
Testing of Large Number Multiplication Functions
in Cryptographic Systems *

T. H. Tset T. Y. Chen Zhiquan Zhou
The University of Swinburne University of The University of

Hong Kong Technology, Australia Hong Kong

Abstract

Integer multiplication is one of the fundamental
functions in cryptographic systems. Although much
research has already been done on the testing of
multiplication functions, most does not meet the need
of cryptographic systems, where very large numbers are
involved. Others provide only probabilistic algorithms.
In this papec we propose an eficient deterministic
algorithm for verifiing large number multiplications in
cryptographic systems. A deterministic oracle for large
integer multiplication functions will result. In addition, our
method can also be used to verify selected segments of digits
in the product of two numbers.

Keywords: Cryptographic systems, large number
multiplication, software testing

1. Introduction

A testing oracle is some mechanism, either automatic or
via a human tester, that specifies the expected outcome of
a program on the testing data [2]. In software testing, it is
generally believed that the correctness of a program can be
verified by matching the program output with the expected
outcome. This is known as the oracle assumption [l 11.

The oracle assumption, however, may not necessarily
hold in every situation. This is known as the oracle
problem. In numerical analysis, for example, it is not easy
to predict the expected results [6] except for trivial cases.
Weyuker [1 I] defined a program to be non-testable if the
oracle does not exist or it is practically too difficult to be
obtained.

'This research is supported in pan by the Hong Kong Research Grants
Council and the University of Hong Kong Committee on Research and
Conference Grants.

'All correspondence should be addressed to Dr. T. H. Tse, Department
of Computer Science and Information Systems, The University of Hong
Kong, Pokfulam Road, Hong Kong. Email: "tseecsis. hku. hk".

The oracle problem is a major concern in cryptographic
systems, because very large numbers are involved in the
computations. Although it is theoretically possible to
define an oracle for the computation, it is practically
too difficult since the operands involved are too large.
Among these computations, large number multiplication
is the fundamental function for almost all kinds of
public-key encryption/decryption systems such as the RSA
algorithm, Diffie-Hellman key exchange, elliptic curve
cryptography and primality testing [5, 121. In addition,
integer multiplication is also the basic function called by
other number-theoretic functions such as division, modulo
arithmetic, exponentiation and modular exponentiation [8].
Hence, the testing of large number multiplication functions
is of particular importance in cryptographic software
testing. In this paper, we shall present a method of testing
large number multiplication functions in cryptographic
systems.

Let us take a brief literature review first. One method
for testing numerical functions when there is an oracle
problem is to test the program on some simplified or specific
data, for which the correctness of the results can be easily
determined [l l] . However, this approach cannot give us
sufficient confidence on the correctness of the program for
complex data, which are usually more error-prone. Another
method is to use the inverse to verify the correctness of a
function. The consecutive execution of a function followed
by its inverse should result in the original input value.
However, an inverse may not be found for every function.

Despite the above problems, testing can still be carried
out in most cases because the functions to be tested often
have their own theoretical properties. Hence, if the output
of the program does not match such properties, testers can
immediately identify an error without actually knowing the
answer. The concept of a program checker was presented
by Blum et al. [l , 3, 41, to make use of properties of
functions in software testing. The checker is a probabilistic
program that checks the output of a computation. Given
a program and an instance of its input data, the checker
certifies whether the output of the program on that input

89
0-7695-0825-1/00 $10.00 0 2000 IEEE

data is correct with a high probability. In order to obtain
the probabilistic assurance, however, the checker must
repeatedly run the program being tested.

Although the program checker provides a probabilistic
oracle for some functions, people are still facing the
fundamental limitation of the inability to extrapolate from
the correctness of the program on testing data to the
correctness of the program on all elements of the input
domain [l l] . To cope with this challenge, the theory
of program checker was extended to the theory of self-
testing/correcting [3]. A self-tester T for a function f is
a probabilistic program. For any program P supposedly
computing f, T estimates the probability of error such
that P (x) # f (x) for a random input x. A self-corrector
C for f is also a probabilistic program. If it is known
that a program P has a sufficiently low probability of error,
then for any input x, C can call P to compute f (x) with a
high probability of correctness. Blum et al. [3] presented
general techniques for constructing self-testing/corrccting
pairs for a variety of numerical functions, including integer
multiplication, modular multiplication, integer division,
modular exponentiation, polynomial multiplication and
matrix operations. Kaminski [7] also introduced methods
to probabilistically verify the product of integers and
polynomials. We found, however, that these methods
have their limitations when implemented to cryptographic
systems where very large numbers are involved.

