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SQUARES OF PRIMES AND POWERS OF 2, II

Jianya Liu, Ming-Chit Liu and Tao Zhan

Abstract. We prove that the density of integers ≡ 2(mod24), which can be represented as the sum

of two squares of primes and k powers of 4, tends to 1 as k → ∞ in the sequence k ≡ 0(mod3).

Consequently, there exists a positive integer k0 such that every large integer ≡ 4(mod24) is the sum

of four squares of primes and k0 powers of 4.
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1. Introduction

In this article we continue the study in our previous paper [LLZ] on the representation of even
integers as the sum of squares of primes and powers of 2. The main result of [LLZ] includes the
following

Theorem 0. Let Λ(m) be the von Mangoldt function, and

ρk(N) =
∑

N=m2
1+...+m2

4+2ν1+...+2νk

Λ(m1) · · ·Λ(m4), (1.1)

where mj and νj denote positive integers. Then for k ≥ 4 there exists a positive integer Nk depending
on k only, such that for each N ≥ Nk with N ≡ 4(mod8),

ρk(N) À N logk
2 N

{
1 + O

(
1
k

)}
, (1.2)

where the constants implied by the À and O-symbols are absolute.
It therefore follows that there is an absolute positive integer k, such that each large even integer N

can be represented as

N = p2
1 + p2

2 + p2
3 + p2

4 + 2ν1 + 2ν2 + ... + 2νk . (1.3)

Here and throughout, pj or p denotes a prime. Very recently, the first two authors [LL] have proved
that k = 8330 is acceptable in (1.3). Theorem 0 is closely related to two well-known results in the
additive theory of prime numbers: (a) The “almost Goldbach” theorem of Linnik-Gallagher [L1] [L2]
[G] on the representation of even integers as the sum of two primes and a bounded number of powers
of 2; (b) The theorem of Hua [H1] on the representation of N ≡ 5(mod24) as the sum of five squares
of primes. For brief history and recent results in these directions, the reader may refer to [LLZ].

The purpose of the present paper is to establish the asymptotic formula in our Theorem 2 instead
of the lower bound in (1.2). To obtain this asymptotic formula, we need essentially our Theorem 1
below which is a parallel result to the following works on an Euler problem. Our Theorems 1 and 2
form an extension of Gallagher’s results in [G] for the ”almost Goldbach” problem.

In a letter to Goldbach, Euler asked, and later answered by himself negatively, the problem of
representing each positive odd integer n as the sum of a prime and a power of 2, namely n = p + 2ν .

Romanoff [Ro] showed in 1934 that a positive proportion of the positive odd integers can be written in
this way. And Gallagher’s result in [G] states that the density of odd integers which may be written
in the form

n = p1 + 2ν1 + ... + 2νk (1.4)

tends to 1 as k →∞.
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Analogous to (1.4), we shall consider the representation

n = p2
1 + p2

2 + 4ν1 + ... + 4νk , (1.5)

and prove the following results.
Theorem 1. Let

r′k(n) =
∑

n=m2
1+m2

2+4ν1+...+4νk

νj≥2

Λ(m1)Λ(m2). (1.6)

Then for any positive integer k ≡ 0(mod3), there is a Nk > 0 depending on k only, such that for each
N ≥ Nk,

∑
n≤N

n≡2( mod 24)

(r′k(n)− 6π logk
4 N)2 ¿ log2 k

k
N log2k

4 N. (1.7)

It follows that the density of integers n ≡ 2(mod24), which may be written in the form (1.5), tends
to 1 as k →∞ in the sequence k ≡ 0(mod3). Now let

r′′k(N) =
∑

N=m2
1+...+m2

4+4ν1+...+4νk

νj≥2

Λ(m1) · · ·Λ(m4). (1.8)

If we consider the number r′′k(N) instead of ρk(N) in (1.1), then we can get the following
Theorem 2. For any positive integer k ≡ 0(mod3), there is Nk > 0 depending on k only, such

that for each integer N with N ≡ 4(mod24) and N ≥ Nk,

r′′k(N) =
3
2
π2N logk

4 N

{
1 + O

(
log2 k

k

)}
. (1.9)

Thus, each sufficiently large integer N with N ≡ 4(mod24) can be written as

N = p2
1 + p2

2 + p2
3 + p2

4 + 4ν1 + 4ν2 + ... + 4νk . (1.10)

One sees that (1.9) forms a more desirable result than (1.2).

