
works,” IEEE Trans. Multimedia, vol. 6, no. 2, pp. 375-386, 2004.

[26] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy Cache
Algorithms: Design, Implementation, and Performance,” IEEE
Trans. Knowledge and Data Eng., vol. 11, no. 4, pp. 549-562, Apr.
1999.

[27] X. Tang and S.T. Chanson, “Coordinated En-Route Web Caching,”
IEEE Trans. Computers, vol. 51, no. 6, pp. 595-607, June 2002.

[28] A. Vetro, C. Christopoulos, and H. Sun, “Video Transcoding
Architectures and Techniques: An Overview,” IEEE Signal
Processing Magazine, vol. 20, no. 2, pp. 18-29, 2003.

[29] J. Wang, “A Survey of Web Caching Schemes for the Internet,”
ACM Computer Comm. Rev., vol. 29, no. 5, pp. 36-46, 1999.

[30] O. Wolfson and A. Milo, “The Multicast Policy and Its Relation-
ship to Replicated Data Placement,” ACM Trans. Database Systems,
vol. 16, no. 1, pp. 181-205, 1991.

[31] J. Xu, B. Li, and D.L. Li, “Placement Problems for Transparent
Data Replication Proxy Services,” IEEE J. Selected Areas in Comm.,
vol. 20, no. 7, pp. 1383-1398, 2002.

LI ET AL.: MULTIMEDIA OBJECT PLACEMENT FOR TRANSPARENT DATA REPLICATION 223

Keqiu Li received the Bachelor’s and Master’s
degrees from the Department of Applied
Mathematics at the Dalian University of Tech-
nology in 1994 and 1997, respectively. He
received the PhD degree from the Graduate
School of Information Science, Japan Ad-
vanced Institute of Science and Technology,
in 2005. He is currently a professor in the
College of Computer Science and Technology,
Dalian Maritme University, China. His research

interests include Internet technology, networking, multimedia applica-
tions, and bioinformatics.

Francis Y.L. Chin received the BASc degree
from the University of Toronto, Canada, in 1972,
and the MS, MA, and PhD degrees from
Princeton University in 1974, 1975, and 1976,
respectively. Since 1975, he has taught at the
University of Maryland, Baltimore County, the
University of California, San Diego, the Univer-
sity of Alberta, the Chinese University of Hong
Kong, and the University of Texas at Dallas. He
joined the University of Hong Kong (HKU) in

1985, where he is the chair of the Department of Computer Science and
was the founding head of the department from its establishment until
31 December 1999. During 2001, Professor Chin was seconded to
serve as the CEO (interim) of Hong Kong Domain Name Registration
Company Limited. Since 2002, he has served as the associate dean of
the graduate school. He has served on the program committees and as
conference chairman of numerous international workshops and con-
ferences. He is currently serving as managing editor of the International
Journal of Foundations of Computer Science and is a member of the
editorial boards of Current Bioinforamtics, Information Processing
Letters, and the Computer Processing of Oriental Languages. Professor
Chin current research interests are bioinformatics and algorithm studies.

Hong Shen received the BEng degree from the
Beijing University of Science and Technology,
the MEng degree from the University of Science
and Technology of China, and the PhLic and
PhD degrees from Abo Akademi University,
Finland, all in computer science. He is a
professor at the School of Computer Science
at the University of Adelaide, Australia. Pre-
viously, he was a professor at the Japan
Advanced Institute of Science and Technology

and at Griffith University, Australia. Professor Shen has published more
than 200 technical papers on algorithms, parallel and distributed
computing, interconnection networks, parallel databases and data
mining, multimedia systems, and networking. He has served in an
editorial role for Parallel and Distributed Computing Practice, the
International Journal of Parallel and Distributed Systems and Networks,
Parallel Algorithms and Applications, the International Journal of
Computer Mathematics, the Journal of Supercomputing, and the Journal
of Interconnection Networks, on program committees, and as chair for
various international conferences. Dr. Shen is a recipient of the 1991
National Education Commission Science and Technology Progress
Award and the 1992 Sinica Academia Natural Sciences Award.

Weishi Zhang received the BS degree in
computer science from Xi’an Jiaotong Univer-
sity, China, in 1984, and the MS degree in
computer science from the Chinese Academy of
Science, China, in 1986. He received the PhD
degree in computer science from the University
of Munich, Germany, in 1996. From 1986 to
1990, he was an assistant researcher at the
Shenyang Institute of Computing, Chinese
Academy of Science, China. From 1990 to

1992, he was a visiting scholar at Passau University, Germany. From
1992 to 1997, he was an assistant professor at the University of Munich,
Germany. In 1997, he joined the Department of Computer Science,
Dalian Maritime University, China, where he is currently a professor of
computer science. His research interests include distributed computing,
software engineering, software architecture, formal specification techni-
ques, and program semantics models.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