The self-tester/corrector employs a black box strategy.
It selects testing data on a “random” basis in order to
achieve the probabilistic results. Hence, this technique is
not suitable for white box testing, which requires the test
cases to be selected according to the program structure. As a
probabilistic program, the self-tester/corrector needs many
repeated calls to the functions being tested to achieve the
probabilistic assurance, bringing a relatively high time cost.
Furthermore, specific techniques used in the algorithms are
not suitable for cryptographic systems. For example, the
self-tester/corrector for multiplication functions introduced
in [3] assumes that, for a given integer y, y x 2“ can be
computed by left-shifting y for n bits without calling the
multiplication function being tested. This assumption is
impractical in cryptographic systems, where the operand
y is usually very large. In such systems, a large integer
cannot be stored within one computer word, and hence it
is usually stored digit by digit across several words. Thus,
y x 2” cannot be computed by a simple left-shifting of bits.

Kaminski [7] presented other probabilistic algorithms to
check the product of integers, but they also have similar
problems. For example, the relation res(a, p) x res(b, p) =
res(c, p) in [7] is checked to verify the product a x b = c,
where a and b are n-bit integers, p is a relatively small
prime number: (pJ = 2 x log,n, where IpI denotes the bit-
length of p , and res is some residue function which can,

for simplicity, be interpreted as the modulo function. In
the testing the calculation res(a, p) x res(b, p) is assumed
always to be correct. But this assumption is also not
practical in large number operations.

Consider a typical 32-bit computer system. In order that
Ires(., p) x res(b, p)I _< 32 for all cases, we must have
((p - 1) x (p - 1)1 5 32. Since p is a prime number, we
must have IpI 5 16. In other words, 2 x log,n 5 16, or
n 5 2’ = 256. In this way, the lengths of operands in
multiplications are limited to no more than 256 bits in a
typical computer system. This is obviously too short for
cryptographic systems.

In this paper, we shall present a method of testing large
number multiplication functions in cryptographic systems.
Our algorithm is deterministic rather than probabilistic, and
does not have any restriction on the lengths of the operands.
The result of our algorithm can be used as an oracle to verify
the correctness of the product of integers. Note that the
word “digit” in this paper means a digit of an integer under
any numeration system, usually with a base larger than 2.

2. Exploring the Relationships among
Selected Segments of Digits in the
Multiplicand, Multiplier and their Product

Most testing activities treat an input data as an integrated
unit and the output data as another integrated unit
when their relationship is analysed for the correctness
verification. In our approach, however, we take a
different view and explore the relationships among the digit
components of the input and output data. The method is
based on a method first introduced by Shi [9] for rapid
mental calculations. It uses “comparison” to predict the
carry in advance, thus enabling people to obtain the final
result from the most significant digit to the least significant
one. It is efficient for mental calculation because humans
can do comparisons much faster than any other calculations.

We discover that Shi’s method can be extended
to provide an oracle for the testing of large number
multiplication functions in cryptographic systems. Our
testing method can also be used to verify the correctness
of selected digits in the product of two numbers. Although
in the following our discussion is often in the denary system
(with base 10) for easy understanding, it is straightforward
to implement our method in other numeration systems. The
reference for Sections 2.1 and 2.2 is [IO].

2.1. Multi-digit integer multiplied by one-digit
integer

In this section, we consider the results of a multi-digit
integer multiplied by a one-digit positive integer k , such as

90

Table 1. Rules of carries

0 4 2 8 6 5 7
X I

Digit No. 1 2 3 4 5 6 1

Figure 1.428657 x 7

1 5 k 5 9 in the denary system. When the multiplier k is 0 or
1, there is no carry for whatever digit of the multiplicand.
Even for the case when k > 1, the carries are surprisingly
simple.

The fractions I l k , 2/k, . . . , (k - I) /k will be called the
curry points for the multiplier k. These carry points divide
the region [O, 1) into k sub-regions [ilk, (i + l) / k) , where
i = 0, 1, . . . , k - 1. For any pure decimal fraction 1 in the
range [i/k,(i+ l) /k), we have i 5 I x k < it- 1. Hence, the
carry to the integral part of the product I x k is i, irrespective
of the value of 1 inside [i /k,(i+ l) /k). Table 1 shows the
rules of carries fork = 2, 3, . . . , 9 in the denary system.

