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Abstract 

Integer multiplication is one of the fundamental 
functions in cryptographic systems. Although much 
research has already been done on the testing of 
multiplication functions, most does not meet the need 
of cryptographic systems, where very large numbers are 
involved. Others provide only probabilistic algorithms. 
In this papec we propose an eficient deterministic 
algorithm for  verifiing large number multiplications in 
cryptographic systems. A deterministic oracle for  large 
integer multiplication functions will result. In addition, our 
method can also be used to verify selected segments of digits 
in the product of two numbers. 

Keywords: Cryptographic systems, large number 
multiplication, software testing 

1. Introduction 

A testing oracle is some mechanism, either automatic or 
via a human tester, that specifies the expected outcome of 
a program on the testing data [2]. In software testing, it is 
generally believed that the correctness of a program can be 
verified by matching the program output with the expected 
outcome. This is known as the oracle assumption [l  11. 

The oracle assumption, however, may not necessarily 
hold in every situation. This is known as the oracle 
problem. In numerical analysis, for example, it is not easy 
to predict the expected results [6] except for trivial cases. 
Weyuker [ 1 I ]  defined a program to be non-testable if the 
oracle does not exist or it is practically too difficult to be 
obtained. 
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The oracle problem is a major concern in cryptographic 
systems, because very large numbers are involved in the 
computations. Although it is theoretically possible to 
define an oracle for the computation, it is practically 
too difficult since the operands involved are too large. 
Among these computations, large number multiplication 
is the fundamental function for almost all kinds of 
public-key encryption/decryption systems such as the RSA 
algorithm, Diffie-Hellman key exchange, elliptic curve 
cryptography and primality testing [5,  121. In addition, 
integer multiplication is also the basic function called by 
other number-theoretic functions such as division, modulo 
arithmetic, exponentiation and modular exponentiation [8]. 
Hence, the testing of large number multiplication functions 
is of particular importance in cryptographic software 
testing. In this paper, we shall present a method of testing 
large number multiplication functions in cryptographic 
systems. 

Let us take a brief literature review first. One method 
for testing numerical functions when there is an oracle 
problem is to test the program on some simplified or specific 
data, for which the correctness of the results can be easily 
determined [ l l ] .  However, this approach cannot give us 
sufficient confidence on the correctness of the program for 
complex data, which are usually more error-prone. Another 
method is to use the inverse to verify the correctness of a 
function. The consecutive execution of a function followed 
by its inverse should result in the original input value. 
However, an inverse may not be found for every function. 

Despite the above problems, testing can still be carried 
out in most cases because the functions to be tested often 
have their own theoretical properties. Hence, if the output 
of the program does not match such properties, testers can 
immediately identify an error without actually knowing the 
answer. The concept of a program checker was presented 
by Blum et al. [l ,  3, 41, to make use of properties of 
functions in software testing. The checker is a probabilistic 
program that checks the output of a computation. Given 
a program and an instance of its input data, the checker 
certifies whether the output of the program on that input 
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data is correct with a high probability. In order to obtain 
the probabilistic assurance, however, the checker must 
repeatedly run the program being tested. 

Although the program checker provides a probabilistic 
oracle for some functions, people are still facing the 
fundamental limitation of the inability to extrapolate from 
the correctness of the program on testing data to the 
correctness of the program on all elements of the input 
domain [ l l ] .  To cope with this challenge, the theory 
of program checker was extended to the theory of self- 
testing/correcting [3]. A self-tester T for a function f is 
a probabilistic program. For any program P supposedly 
computing f, T estimates the probability of error such 
that P ( x )  # f ( x )  for a random input x. A self-corrector 
C for f is also a probabilistic program. If it is known 
that a program P has a sufficiently low probability of error, 
then for any input x, C can call P to compute f ( x )  with a 
high probability of correctness. Blum et al. [3] presented 
general techniques for constructing self-testing/corrccting 
pairs for a variety of numerical functions, including integer 
multiplication, modular multiplication, integer division, 
modular exponentiation, polynomial multiplication and 
matrix operations. Kaminski [7] also introduced methods 
to probabilistically verify the product of integers and 
polynomials. We found, however, that these methods 
have their limitations when implemented to cryptographic 
systems where very large numbers are involved. 