2. Outline of the method

The estimate in (1.7) will be an indispensable tool in the establishment of the asymptotic formula
in (1.9). In the proof of our Theorem 1, we have to adapt Gallagher’s method (Proof of Theorem 1
in [G], p.139) which is a modification of the well-known Linnik dispersion method. One of the vital
steps in the method is the cancellation of all main terms of the three sums in (5.9). Therefore the
right numerical value of the coefficient of each main term becomes very important in the cancellation.
This delicate part will be achieved by Lemmas 5.2 and 5.3. In particular, the O-term in (5.1) will give
the required bound in Theorem 1 after the cancellation.

Lemma 5.2 will take care of the right numerical value 3/2(= (3 × 8)/16) in the first sum of (5.9)
(see the inequality next to (5.9)), which comes from Proposition 2.1 (for the 16) and Lemma 3.1(1)(2)
(for the 24) via Lemma 4.5. It is interesting to note that Lemma 3.1 implies the requirement n ≡
0(mod3× 8) and that, as a consequence, we need the 4-adic expression in (1.10) with all νj ≥ 2. This
can be seen in the 4ν ≡ 16(mod24) for all ν ≥ 2 appearing in the beginning of the proof of Lemma
4.5.
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Lemma 5.3 will provide with the right numerical value 1/4 in the second sum of (5.9). It is interesting

to note that the log factor (log
√

N)2 in the formula between (5.6) and (5.7) gives exactly the constant
1/4, and that in the argument below (5.8) if 3|k then 16k ≡ 0(mod24), and then we get through.

For the proof of Lemma 5.2 we need the circle method to obtain Proposition 2.1 below and some
sieve methods to prove Lemma 5.1. These two results will be used to deduce (5.3) and (5.5) respectively
for the establishment of (5.1).

Let e(α) = exp(i2πα) and for large integer N > 0 let

T (α) =
∑

m2≤N

Λ(m)e(m2α), G(α) =
∑

42≤4ν≤N

e(4να). (2.1)

Since

T 2(α)Gk(α) =
∑

n≤N

r′k(n) +
∑

n>N

,

we have

∑

n≤N

(r′k(n))2 ≤
∫ 1

0
|T 2(α)Gk(α)|dα. (2.2)

Now it suffices to get the required upper bound as in Theorem 1 for this integral.
In order to apply the circle method, we set

P = Nθ, Q = N1−2θ, (2.3)

where θ is a constant satisfying 0 < θ ≤ 1/25. By Dirichlet’s lemma on rational approximations, each
α ∈ [1/Q, 1 + 1/Q] may be written in the form

α =
a

q
+ λ, |λ| ≤ 1

qQ
(2.4)

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by M(a, q) the set of α satisfying
(2.4), and define the major arcs M and the minor arcs C(M) as follows:

M =
⋃

q≤P

q⋃
a=1

(a,q)=1

M(a, q), C(M) =
[

1
Q

, 1 +
1
Q

]
\M. (2.5)

It follows from 2P ≤ Q that the major arcs M(a, q) are mutually disjoint.
Now the integral in (2.2) takes the form

{ ∫

M
+

∫

C(M)

}
|T 2(α)Gk(α)|2dα. (2.6)

Since in our Lemma 5.2 which is essential to the proof of Theorem 1, we obtain the upper bound
in (5.1), we need to add absolute value signs in (2.6). This is the only difference between (2.6) and
[LLZ,(2.5)]. So following the same arguments as in [LLZ,§3-§5] we can obtain the following Proposition
2.1 which is parallel to [LLZ,Proposition 2.1]. The absolute value signs in (2.7) evoke the integral (2.8)
in (2.7) instead of an additional π factor as in [LLZ,(2.6)].