We note the following: The position of the decimal
points in the multiplicand and multiplier will not influence
the value of carry to the most significant digit of their
product. Consider, for example, 0.46 x 8 = 3.68 and
46 x 8 = 368. The carries to the most significant digit of
two products are both 3.

Let us illustrate the new multiplication method. Consider
the conventional multiplication process in upright mode
as shown in Figure 1. In the remaining parts of this
paper, when multiplication is to be performed, an extra 0
will always be placed at the most significant digit of the
multiplicand so that the multiplicand and the product can
always have the same length. Using the new method, we can
directly obtain the value of any digit of the product. Without
loss of generality, let us look at digit 3 : the corresponding
value of the digit of the multiplicand is 2. By calculating
(2 x 7) mod 10, we obtain 4. Now we deduce the carry that
digit 3 will receive from its less significant digits 8657 x 7.

Note that the carry of 8657 x 7 is the same as 0.8657 x 7.
As discussed above, we have the following carry points for
the multiplier 7:

1/7 = 0.142857 142857..' = 0.142857
217 = 0.285714285714... = 0.285714
3/7 = 0.428571 428571...=0.428571
417 = 0.571428 571428". = 0.571428
5/7 = 0.714285 714285... = 0.714285
6/7 = 0.857142 857142." = 0.857142

We see that 0.8657 > 0.857142 = 617. Hence, the carry to
the integer part in the product 0.8657 x 7 must he 6, which is
also the carry of 8657 x 7, that is, digit 3 in Figurc 1 receives
the carry of 6 from its less significant digits. We already
calculated (2 x 7) mod I O = 4 for digit 3. We can now
obtain the final value for this digit, namely (4 + 6) mod I O
= 0.

Let us calculate the whole product from the left to the
right:

Digit 1: 0.428571 (= 3/7) 5 0.428657 <
0.571428 (= 4/7). Hence, the carry of
428657 x 7 is 3. Thus, digit 1 = (0 x 7 + 3) mod

Digit 2: 0.285714 (= 217) 5 0.28657 <
0.428571 (= 3/7). Hence, the carry of 28657 x 7
is 2. Thus, digit 2 = (4 x 7 + 2) mod 10 = 0.

10 = 3.

...
Digit 6: 0.571428 (= 417) L: 0.7 < 0.714285
(= 5/7). Hence, the carry of 7 x 7 is 4. Thus,
digit 6 = (5 x 7 + 4) mod 10 = 9.

Digit 7 is the least significant digit. It receives no
carry. Thus, digit 7 = (7 x 7 + 0) mod 10 = 9.

We can conclude, therefore, that 428657 x 7 = 3000599.
This method uses comparisons to obtain the carries in

advance, so that calculations can be done from the left to the

91

Figure 2.389 x 436

right. Since human beings are good at doing comparisons
and they read numbers from the most significant digit to the
least significant one, this method has been found to be very
suitable for rapid mental calculations.

2.2. Multi-digit integer multiplied by multi-digit
integer

Shi 19, IO] also studied the multiplication between two
multi-digit integers. In the following, we shall first give a
particular example and then discuss the general case.

Let x and y be the multiplicand and multiplier,
respectively. Without loss of generality, suppose x =
389 and y = 436. After adding an extra “0” to the
most significant digit of n, we write the calculation in
the form of Figure 2. Please note the following notation
throughout the paper: “(1)(2)(3)(4)” represents the digits
of the multiplicand x, where (I) = 0 in the case of
Figure 2. “(4)(5)(6)” represents the digits of the multiplier.
“[1][2][3][4][5][6]” represents the digits of the product,
where [I] may or may not be 0. Note also that ‘ ‘ (i)(j)” is
not the value of “(i) x (j) ” , but represents the ith digit of
the product “(1)(2)(3)(4) x (j) ” . For example, (3)(5) = 6
in our example because x x (5) = 0389 x 3 = 1167.

The preceding example shows the following relationship
between the final result and the intermediate results
(without considering the carries generated by the addition
operation):

digit [l] from (1)(4)
digit [2] from (2)(4) + (1)(5)
digit [3] from (3)(4) + (2)(5) + (1)(6)
digit [4] from (4)(4) + (3)(5) + (2)(6)
digit [SI from (4)(5) + (3)(6)
digit [6] from (4)(6)

Without loss of generality, let us take digit [3] of
the product as an example to see how its value is
obtained. Digit [3] resulted from the sum of three addends
(3)(4) + (2)(5) + (1)(6). The digit number of the
“multiplicand” in each addend decreases from (3) via (2)
to (l), and hence the unit increases from 10 via 100 to
1000. The digit number of the “multiplier” in each addend
increases from (4) via (5) to (6), and hence the unit
decreases from 100 via IO to 1. Thus, the unit of every
addend in the addition (3)(4) + (2)(5) + (1)(6) is 1000,
so that the three elements can be added together.