The self-tester/corrector employs a black box strategy. 
It selects testing data on a “random” basis in order to 
achieve the probabilistic results. Hence, this technique is 
not suitable for white box testing, which requires the test 
cases to be selected according to the program structure. As a 
probabilistic program, the self-tester/corrector needs many 
repeated calls to the functions being tested to achieve the 
probabilistic assurance, bringing a relatively high time cost. 
Furthermore, specific techniques used in the algorithms are 
not suitable for cryptographic systems. For example, the 
self-tester/corrector for multiplication functions introduced 
in [3] assumes that, for a given integer y, y x 2“ can be 
computed by left-shifting y for n bits without calling the 
multiplication function being tested. This assumption is 
impractical in cryptographic systems, where the operand 
y is usually very large. In such systems, a large integer 
cannot be stored within one computer word, and hence it 
is usually stored digit by digit across several words. Thus, 
y x 2” cannot be computed by a simple left-shifting of bits. 

Kaminski [7] presented other probabilistic algorithms to 
check the product of integers, but they also have similar 
problems. For example, the relation res(a, p )  x res(b, p )  = 
res(c, p )  in [7] is checked to verify the product a x b = c, 
where a and b are n-bit integers, p is a relatively small 
prime number: (pJ = 2 x log,n, where IpI denotes the bit- 
length of p ,  and res is some residue function which can, 

for simplicity, be interpreted as the modulo function. In 
the testing the calculation res(a, p )  x res(b, p )  is assumed 
always to be correct. But this assumption is also not 
practical in large number operations. 

Consider a typical 32-bit computer system. In order that 
Ires(., p )  x res(b, p)I _< 32 for all cases, we must have 
( ( p  - 1) x ( p  - 1)1 5 32. Since p is a prime number, we 
must have IpI 5 16. In other words, 2 x log,n 5 16, or 
n 5 2’ = 256. In this way, the lengths of operands in  
multiplications are limited to no more than 256 bits in a 
typical computer system. This is obviously too short for 
cryptographic systems. 

In this paper, we shall present a method of testing large 
number multiplication functions in cryptographic systems. 
Our algorithm is deterministic rather than probabilistic, and 
does not have any restriction on the lengths of the operands. 
The result of our algorithm can be used as an oracle to verify 
the correctness of the product of integers. Note that the 
word “digit” in this paper means a digit of an integer under 
any numeration system, usually with a base larger than 2. 

2. Exploring the Relationships among 
Selected Segments of Digits in the 
Multiplicand, Multiplier and their Product 

Most testing activities treat an input data as an integrated 
unit and the output data as another integrated unit 
when their relationship is analysed for the correctness 
verification. In our approach, however, we take a 
different view and explore the relationships among the digit 
components of the input and output data. The method is 
based on a method first introduced by Shi [9] for rapid 
mental calculations. It uses “comparison” to predict the 
carry in advance, thus enabling people to obtain the final 
result from the most significant digit to the least significant 
one. It is efficient for mental calculation because humans 
can do comparisons much faster than any other calculations. 

We discover that Shi’s method can be extended 
to provide an oracle for the testing of large number 
multiplication functions in cryptographic systems. Our 
testing method can also be used to verify the correctness 
of selected digits in the product of two numbers. Although 
in the following our discussion is often in the denary system 
(with base 10) for easy understanding, it is straightforward 
to implement our method in other numeration systems. The 
reference for Sections 2.1 and 2.2 is [IO].  

2.1. Multi-digit integer multiplied by one-digit 
integer 

In this section, we consider the results of a multi-digit 
integer multiplied by a one-digit positive integer k ,  such as 
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Table 1. Rules of carries 

0 4 2 8 6 5 7  
X I 

Digit No. 1 2 3 4 5 6 1  

Figure 1.428657 x 7 

1 5 k 5 9 in the denary system. When the multiplier k is 0 or 
1, there is no carry for whatever digit of the multiplicand. 
Even for the case when k > 1, the carries are surprisingly 
simple. 

The fractions I l k ,  2/k, . . . , (k - I ) /k  will be called the 
curry points for the multiplier k. These carry points divide 
the region [O, 1) into k sub-regions [ilk, ( i +  l ) / k ) ,  where 
i = 0, 1, . . . , k - 1. For any pure decimal fraction 1 in the 
range [i/k,(i+ l) /k),  we have i 5 I x k < it- 1. Hence, the 
carry to the integral part of the product I x k is i, irrespective 
of the value of 1 inside [ i /k,( i+ l) /k).  Table 1 shows the 
rules of carries fork = 2, 3, . . . , 9 in the denary system. 