Proposition 2.1. Let 1 ≤ n ≤ N. Then for 0 < θ ≤ 1/25 in (2.3), we have
∫

M
|T (α)|4e(nα)dα =

π

16
S(n)I

( n

N

)
N + O

(
N

log N

)
, (2.7)
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where S(n) is the singular series defined as in (3.2), and satisfies S(n) À 1 for n ≡ 0(mod24). And
I(n/N) is definded as

I
( n

N

)
= 2

∫ min(1,1−n/N)

max(0,−n/N)
v−1/2

(
1− n

N
− v

)1/2
dv, (2.8)

and satisfies 0 ≤ I(n/N) ≤ π for |n| ≤ N2.

3. Estimates related to the singular series

We need some more notation. As usual, ϕ(n) and µ(n), stand for the function of Euler and Möbius
respectively, d(n) the divisor function. We use χ mod q and χ0 mod q to denote a Dirichlet character
and the principal character modulo q. Define

C(χ, a) =
q∑

h=1

χ̄(h)e
(

ah2

q

)
, C(q, a) = C(χ0, a). (3.1)

If χ1, ..., χ4 are characters modq, then we write

B(n, q, χ1, ..., χ4) =
q∑

a=1
(a,q)=1

e

(
an

q

)
C(χ1, a)C(χ2, a)C(χ3, a)C(χ4, a),

B(n, q) = B(n, q, χ0
1, ..., χ

0
4) =

q∑
a=1

(a,q)=1

|C(q, a)|4e
(

an

q

)
,

and A(n, q) =
B(n, q)
ϕ4(q)

, S(n) =
∞∑

q=1

A(n, q). (3.2)

Lemma 3.1 Let A(n, q) be defined as in (3.2). Then
(1) For p = 2, one has

1 + A(n, 2) + A(n, 22) + A(n, 23) =
{

0, if n 6≡ 0(mod8),
8, if n ≡ 0(mod8).

(2) For p = 3, one has

1 + A(n, 3) =
{

0, if n 6≡ 0(mod3),
3, if n ≡ 0(mod3).

(3) For p ≥ 5, one has
1 + A(n, p) > 0.

Proof. The proof is similar to that of Lemmas 13 and 14 in Hua [H1], so we only prove part (1). By
the method of [H1], Lemmas 13, the quantity 1+A(n, 2)+A(n, 22)+A(n, 23) is equal to 23M/ϕ4(23),
where M is the number of incongruent solutions of the equation

m2
1 + m2

2 −m2
3 −m2

4 ≡ n(mod8), 2 - m1m2m3m4. (3.3)

Since m2 ≡ 1(mod8) for odd m, (3.3) has no solution unless n ≡ 0(mod8). Clearly M = 44 if
n ≡ 0(mod8). This proves part (1) and hence the lemma.

Now we can give some properties of the singular series S(n). Since these are not covered by [H2],
Lemma 8.10, we state them as a proposition.

Proposition 3.2. The singular series S(n) is absolutely convergent. For n ≡ 0(mod24), one has
1 ¿ S(n) ¿ (log log n)11, while for n 6≡ 0(mod24), one has S(n) = 0.
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Proof. This can be proved similarly as [LLZ,Proposition 4.3]. The only difference is that in [LLZ]
n ≡ 4 or n 6≡ 4 (mod 24) was assumed. This does not cause essential changes in the proof.

Lemma 3.3. (1) Let

γ =

{
3, if p = 2,
1, if p ≥ 3.

If t > γ, then C(pt, a) = 0, and consequently, A(n, pt) = 0.
(2) For odd q,

|C(q, a)|2 ≤ µ2(q)σ(q),

where σ(q) is the sum of all the divisors of q.

Proof. (1) The proof is similar to that of Hua [H1], Lemma 4.
(2) Let p be an odd prime. By (3.1) and Hua [H3,Theorem 7.5.4]

C(p, a) =
p∑

m=1

e(am2/p)− 1 =
(

a

p

) p∑

m=1

e(m2/p)− 1

where (a
p ) is the Legendre symbol. Then apply [H3,Theorem 7.5.5] we get

|C(q, a)|2 ≤ p + 1.

If q is not square-free, then |C(q, a)| = 0 by part (1), and the lemma holds trivially. Now suppose
q is square-free. It follows that

|C(q, a)|2 =
∏

p|q
|C(p, a)|2 ≤

∏

p|q
(p + 1) = σ(q).