Let us consider the general case. Note that when we
calculate the product of two integers, we always assign the
longer one to be the multiplicand and the shorter one to
be the multiplier. Suppose the multiplicand consists of n
digits and the multiplier consists of m digits, where n 2 m.
It can be proved that the product will consist of n + m or
n + m - 1 digits. For the simplicity of presentation, we shall
assume that the product always consists of n + m digits, such
that its most significant digit may or may not be 0. This is
also the reason why we always put an extra “0” at the most
significant digit of the multiplicand.

We can now write the details of the multiplication in
Table 2.

Note in Table 2 that “(1)” always equals 0, and “[I]”
may or may not be 0. Table 2 is actually very similar
to the traditional manual multiplication method. Before
the final product is calculated, the intermediate result can
be first obtained by directly summing up the elements in
each column. Note that, in this intermediate result, the
carries of the addition operation have not yet been sent to
more significant digits. We use {i} to denote digit i of
the intermediate result and [i] to denote digit i of the final
product. Table 3 is an example illustrating Table 2.

We can see from Table 2 that digit { k } of the
intermediate result can be calculated as follows:

(*) For k 5 n, { k } = (k) (n + 1) + (k - 1) (n + 2) + , . . +
(p) (q) , where p = 1 or q = n + m. For k > n, { k } =
(a + l)(k) + (n) (k + 1) + ...+ (k - m + l)(n + m).

Note that, for i = I , 2, . . . , n + 1 and j = n + 1, n + 2, . . . ,
n+m, the value “(i)(j)” can be directly calculated using the
method introduced in the previous section.

Thus, we have a new multiplication algorithm that is very
different from traditional ones: The algorithm can start the
calculation from any digit instead of always starting from
the least significant digit as is the practice for thousands of
years. Note also that we need to obtain intermediate results
first and then adjust them according to the carries generated
in the addition operation before obtaining the final product
in Tables 2 and 3.

92

Table 2. n-digit integer multiplied by m-digit integer, where n 2 m

Table 3. Example of Table 2: 389 x 436

3. Computer Implementation and
Performance Analysis

As we have stated earlier, Shi originally introduced his
mcthod for rapid mental calculation. Although a simple
BASIC program was also included in [9, 101 to simulate the
method, it served only the purpose of illustration and was
not suitable for real-life computer applications.

We find, however, that Shi’s manual calculation method
has a feature suitable for cryptographic systems: its basic
opcration unit is a digit. In large number operations of
cryptographic systems, the operands are also stored digit by
digit, even though the base of the digits is not necessarily
IO. In the following, we shall present our algorithm
for large number multiplication based on the knowledge
introduced in the previous sections. A program that
implements our algorithm can be used as a deterministic
checker to verify the products of integers.

3.1. Computer implementation

For conventional integer multiplication algorithms,
which calculate the product starting from the least
significant digit, the time cost is O(n x M) , where n and M

are the number of digits of the two operands [8]. For our

unit Node A: unit
[OI Root Node [91

Figure 3. Search tree for multiplications in the
denary system

algorithm, on the other hand, the critical part in the time
cost lies in how we implement it to obtain the carries in
advance. We propose to implement a search tree as shown
in Figures 3 and 4.

In Figure 3, node A is the root node of the search tree. It
contains ten units. Each unit contains a pointer pointing
to a sub-tree. There are ten units in every node of the
scarch tree (in both the root node and the nodes of sub-
trees) because the denary system is assumed and hence each
single digit has ten possible values 0 to 9. Each sub-tree in
Figure 3 corresponds to a one-digit multiplier, namely sub-
tree i corresponding to integer i, for i = 0, 1, . . . , 9. Let us
use the following example to illustrate how our algorithm
works with the search tree.