We note the following: The position of the decimal 
points in the multiplicand and multiplier will not influence 
the value of carry to the most significant digit of their 
product. Consider, for example, 0.46 x 8 = 3.68 and 
46 x 8 = 368. The carries to the most significant digit of 
two products are both 3. 

Let us illustrate the new multiplication method. Consider 
the conventional multiplication process in upright mode 
as shown in Figure 1. In the remaining parts of this 
paper, when multiplication is to be performed, an extra 0 
will always be placed at the most significant digit of the 
multiplicand so that the multiplicand and the product can 
always have the same length. Using the new method, we can 
directly obtain the value of any digit of the product. Without 
loss of generality, let us look at digit 3 :  the corresponding 
value of the digit of the multiplicand is 2. By calculating 
(2 x 7) mod 10, we obtain 4. Now we deduce the carry that 
digit 3 will receive from its less significant digits 8657 x 7. 

Note that the carry of 8657 x 7 is the same as 0.8657 x 7. 
As discussed above, we have the following carry points for 
the multiplier 7: 

1/7 = 0.142857 142857..' = 0.142857 
217 = 0.285714285714... = 0.285714 
3/7 = 0.428571 428571...=0.428571 
417 = 0.571428 571428". = 0.571428 
5/7 = 0.714285 714285... = 0.714285 
6/7 = 0.857142 857142." = 0.857142 

We see that 0.8657 > 0.857142 = 617. Hence, the carry to 
the integer part in the product 0.8657 x 7 must he 6, which is 
also the carry of 8657 x 7, that is, digit 3 in Figurc 1 receives 
the carry of 6 from its less significant digits. We already 
calculated (2 x 7) mod I O  = 4 for digit 3. We can now 
obtain the final value for this digit, namely (4 + 6) mod I O  
= 0. 

Let us calculate the whole product from the left to the 
right: 

Digit 1: 0.428571 (= 3/7) 5 0.428657 < 
0.571428 (= 4/7). Hence, the carry of 
428657 x 7 is 3. Thus, digit 1 = (0 x 7 + 3) mod 

Digit 2: 0.285714 (= 217) 5 0.28657 < 
0.428571 (= 3/7). Hence, the carry of 28657 x 7 
is 2. Thus, digit 2 = (4 x 7 + 2) mod 10 = 0. 

10 = 3. 

... 
Digit 6: 0.571428 (= 417) L: 0.7 < 0.714285 
(= 5/7). Hence, the carry of 7 x 7 is 4. Thus, 
digit 6 = (5 x 7 + 4) mod 10 = 9. 

Digit 7 is the least significant digit. It receives no 
carry. Thus, digit 7 = (7 x 7 + 0) mod 10 = 9. 

We can conclude, therefore, that 428657 x 7 = 3000599. 
This method uses comparisons to obtain the carries in 

advance, so that calculations can be done from the left to the 
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Figure 2.389 x 436 

right. Since human beings are good at doing comparisons 
and they read numbers from the most significant digit to the 
least significant one, this method has been found to be very 
suitable for rapid mental calculations. 

2.2. Multi-digit integer multiplied by multi-digit 
integer 

Shi 19, IO] also studied the multiplication between two 
multi-digit integers. In the following, we shall first give a 
particular example and then discuss the general case. 

Let x and y be the multiplicand and multiplier, 
respectively. Without loss of generality, suppose x = 
389 and y = 436. After adding an extra “0” to the 
most significant digit of n, we write the calculation in 
the form of Figure 2. Please note the following notation 
throughout the paper: “( 1)(2)(3)(4)” represents the digits 
of the multiplicand x, where ( I )  = 0 in  the case of 
Figure 2. “(4)(5)(6)” represents the digits of the multiplier. 
“[1][2][3][4][5][6]” represents the digits of the product, 
where [ I ]  may or may not be 0. Note also that ‘ ‘ ( i )( j)”  is 
not the value of “(i) x ( j ) ” ,  but represents the ith digit of 
the product “(1)(2)(3)(4) x ( j ) ” .  For example, (3)(5) = 6 
in our example because x x (5) = 0389 x 3 = 1167. 