The lemma is proved.

4. Lemmas concerning the sequence 4, 42, 43, ...

Let G(α) be defined as in (2.1) and L = log4 N. The following Lemmas 4.1 and 4.2 are quoted from
[G], Lemmas 2 and 3.

Lemma 4.1. The set E of α ∈ (0, 1] for which |G(α)| ≥ (1 − η)L has measure ¿ NΘ−1, where
Θ = c1η log(e/η) and c1 is a positive constant.

For odd q, we denote by %(q) the least positive integer % for which 4% ≡ 1(modq).
Lemma 4.2. If α is a rational number with denominator q satisfying (q, 6) = 1, and if 1 < %(q) ≤ L,

then

|G(α)| ≤
(

1− c2

%(q)

)
L,

where c2 is a positive constant.
Lemma 4.3. Denote by rk,k(n) the number of representations of n in the form

n = 4ν1 + ... + 4νk − (4µ1 + ... + 4µk)

with 1 ≤ νi, µj ≤ L. Then for k ≥ 3,

rk,k(0) ≤ 2(k + 1)!L2k−3, (4.1)

and for odd q,

∑

q|n
rk,k(n) ¿ L2k−1

(
1 +

L

%(q)

)
. (4.2)
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Proof. The second estimate (4.2) is Lemma 5 of [G].
To prove (4.1), we note that rk,k(0) is the number of solutions of the equation 4ν1 + ... + 4νk =

4µ1 + ... + 4µk . Fixing µ1, ..., µk arbitrarily, we have

rk,k(0) ≤ Lk max
m≤kN

rk(m),

where rk(m) is the number of solutions of

m = 4ν1 + ... + 4νk . (4.3)

Let sk(m) be the number of solutions of (4.3) with the restriction

ν1 ≤ ν2 ≤ ... ≤ νk.

Then

rk(m) ≤ k!sk(m).

Obviously, sk(m) = s∗k(m) + s∗∗k (m), where s∗k(m), s∗∗k (m) denote respectively the number of solutions
of (4.3) with

(*) ν1 < ν2 < ... < νk,

or
(**) there exists 1 ≤ j ≤ k − 1, such that νj = νj+1.

Since there is only one 4-adic representation for m, we have s∗k(m) ≤ 1. To bound s∗∗k (m), we note
that s∗∗k (m) ≤ ktk(m), where tk(m) is the number of solutions of

m = 4ν + 4ν + 4ν3 + ... + 4νk , ν3 ≤ ... ≤ νk. (4.4)

For k ≥ 4, we fix ν, ν3, ν4, ..., νk−2 in (4.4) arbitrarily, then we get tk(m) ≤ Lk−3, on noting that there
is at most 1 solution for n = 4`1 + 4`2 with `1 ≤ `2. In the special case k = 3, the estimate t3(m) ≤ 2
is obvious. Thus,

rk(m) ≤ k!(1 + 2kLk−3) ≤ 2(k + 1)!Lk−3,

and (4.1) follows.
Lemma 4.4. Let σ(q) be defined as in Lemma 3.3. Then for x ≥ 2 we have

∑

%(q)≤x

µ2(q)σ2(q)
ϕ3(q)

¿ log x,
∑

%(q)≤x

µ2(q)σ2(q)q
ϕ4(q)

¿ log x.

Proof. Let X =
∏

%≤x(4% − 1). Then q|X whenever %(q) ≤ x, and clearly 2 - X, X ≤ 4x2
. It

therefore follows that

∑
%(q)≤x

2-q

µ2(q)σ2(q)q
ϕ4(q)

≤
∑
q|X
2-q

µ2(q)σ2(q)q
ϕ4(q)

=
1
19

∏

p|2X

p

(p− 1)

∏
p

(
1 +

5p2 − 2p + 1
p(p− 1)3

)
.

The last infinite product is convergent. Thus,

∑
%(q)≤x

2-q

µ2(q)σ2(q)q
ϕ4(q)

¿
∏

p|2X

p

(p− 1)
=

2X

ϕ(2X)
¿ log log(2X) ¿ log x.