Let A = “A,A,-I . . . A 1 ” be a multiplicand and i be a
single-digit multiplier. We search for the value of carry
to the most significant digit (digit n + 1) in the product
A x i. This is the fundamental operation in our algorithm.
We employ the search tree as follows. First, following the
pointer in unit [i] of the root node of the search tree (node
A in Figure 3). we shall arrive at the root node of sub-tree
i. For example, if i = 4, then we shall follow the pointer in

93

unit unit unit unit

from node root pointing to sub-tree 4

unit unit unit unit unit unit

J I
Node C

NodeB 0 0 nil 1 1 2 ..
null null I null null null

2 nil 3 3
null I null null

0 0
null null

Figure 4. The sub-tree 4

0 0 0 1 1 1 1 1
null null null null null null null null

..

unit [4] of node A to arrive at node B of Figure 4, which is
the root node of the sub-tree 4.

Consider Figure 4. It shows the structure of a typical
sub-tree. Each node of the sub-tree includes I O units [O]
to 191, corresponding to the values of the digits of the
multiplicand. Each unit consists of two parts: the value part
and the pointer part. The value part stores the value of the
carry and the pointer part stores a pointer. These values
are completely determined by l/i, 2/i, (i - l) / i . For
instance, the sub-tree 4 in Figure 4 is constructed according
to the value of 1/4 = 0.25,2/4 = 0.5 and 3/4 = 0.75.

There are 3 carry points (U4, 2/4 and 3/4) for the
multiplier 4. These 3 carry points divide the region
[0, 1) into 4 sub-regions: When the multiplicand is within
[0, 0.25), the carry is 0; within [0.25, 0.5), the carry is I ;
within [O S , 0.75), the carry is 2; and within [0.75, l) , the
carry is 3. Hence, for the integer A = “A,A,,-I ... A I ” , the
carry to digit n + 1 in the product A x 4 is determined by
the first 1 or 2 digit(s) of A, that is, by A,, and A,,-I. If
A,, = 0 or 1, then the carry will definitely be 0. Thus, unit [O]
(corresponding to A,, = 0) and unit [I] (corresponding to
A,, = 1) of node B are assigned the value “O’, and their
pointers are both assigned null, which means that the search
for the carry can stop here. If A, = 2, then the carry of
A x 4 may be 0 or I . At this point we need to further look
at A,-1 to make a decision. Thus, the value of unit [2] of
node B (corresponding to A, = 2) is “nil”, which means
“undecided”. Its pointer indicates the lower level node C,
which will provide us with the information for decision
based on the value of digit A,-I.

Now consider node C. When A, = 2, the carry of A x 4
can only have two possible values: 0 when A,-l < 5, and 1
whenA,-I 2 5. Hence, the value “0” is assigned to units [O]

null

to [4], and “1” is assigned to units [5] to [9]. In any case,
there will be no need for further exploring the subsequent
digits Aa-2, A,,-3, Thus, all the pointers in node C are
assigned ‘‘null’’ to indicate the end of the search.

2 2 2 2 2 3 3 3 3 3 ..
null null null null null null null null null

Using the same method, we can assign the values to
other units in node B and construct node D. Note that the
units of node A, which is the root of the whole search tree,
correspond to the multiplier, whereas the units of the nodes
of the sub-trees correspond to the multiplicand.

Finally, let us consider a complete example that
illustrates how the tree is used to search for the carry of
7498568 x 4. Since the multiplier is 4, we follow unit [4]
of the root node A to arrive at node E , the root of the
sub-tree 4. Then, according to the first digit “7” of the
multiplicand, we compare the pointer in unit [7] with “null”,
find that it is not “null”, and hence continue to follow the
pointer to node D. According to the second digit “4” of
the multiplicand, we compare the pointer in unit [4] with
“null” and find that the pointer is “null”, which mcans that
we have found the value of the carry and the search can
stop. Thus, the corresponding value in the value part of
unit [4], is returned. In other words, 2 is the carry of the
product 7498568 x 4. In this example, the time cost is two
computer-word comparisons.

A slightly longer process will result when we deal with
recurring decimals. For example, when a multiplier 7
is involved, all the units in sub-tree 7 contain recurring
decimals. However, it will not be difficult to use flags to
handle these cases.