The preceding example shows the following relationship 
between the final result and the intermediate results 
(without considering the carries generated by the addition 
operation): 

digit [l] from (1)(4) 
digit [2] from (2)(4) + (1)(5) 
digit [3] from (3)(4) + (2)(5) + (1)(6) 
digit [4] from (4)(4) + (3)(5) + (2)(6) 
digit [SI from (4)(5) + (3)(6) 
digit [6] from (4)(6) 

Without loss of generality, let us take digit [3] of 
the product as an example to see how its value is 
obtained. Digit [3] resulted from the sum of three addends 
(3)(4) + (2)(5) + (1)(6). The digit number of the 
“multiplicand” in each addend decreases from (3) via (2) 
to (l), and hence the unit increases from 10 via 100 to 
1000. The digit number of the “multiplier” in each addend 
increases from (4) via (5) to (6), and hence the unit 
decreases from 100 via IO to 1. Thus, the unit of every 
addend in the addition (3)(4) + (2)(5) + (1)(6) is 1000, 
so that the three elements can be added together. 

Let us consider the general case. Note that when we 
calculate the product of two integers, we always assign the 
longer one to be the multiplicand and the shorter one to 
be the multiplier. Suppose the multiplicand consists of n 
digits and the multiplier consists of m digits, where n 2 m. 
It can be proved that the product will consist of n + m or 
n + m - 1 digits. For the simplicity of presentation, we shall 
assume that the product always consists of n + m  digits, such 
that its most significant digit may or may not be 0. This is 
also the reason why we always put an extra “0” at the most 
significant digit of the multiplicand. 

We can now write the details of the multiplication in 
Table 2. 

Note in Table 2 that “( 1)” always equals 0, and “[I]” 
may or may not be 0. Table 2 is actually very similar 
to the traditional manual multiplication method. Before 
the final product is calculated, the intermediate result can 
be first obtained by directly summing up the elements in 
each column. Note that, in this intermediate result, the 
carries of the addition operation have not yet been sent to 
more significant digits. We use {i} to denote digit i of 
the intermediate result and [i] to denote digit i of the final 
product. Table 3 is an example illustrating Table 2. 

We can see from Table 2 that digit { k }  of the 
intermediate result can be calculated as follows: 

(*) For k 5 n, { k }  = ( k )  (n  + 1) + (k  - 1) (n + 2) + , . . + 
( p ) ( q ) ,  where p = 1 or q = n + m. For k > n,  { k }  = 
(a  + l)(k) + ( n ) ( k  + 1) + ...+ (k  - m + l)(n + m). 

Note that, for i = I ,  2, . . . , n + 1 and j = n + 1, n + 2, . . . , 
n+m, the value “(i)( j )” can be directly calculated using the 
method introduced in the previous section. 

Thus, we have a new multiplication algorithm that is very 
different from traditional ones: The algorithm can start the 
calculation from any digit instead of always starting from 
the least significant digit as is the practice for thousands of 
years. Note also that we need to obtain intermediate results 
first and then adjust them according to the carries generated 
in the addition operation before obtaining the final product 
in Tables 2 and 3. 
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Table 2. n-digit integer multiplied by m-digit integer, where n 2 m 

Table 3. Example of Table 2: 389 x 436 

3. Computer Implementation and 
Performance Analysis 

As we have stated earlier, Shi originally introduced his 
mcthod for rapid mental calculation. Although a simple 
BASIC program was also included in [9, 101 to simulate the 
method, it served only the purpose of illustration and was 
not suitable for real-life computer applications. 

We find, however, that Shi’s manual calculation method 
has a feature suitable for cryptographic systems: its basic 
opcration unit is a digit. In large number operations of 
cryptographic systems, the operands are also stored digit by 
digit, even though the base of the digits is not necessarily 
IO. In the following, we shall present our algorithm 
for large number multiplication based on the knowledge 
introduced in the previous sections. A program that 
implements our algorithm can be used as a deterministic 
checker to verify the products of integers. 

3.1. Computer implementation 

For conventional integer multiplication algorithms, 
which calculate the product starting from the least 
significant digit, the time cost is O(n x M ) ,  where n and M 

are the number of digits of the two operands [8]. For our 

unit  Node A: unit  
[OI Root Node [91 

Figure 3. Search tree for multiplications in the 
denary system 

algorithm, on the other hand, the critical part in the time 
cost lies in how we implement it to obtain the carries in 
advance. We propose to implement a search tree as shown 
in Figures 3 and 4. 