This proves the second inequality in the lemma. The proof for the first one is similar.
The following lemma shows that although S(n) ¿ 1 is not true in general, it is true on average.
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Lemma 4.5. Let rk,k(n) and S(n) be as in Lemma 4.3 and (3.2) respectively. Then there exists
Nk > 0 depending on k only, such that when N ≥ Nk we have

∑

n 6=0

rk,k(n)S(n) = 24L2k

{
1 + O

(
log2 k

k

)}
.

Proof. Note that for n = 4ν1 + ... + 4νk − 4µ1 − ... − 4µk with 2 ≤ νj , µj ≤ L, we always have
n ≡ 0(mod24) as 4ν ≡ 16(mod24) for ν ≥ 2. For such n, Lemma 3.1 and a minor modification of the
argument as in [LLZ,(4.13) and the equality for S(n) below (4.13)] give

S(n) = {1 + A(n, 2) + A(n, 22) + A(n, 23)}{1 + A(n, 3)}
∏

p≥5

{1 + A(n, p)} = 3× 8
∞∑

q=1
(q,6)=1

A(n, q)

= 24
∑
q≤R

(q,6)=1

A(n, q) + O{R−1+εd(n)},

where R ≥ 1 is a parameter to be specified later. We can also suppose |n| ≤ k4L = kN, since otherwise
rk,k(n) = 0. Thus, by (3.2) and (4.2) with q = 1,

∑

n 6=0

rk,k(n)S(n) = 24
∑
q≤R

(q,6)=1

1
ϕ4(q)

q∑
a=1

(a,q)=1

|C(q, a)|4
∑

n 6=0

rk,k(n)e
(

an

q

)
+ O(R−1+εL2k(kN)ε),

where we have used the estimate d(n) ¿ |n|ε ¿ (kN)ε with arbitrarily small ε > 0. If there is the
term corresponding to n = 0 in the above sum

∑
q≤R

(q,6)=1

, this term would contribute

¿
∑

q≤R

1
ϕ4(q)

q∑
a=1

(a,q)=1

|C(q, a)|4rk,k(0) ¿ (k + 1)!L2k−3
∑

q≤R

µ2(q)σ2(q)
ϕ3(q)

¿ (k + 1)!L2k−3 log R

by (4.1), Lemma 3.3, and Lemma 4.4. With the term n = 0 put in and the inner sum simplified, one
has

∑

n 6=0

rk,k(n)S(n) = 24
∑
q≤R

(q,6)=1

1
ϕ4(q)

q∑
a=1

(a,q)=1

|C(q, a)|4
∣∣∣∣G

(
a

q

)∣∣∣∣
2k

+O((k + 1)!L2k−3 log R) + O(R−1+εL2k(kN)ε). (4.5)

In the double sum in (4.5) the term q = 1 contributes L2k. We spilt the remaining sum according
to the size of %(q) :

∑
q≤R

(q,6)=1

1
ϕ4(q)

q∑
a=1

(a,q)=1

|C(q, a)|4
∣∣∣∣G

(
a

q

)∣∣∣∣
2k

= L2k +

{ ∑
2≤q≤R
(q,6)=1
%(q)≤E

+
∑

2≤q≤R
(q,6)=1
%(q)>E

}
1

ϕ4(q)

q∑
a=1

(a,q)=1

|C(q, a)|4
∣∣∣∣G

(
a

q

)∣∣∣∣
2k

,(4.6)

where E is a parameter satisfying 2 ≤ E ≤ L. By Lemmas 4.2, 3.3(2) and 4.4, the first sum on the
right-hand side of (4.6) can be estimated as

∑
2≤q≤R
(q,6)=1
%(q)≤E

¿ L2k
(
1− c2

E

)2k ∑
2≤q≤R
%(q)≤E

µ2(q)σ2(q)
ϕ3(q)

¿ L2k
(
1− c2

E

)2k
log E.
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To treat the last sum in (4.6), one appeals to Lemma 4.3, which gives

q∑
a=1

(a,q)=1

∣∣∣∣G
(

a

q

)∣∣∣∣
2k

≤
q∑

a=1

∣∣∣∣G
(

a

q

)∣∣∣∣
2k

= q
∑

q|n
rk,k(n) ¿ qL2k−1

(
1 +

L

%(q)

)
,

and consequently, by Lemma 3.3(2),

∑
2≤q≤R
(q,6)=1
%(q)>E

¿ L2k
∑
q≤R

%(q)>E

µ2(q)σ2(q)
ϕ4(q)

q

%(q)
+ L2k−1

∑

q≤R

µ2(q)σ2(q)q
ϕ4(q)

.