94

Table 4. Integer multiplication, n 2 m

3.2. Time cost analysis

For a j-digit integer A = “AjAj-I ‘..AI:’ multiplied by
a single digit k , it will take j computer-word comparisons
in the worst case to obtain the carry to digit j + 1 using the
search tree. This worst scenario happens in the rare case
when the digits of “AjAj-1 ... A I ” are exactly the same as
those in the expansion of i l k for some i < k . Even in such
situations, we may make use of the recursive property of
the expansion of i l k , if any. When A = “AjAj-I ... A I ”
= 3 3 . . . 3 and k = 3, for instance, it does not take j - 1
comparisons to obtain the carry to digit j of the product.
Since we do the multiplication from the left to the right, a
control mechanism can be added into the search program to
record the recurring values, so that we can directly copy the
previous result when the pattern is repeated.

On average, each search for a carry takes a constant time.
Hence, the time cost of calculating the product A x k using
the search tree is O(n), where A is an n-digit integer and k
is a single-digit integer. Thus, the overall time cost of our
algorithm in calculating the product A x B is O(nm) if B
contains m digits. This time cost is of the same order as that
of the conventional multiplication algorithm [SI.

Although the time cost of the algorithm is in the same
order as that of the conventional algorithm when a search
tree is implemented, it is relatively slower than complex
multiplication algorithms introduced in 181, In practice, we
can use fast and complex algorithms in the implementation
of multiplication functions in cryptographic systems while
applying our algorithm as an oracle for testing.

4. Checking Selected Segments of Digits in the
Product of Two Integers

In the preceding sections, we introduced a deterministic
oracle for large number multiplication functions. In this

section, we shall present one more feature of our testing
method: not only can the whole multiplication product
be checked, but the correctness of a selected segment of
digits in the product can also be verified without having to
calculate other digits.

Theorem 1 Suppose the multiplicand is an n-digit integer
and the multiplier is an m-digit integer in a numeration
system with base > 2, such that n 2 m. Suppose the
results of multiplications are as shown in Table 2, where { i}
denotes digit i ($the intermediate result, [i] denotes digit i
of the jna l product, and digit (1) = 0. Let C[i] denote the
carry generated in digit i by the addition operation when
calculating the final product, that is, [i] = ({i} i- C[i + I])
mod base, where i = 1, 2, . . ., n + m and C[n + m + I] = 0.
Let max{C[i]} denote the upper bound of the value of C[i].
Then

max{C[i]} = n + m - i when n+ 1 5 i 5 n + m
max{C[i]} = m - 1 whenm 5 i < n+ 1
max{C[i]} = i - I when 1 5 i < m

Proof In order to obtain an upper bound of C[i], we
assign the maximum possible values to every element in the
“middle step” of Table 2 and redraw Table 2 as Table 4. In
the latter table, the multiplicand and multiplier has n and m
digits respectively. Since the multiplier has m digits, there
are m rows in the middle step. Each digit of the intermediate
result is calculated by directly adding up all the elements in
its column. We assign the maximum possible value base-
1 (such as 9 in the denary system) to every elemcnt in
the middle step except the first digit of each row, whose
maximum value is base- 2 (such as 8 in the denary system).

First, consider the case when n + 1 5 i 5 n + m.
(a) When i = n + m, there is only one element in column

i, so that max{C[i]} = 0 = n + m - i.

95

(b) Suppose that, when i = k for some n + 1 < k 5 n + m,
wehavemax{C[k]} = n + m - k . Considerthesituation
when i = k - 1: Since the number of elements for
addition in column j is n+ m - j + 1 for n < j 5 n + m,
the number of elements for addition in column k - 1
is n + m - (k - 1) + 1 = n + m - k + 2. Since the
maximum carry that column k - 1 can receive from
less significant digits is max{C[k]} = n + m - k, the
maximum carry digit k - 1 can generate is max{C[k -
l] } = L ((n + m - k + 2) x (b a s e - t) + n + m - k) /
baseJ = n + m - (k - 1).

Next, consider the situation when m 5 i < n + 1.

(a) When i = n, the carry that digit i receives from less
significant digits is no more than max{C[n + 11) = n +
m - (n + 1) = m - 1. Since n + I > m, there are m
elements in column i for addition. Thus, the maximum
value of the carry generated in digit n is max{C[n]} =
L(mx (base- l) + (m - 1)) / baseJ = m - 1.

(b) Suppose that, when i = k for some m < k 5 n, we
have max{C[k]} = m - 1. Consider the situation when
i = k - 1. Since column j (m 5 j < n + 1) includes
m elements for addition, column k - I also includes
m elements for addition, and hence max{C[k - 11) =
L(mx (base-l)+max{C[k]}) /basel =m-1.

Finally, when 1 5 i < m, since m 5 n, column i contains
i elements for addition. This includes one element whose
maximum value is base - 2, which is the first element of
each row.