In Figure 3, node A is the root node of the search tree. It 
contains ten units. Each unit contains a pointer pointing 
to a sub-tree. There are ten units in every node of the 
scarch tree (in both the root node and the nodes of sub- 
trees) because the denary system is assumed and hence each 
single digit has ten possible values 0 to 9. Each sub-tree in 
Figure 3 corresponds to a one-digit multiplier, namely sub- 
tree i corresponding to integer i, for i = 0, 1, . . . , 9. Let us 
use the following example to illustrate how our algorithm 
works with the search tree. 

Let A = “A,A,-I . . . A 1 ”  be a multiplicand and i be a 
single-digit multiplier. We search for the value of carry 
to the most significant digit (digit n +  1) in the product 
A x i. This is the fundamental operation in our algorithm. 
We employ the search tree as follows. First, following the 
pointer in unit [i] of the root node of the search tree (node 
A in Figure 3). we shall arrive at the root node of sub-tree 
i. For example, if i = 4, then we shall follow the pointer in 
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unit unit unit unit 

from node root pointing to sub-tree 4 

unit unit unit unit unit unit 

J I 
Node C 

NodeB 0 0 nil 1 1 2 .............................................................. 
null null I null null null 

2 nil 3 3 
null I null null 

0 0 
null null 

Figure 4. The sub-tree 4 

0 0 0 1 1 1 1 1 
null null null null null null null null 

................................................................ 

unit [4] of node A to arrive at node B of Figure 4, which is 
the root node of the sub-tree 4. 

Consider Figure 4. It shows the structure of a typical 
sub-tree. Each node of the sub-tree includes I O  units [O] 
to 191, corresponding to the values of the digits of the 
multiplicand. Each unit consists of two parts: the value part 
and the pointer part. The value part stores the value of the 
carry and the pointer part stores a pointer. These values 
are completely determined by l/i, 2/i, .... ( i  - l ) / i .  For 
instance, the sub-tree 4 in Figure 4 is constructed according 
to the value of 1/4 = 0.25,2/4 = 0.5 and 3/4 = 0.75. 

There are 3 carry points (U4, 2/4 and 3/4) for the 
multiplier 4. These 3 carry points divide the region 
[0, 1) into 4 sub-regions: When the multiplicand is within 
[0, 0.25), the carry is 0; within [0.25, 0.5), the carry is I ;  
within [ O S ,  0.75), the carry is 2; and within [0.75, l ) ,  the 
carry is 3. Hence, for the integer A = “A,A,,-I ... A I ” ,  the 
carry to digit n + 1 in the product A x 4 is determined by 
the first 1 or 2 digit(s) of A,  that is, by A,, and A,,-I. If 
A,, = 0 or 1, then the carry will definitely be 0. Thus, unit [O] 
(corresponding to A,, = 0) and unit [ I ]  (corresponding to 
A,, = 1) of node B are assigned the value “O’, and their 
pointers are both assigned null, which means that the search 
for the carry can stop here. If A, = 2, then the carry of 
A x 4 may be 0 or I .  At this point we need to further look 
at A,-1 to make a decision. Thus, the value of unit [2] of 
node B (corresponding to A, = 2) is “nil”, which means 
“undecided”. Its pointer indicates the lower level node C, 
which will provide us with the information for decision 
based on the value of digit A,-I. 

Now consider node C. When A, = 2, the carry of A x 4 
can only have two possible values: 0 when A,-l < 5, and 1 
whenA,-I 2 5. Hence, the value “0” is assigned to units [O] 

null 

to [4], and “1” is assigned to units [ 5 ]  to [9]. In any case, 
there will be no need for further exploring the subsequent 
digits Aa-2, A,,-3, .... Thus, all the pointers in node C are 
assigned ‘‘null’’ to indicate the end of the search. 

2 2 2 2 2 3 3 3 3 3  ................................................................ 
null null null null null null null null null 

Using the same method, we can assign the values to 
other units in node B and construct node D. Note that the 
units of node A, which is the root of the whole search tree, 
correspond to the multiplier, whereas the units of the nodes 
of the sub-trees correspond to the multiplicand. 

Finally, let us consider a complete example that 
illustrates how the tree is used to search for the carry of 
7498568 x 4. Since the multiplier is 4, we follow unit [4] 
of the root node A to arrive at node E ,  the root of the 
sub-tree 4. Then, according to the first digit “7” of the 
multiplicand, we compare the pointer in unit [7] with “null”, 
find that it is not “null”, and hence continue to follow the 
pointer to node D. According to the second digit “4” of 
the multiplicand, we compare the pointer in  unit [4] with 
“null” and find that the pointer is “null”, which mcans that 
we have found the value of the carry and the search can 
stop. Thus, the corresponding value in the value part of 
unit [4], is returned. In other words, 2 is the carry of the 
product 7498568 x 4. In this example, the time cost is two 
computer-word comparisons. 

A slightly longer process will result when we deal with 
recurring decimals. For example, when a multiplier 7 
is involved, all the units in sub-tree 7 contain recurring 
decimals. However, it will not be difficult to use flags to 
handle these cases. 
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Table 4. Integer multiplication, n 2 m 

3.2. Time cost analysis 

For a j-digit integer A = “AjAj-I ‘..AI:’ multiplied by 
a single digit k ,  it will take j computer-word comparisons 
in the worst case to obtain the carry to digit j + 1 using the 
search tree. This worst scenario happens in the rare case 
when the digits of “AjAj-1 ... A I ”  are exactly the same as 
those in the expansion of i l k  for some i < k .  Even in such 
situations, we may make use of the recursive property of 
the expansion of i l k ,  if any. When A = “AjAj-I ... A I ”  
= 3 3 . . . 3  and k = 3, for instance, it does not take j - 1 
comparisons to obtain the carry to digit j of the product. 
Since we do the multiplication from the left to the right, a 
control mechanism can be added into the search program to 
record the recurring values, so that we can directly copy the 
previous result when the pattern is repeated. 

On average, each search for a carry takes a constant time. 
Hence, the time cost of calculating the product A x k using 
the search tree is O(n),  where A is an n-digit integer and k 
is a single-digit integer. Thus, the overall time cost of our 
algorithm in calculating the product A x B is O(nm) if B 
contains m digits. This time cost is of the same order as that 
of the conventional multiplication algorithm [SI. 

Although the time cost of the algorithm is in the same 
order as that of the conventional algorithm when a search 
tree is implemented, it is relatively slower than complex 
multiplication algorithms introduced in 181, In practice, we 
can use fast and complex algorithms in the implementation 
of multiplication functions in cryptographic systems while 
applying our algorithm as an oracle for testing. 

4. Checking Selected Segments of Digits in the 
Product of Two Integers 

In the preceding sections, we introduced a deterministic 
oracle for large number multiplication functions. In this 

section, we shall present one more feature of our testing 
method: not only can the whole multiplication product 
be checked, but the correctness of a selected segment of 
digits in the product can also be verified without having to 
calculate other digits. 

Theorem 1 Suppose the multiplicand is an n-digit integer 
and the multiplier is an m-digit integer in a numeration 
system with base > 2, such that n 2 m. Suppose the 
results of multiplications are as shown in Table 2, where { i} 
denotes digit i ($the intermediate result, [i] denotes digit i 
of the jna l  product, and digit (1) = 0. Let C[i] denote the 
carry generated in digit i by the addition operation when 
calculating the final product, that is, [i] = ({i} i- C[i + I]) 
mod base, where i = 1, 2, . . ., n + m and C[n  + m + I ]  = 0. 
Let max{C[i]} denote the upper bound of the value of C[i]. 
Then 

max{C[i]} = n + m -  i when n+ 1 5 i 5 n + m  
max{C[i]} = m -  1 whenm 5 i < n+ 1 
max{C[i]}  = i - I when 1 5 i < m 

Proof In order to obtain an upper bound of C[i], we 
assign the maximum possible values to every element in the 
“middle step” of Table 2 and redraw Table 2 as Table 4. In 
the latter table, the multiplicand and multiplier has n and m 
digits respectively. Since the multiplier has m digits, there 
are m rows in the middle step. Each digit of the intermediate 
result is calculated by directly adding up all the elements in 
its column. We assign the maximum possible value base- 
1 (such as 9 in the denary system) to every elemcnt in 
the middle step except the first digit of each row, whose 
maximum value is base- 2 (such as 8 in the denary system). 

First, consider the case when n + 1 5 i 5 n + m. 
( a )  When i = n + m, there is only one element in column 

i, so that max{C[i]} = 0 = n + m - i. 
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( b )  Suppose that, when i = k for some n + 1 < k 5 n + m, 
wehavemax{C[k]} = n + m - k .  Considerthesituation 
when i = k - 1: Since the number of elements for 
addition in column j is n+ m - j +  1 for n < j 5 n + m, 
the number of elements for addition in column k - 1 
is n + m - (k - 1 )  + 1 = n + m - k + 2. Since the 
maximum carry that column k - 1 can receive from 
less significant digits is max{C[k]} = n + m - k, the 
maximum carry digit k - 1 can generate is max{C[k - 
l ] } =  L ( ( n + m - k + 2 ) x ( b a s e - t ) + n + m - k )  / 
baseJ = n + m - (k - 1). 