(a) When i = m - 1, max{C[i]} = max{C[m - 11) =
[((m - 2) x (base - 1) + (base - 2) + max{C[m]})
/ baseJ = m - 2 = i - I .

(b) Suppose that, when i = k, max{C[i]} = i - 1. Then,
when i = k - 1, we have max{C[i]} = max{C[k - 11)
= L((k - 2) x (base - 1) + (base - 2) + max{C[k]})

Here is an example for Theorem 1: Let A and E be 15-
digit and IO-digit integers, respectively, in any numeration
system. If we write the calculation A x B in the form of
Table 3, then the carries for digits 1 to 25, generated by the
addition operation of the middle step, are no more than 0, 1,
2, 3 , 4 , 5 , 6 , 7 , 8 ,9 , 9 , 9 , 9 , 9, 9 ,9 , 8 , 7 , 6 , 5 , 4 , 3, 2, 1 and
0, respectively. We can see a clear symmetric pattern of the
carries, namely that the digits in the middle part generate or
receive the most and the two ends generate or receive the
least.

Let [i..j] denote the integer corresponding to the digit
string “[i][i+ I] . . . [j]” , where 1 5 i 5 j 5 n + m . In
Table 3, for instance, [2..4] = 696. Using our multiplication
algorithm and employing statement (*), we can directly

/ baseJ = k - 2 = i - 1.

obtain a selected segment of digits {i}, {i+ 1} , ..., { j } in
the intermediate result. Then, it is straightforward to obtain
a lower hound of [i..j] of the intermediate result. Let Li..jJ
denote this lower bound. We have Li..jJ = (cilb{j- k } x
basek) mod basej-’+I, where { j - k} denotes the value of
digit j - k in the intermediate result. We use the notation
Li], [i + l J , ... , LjJ to denote the digits of this lower
bound. In Table 3, for example, L2..4J = 695, L2J = 6,
L3J = 9 and 141 = 5. By employing Theorem 1, we can
easily obtain the maximum value of the carry to digit j ,
denoted by max{C[j + 11). In the preceding example in
Table 3, max{C[j+ 11) = max{C[4+ 11) = max{C[5]} =
n + m - 5 = 1. Then, it is also straightforward to obtain the
upper bound of [d..j]. Let [i..j] denote this upper bound.
We have [i..jl = (Li..jJ +max{C[j+ 111) mod bas&”’.
We use the notation [il, Ti + 11, . . . , [j l to denote the digits
of this upper bound. In Table 3, for instance, [2..4] =
([2..4J + max{C[5]}) mod lo3 = 696. In this way, without
calculating other digits, we can obtain a narrow range of the
possible values of a selected segment of digits in the final
product, namely Li..jJ 5 [i.,j] 5 [i..j]. Theorem 2 proves
the remarkable accuracy of this approach.

Theorem 2 Let Table 4 be the integer multiplication in a
numeration system with the base > 2. Let “[iJ, [i+ IJ.
..., L j - d J , ..., Lj]”and “Til, [i+11. ..., [j - d l , ...,
[j l ” be the lower and upper bounds of the segment of
digits in thefinalproduct “[i], [i+ 11, ..., [j - d] , ..., [j]”,
respectively, where d = Llogb,,,max{C[j + l]}] + 1 when
m a { C [j + 11) # Oandd = 1 when max{C[j+ 11) = 0, that
is, d is the number of digits of max{C[j + I]}. Then, one of
the following two identities holds:

(a) [i . . (j -d)] = Li. .(j-d)J

(b) / i . . (j-d)l = ([i . . (j - d) J + l) m ~ d b a s e j - ~ - ~ + l

Thus, one of the following two identities holds:

(c) [i . . (j -d)] = l i . . (j -d)J

(d) [i..(j,- d)] = [i..(j - d)] = (Li..(j - d)J + 1) mod

where [i..(j - d)] is the integer corresponding to the string
from digit [i] to digit [j - d] of thefinal product.