Next, consider the situation when m 5 i < n + 1. 

(a )  When i = n,  the carry that digit i receives from less 
significant digits is no more than max{C[n + 11) = n + 
m - ( n +  1) = m -  1. Since n +  I > m, there are m 
elements in column i for addition. Thus, the maximum 
value of the carry generated in digit n is max{C[n]} = 
L(mx (base- l ) + ( m -  1)) / baseJ = m -  1. 

( b )  Suppose that, when i = k for some m < k 5 n, we 
have max{C[k]} = m - 1. Consider the situation when 
i = k - 1. Since column j (m 5 j < n + 1) includes 
m elements for addition, column k - I also includes 
m elements for addition, and hence max{C[k - 11) = 
L(mx (base-l)+max{C[k]}) /basel  =m-1. 

Finally, when 1 5 i < m, since m 5 n,  column i contains 
i elements for addition. This includes one element whose 
maximum value is base - 2, which is the first element of 
each row. 

( a )  When i = m - 1, max{C[i]} = max{C[m - 11) = 
[ ( ( m  - 2) x (base - 1) + (base - 2) + max{C[m]}) 
/ baseJ  = m - 2 = i - I .  

( b )  Suppose that, when i = k, max{C[i]} = i - 1. Then, 
when i = k - 1, we have max{C[i]} = max{C[k - 11) 
= L((k - 2) x (base - 1) + (base - 2) + max{C[k]}) 

Here is an example for Theorem 1:  Let A and E be 15- 
digit and IO-digit integers, respectively, in any numeration 
system. If we write the calculation A x B in the form of 
Table 3, then the carries for digits 1 to 25, generated by the 
addition operation of the middle step, are no more than 0, 1, 
2, 3 , 4 , 5 , 6 , 7 ,  8 ,9 ,  9 , 9 , 9 ,  9, 9 ,9 ,  8 , 7 , 6 ,  5 , 4 ,  3, 2, 1 and 
0, respectively. We can see a clear symmetric pattern of the 
carries, namely that the digits in the middle part generate or 
receive the most and the two ends generate or receive the 
least. 

Let [i..j] denote the integer corresponding to the digit 
string “[i][i+ I] . . . [ j]” , where 1 5 i 5 j 5 n + m .  In 
Table 3, for instance, [2..4] = 696. Using our multiplication 
algorithm and employing statement (*), we can directly 

/ baseJ = k - 2 = i -  1. 

obtain a selected segment of digits {i}, {i+ 1} ,  ..., { j }  in 
the intermediate result. Then, it is straightforward to obtain 
a lower hound of [i..j] of the intermediate result. Let Li..jJ 
denote this lower bound. We have Li..jJ = (cilb{j- k }  x 
basek) mod basej-’+I, where { j - k} denotes the value of 
digit j - k in the intermediate result. We use the notation 
Li], [i + l J ,  ... , LjJ to denote the digits of this lower 
bound. In Table 3, for example, L2..4J = 695, L2J = 6, 
L3J = 9 and 141 = 5. By employing Theorem 1, we can 
easily obtain the maximum value of the carry to digit j ,  
denoted by max{C[j + 11). In the preceding example in 
Table 3, max{C[j+ 11) = max{C[4+ 11) = max{C[5]} = 
n + m - 5 = 1. Then, it is also straightforward to obtain the 
upper bound of [d..j]. Let [i..j] denote this upper bound. 
We have [i..jl = (Li..jJ +max{C[j+ 111) mod bas&”’. 
We use the notation [il, Ti + 11, . . . , [ j l  to denote the digits 
of this upper bound. In Table 3, for instance, [2..4] = 
([2..4J + max{C[5]}) mod lo3 = 696. In this way, without 
calculating other digits, we can obtain a narrow range of the 
possible values of a selected segment of digits in the final 
product, namely Li..jJ 5 [i.,j] 5 [i..j]. Theorem 2 proves 
the remarkable accuracy of this approach. 