Proof By definition, [i..jl = (Li..jJ + max{C[j + 11))
mod base’-’+’. Since max{C[j+ 11) has d digits, we
can write the addition operation in the form of Table 5,
where C, denotes the rth digit of max{C[j + I]}, r =
I , 2, ... , d, and CI is the most significant digit. In the
table, digit i - 1 is omitted, which is equivalent to the
operation “mod baseJ-‘+l”. In any numeration system,
in the addition calculation shown in Table 5, the value of
carry that digit (j - d) can receive from its lower part is

base]-d-&1

96

Table 5. Ti.. j1 = (Li..jJ + max{C[j + I]}) mod basej-'+I

Eflectiveness

Other probabilistic
Methods (<100%)

deterministic Our
Method (100%)

Efficiency

Table 6. Checking the first 6 digits of the product 869498652940734 x 3687489895

Testing Data Suitable Testing
Selection Strategy

randomly black box testing

no requirement both black

Suitability for Can Check
Crvptomaphic Selected Parts of

white box

no more than 1. Hence, [i . . (j -d) l = [i . . (j-d)J +0, or
[i . . (j -d) l = (Li..(j-d)] + 1) mod hasei-d-i+l. Thus,
[i . . (j-d)] = Li . . (j -d)] , or [i . . (j -d)] = [i . . (j -d) l =
(Li..(j-d)J + 1) mod hasej-d-l+l.

Table 6 illustrates how our method is applied to verify
the correctness of a selected scgment of digits in integer
multiplication. The multiplicand is A = 869498652940734
with n = 15 digits, and the multiplier is B = 3687489895
with m = I O digits. We would like to check the first 6 digits
of the product. The numbers in the "middle step" can he
directly obtained using our multiplication algorithm. By
employing statement (*), we obtain a lower bound for the
segment of digits 1 to 6, namely 320621. Then, according to
Theorem 1, we can easily obtain the maximum value of the
carry that digit 6 may receive from less significant digits,
namely max{C[7]} = 7 - 1 = 6. By adding max{C[7]} to
digit 6 of the lower hound, we obtain an upper hound for
the segment of digits, namely 320627. We can see that the
first 5 digits of the lower and upper bounds are exactly the
same, and hence these 5 digits can be assured, and digit 6
of the final product should be in the range [I , 71.

5. Conclusion

In this paper, we have introduced a deterministic
algorithm that provides an oracle for the testing of large

Products
Other repealed executions
Methods re uire hi h time cost

only one execution,
efficient suit ab I e

Table 7. Comparison with other multiplication
testing methods

number multiplication functions in cryptographic systems.
Our method can be used to verify the correctness of either
the whole product of two integers, or a selected segment of
digits in the product. The approach is based on Shi's mental
calculation method.

The method we presented in this paper is deterministic,
efficient and suitable for any type of testing strategy,
especially the testing of large number multiplication in
cryptographic systems. In addition, it can also be applied to
verify significant digits of the products of decimal fractions.
Table 7 shows a comparison of our method with others.

97

References

[l] L. M. Adleman, M.-D. Huang and K. Kompella. Efficient
checkers for number-theoretic computations. Information
and Computation, 121: 93-102, 1995.

17.1 B. Beizer. Software Testing Techniques, Van Nostrand
Reinhold, New York, 1990.

[3] M. Blum, M. Luby and R. Rubinfeld. Self-testing/
correcting with applications to numerical problems. Journal
of Computer and System Sciences, 47: 549-595, 1993.

[4] M. Blum and S . Kannan. Designing programs that check
their work. Journal of the ACM, 42 (1): 269-291, 1995.

[5] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction
to Algorithms, MIT Press, Cambridge, Massachusetts, 1990.

[6] M.-C. Gaudel. Testing can be formal, too. In Proceedings of
6th International Joint CAAP/FASE Conference on Theory
and Practice of Software Development (TAPSOFT '93,

volume 915 of Lecture Notes in Computer Science, pages
82-96. Springer-Verlag, Berlin, 1995.

[7] M. Kaminski. A note on probabilistically verifying integer
and polynomial products. Journal of the ACM, 36 (1): 142-
149, 1989.

[8] D. E. Knuth. The Art of Conputer Programming, volume 2,
Addison Wesley, Reading, Massachusetts, 1998.

[9] E Shi. A Rapid Calculation Method (in Chinese), Anhui
Science and Technology, Hefei, China, 1979.

[lo] E Shi. A Marvel of Intelligence Development: Shi Fengshou
Rapid Calculation Method that Challenges Computers (in
Chinese), Joint Publishing Co., Hong Kong, 1990.

[1 I] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25 (4): 4 6 5 4 7 0 , 1982.

[121 W. Stallings. Clyptography and Network Security: Priuci-
ples and Practice, Prentice Hall, Upper Saddle River, New
Jersey, 1999.

98