Theorem 2 Let Table 4 be the integer multiplication in a 
numeration system with the base > 2. Let “[iJ, [i+ IJ. 
..., L j - d J ,  ..., Lj]”and “Til, [i+11. ..., [ j - d l ,  ..., 
[ j l ”  be the lower and upper bounds of the segment of 
digits in thefinalproduct “[i], [i+ 11, ..., [ j - d ] ,  ..., [j]”, 
respectively, where d = Llogb,,,max{C[j + l]}] + 1 when 
m a { C [ j +  11) # Oandd = 1 when max{C[j+ 11) = 0, that 
is, d is the number of digits of max{C[j + I]}. Then, one of 
the following two identities holds: 

( a )  [ i . . ( j -d ) ]  = Li. .( j-d)J 

( b )  / i . . ( j-d)l  = ( [ i . . ( j - d ) J  + l ) m ~ d b a s e j - ~ - ~ + l  

Thus, one of the following two identities holds: 

(c) [ i . . ( j -d)]  = l i . . ( j -d)J  

( d )  [i..(j,- d) ]  = [i..(j - d) ]  = (Li..(j - d)J + 1) mod 

where [i..( j - d)] is the integer corresponding to the string 
from digit [i] to digit [ j  - d] of thefinal product. 

Proof By definition, [i..jl = (Li..jJ + max{C[j + 11)) 
mod base’-’+’. Since max{C[j+ 11) has d digits, we 
can write the addition operation in the form of Table 5, 
where C, denotes the rth digit of max{C[j + I]}, r = 
I ,  2, ... , d, and CI is the most significant digit. In the 
table, digit i - 1 is omitted, which is equivalent to the 
operation “mod baseJ-‘+l”. In any numeration system, 
in the addition calculation shown in Table 5, the value of 
carry that digit ( j  - d )  can receive from its lower part is 

base]-d-&1 
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Table 5. Ti.. j1 = (Li..jJ + max{C[j + I]}) mod basej-'+I 

Eflectiveness 

Other probabilistic 
Methods (<100%) 

deterministic Our 
Method (100%) 

Efficiency 

Table 6. Checking the first 6 digits of the product 869498652940734 x 3687489895 

Testing Data Suitable Testing 
Selection Strategy 

randomly black box testing 

no requirement both black 

Suitability for Can Check 
Crvptomaphic Selected Parts of 

white box 

no more than 1. Hence, [ i . . ( j -d) l  = [i . . ( j-d)J +0, or 
[ i . . ( j -d) l  = (Li..(j-d)] + 1) mod hasei-d-i+l. Thus, 
[ i . . ( j-d)] = Li . . ( j -d ) ] ,  or [ i . . ( j -d)]  = [ i . . ( j -d) l  = 
(Li..(j-d)J + 1) mod hasej-d-l+l. 

Table 6 illustrates how our method is applied to verify 
the correctness of a selected scgment of digits in integer 
multiplication. The multiplicand is A = 869498652940734 
with n = 15 digits, and the multiplier is B = 3687489895 
with m = I O  digits. We would like to check the first 6 digits 
of the product. The numbers in the "middle step" can he 
directly obtained using our multiplication algorithm. By 
employing statement (*), we obtain a lower bound for the 
segment of digits 1 to 6, namely 320621. Then, according to 
Theorem 1, we can easily obtain the maximum value of the 
carry that digit 6 may receive from less significant digits, 
namely max{C[7]} = 7 - 1 = 6. By adding max{C[7]} to 
digit 6 of the lower hound, we obtain an upper hound for 
the segment of digits, namely 320627. We can see that the 
first 5 digits of the lower and upper bounds are exactly the 
same, and hence these 5 digits can be assured, and digit 6 
of the final product should be in the range [ I ,  71. 

5. Conclusion 

In this paper, we have introduced a deterministic 
algorithm that provides an oracle for the testing of large 

Products 
Other repealed executions 
Methods re uire hi h time cost 

only one execution, 
efficient suit ab I e 

Table 7. Comparison with other multiplication 
testing methods 

number multiplication functions in cryptographic systems. 
Our method can be used to verify the correctness of either 
the whole product of two integers, or a selected segment of 
digits in the product. The approach is based on Shi's mental 
calculation method. 

The method we presented in this paper is deterministic, 
efficient and suitable for any type of testing strategy, 
especially the testing of large number multiplication in 
cryptographic systems. In addition, it can also be applied to 
verify significant digits of the products of decimal fractions. 
Table 7 shows a comparison of our method with others. 
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