The second sum on the right-hand side above is ¿ log R by Lemma 4.4. Using partial summation
and Lemma 4.4, the first sum is

¿
∑

m>E

1
m

∑

%(q)=m

µ2(q)σ2(q)q
ϕ4(q)

=
∫ ∞

E

1
t2


 ∑

%(q)≤t

µ2(q)σ2(q)q
ϕ4(q)


 dt ¿

∫ ∞

E

log t

t2
dt ¿ log E

E
.

Hence,
∑
q≤R

(q,6)=1
%(q)>E

¿ log E

E
L2k + L2k−1 log R.

Summing up the above estimates, we conclude that

∑

n 6=0

rk,k(n)S(n)− 24L2k ¿ L2k

{(
1− c6

E

)2k
log E +

log E

E
+

log R

L
+ R−1+ε(kN)ε

}
.

Take E = 2c6k/ log k and R = N1/k, then the right-hand side is ¿ L2kk−1 log2 k if N ≥ Nk. This
proves Lemma 4.5.

5. Proofs of Theorems 1 and 2

Lemma 5.1. Let T (α) and G(α) be as in (2.1). Then
∫ 1

0
|T (α)G(α)|4dα ¿ NL4.

Proof. This can be proved similarly as [LLZ,Lemma 6.1]. In the proof we need [LLZ,Proposition
2.2] which was obtained by a modification of the sieve methods of Brüdern and Fouvry [BF].

The theorems stated in §1 depend on the two mean-value estimates for r′k(n) given in the following
Lemmas 5.2 and 5.3.

Lemma 5.2. Let r′k(n) be as in Theorem 1. Then there is Nk > 0 depending on k only, such that
when N ≥ Nk we have

∑

n≤N

(r′k(n))2 ≤ 3
2
π2NL2k

{
1 + O

(
log2 k

k

)}
. (5.1)

Lemma 5.3. Let r′k(n) be as in Theorem 1 with 3|k. Then as N →∞,

∑
n≤N

n≡2( mod 24)

r′k(n) ∼ 1
4
πNLk.
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Proof of Lemma 5.2. By (2.2) and (2.6), we have

∑

n≤N

(r′k(n))2 ≤
∫ 1

0
|T 2(α)Gk(α)|2dα =

∫

M
+

∫

C(M)∩E
+

∫

C(M)∩C(E)
(5.2)

where E is defined as in Lemma 4.1 and M as in (2.5) with θ satisfying 0 < θ ≤ 1/25.
Now we estimate the three integrals in (5.2) respectively. As given in [LLZ,between (6.9) and (6.10)]

the number of solutions Z0(N) of the equation

p2
1 + p2

2 = p2
3 + p2

4

satisfies

Z0(N) ¿ N log−2 N.

We have ∫

M
=

∑
m

rk,k(m)
∫

M
|T (α)|4e(mα)dα.

In the above formula one can suppose |m| ≤ kN, since otherwise rk,k(m) = 0. Then by (2.1), we have

∫ 1

0
|T (α)|4dα ¿ Z0(N)L4 ¿ NL2.

By this and (4.1), the term m = 0 contributes

¿ rk,k(0)
∫ 1

0
|T (α)|4dα ¿ (k + 1)!NL2k−1.

And by Proposition 2.1 and (4.2) with q = 1, the other terms contribute

∑

m6=0

rk,k(m)
{

π

16
S(m)I

(m

N

)
N + O

(
N

log N

)}
≤ π2

16
N

∑

m6=0

rk,k(m)S(m) + O(NL2k−1).

Applying Lemma 4.5 to the above sum
∑

m6=0

, we get, for N ≥ Nk,

∫

M
≤ 24

16
π2NL2k

{
1 + O

(
log2 k

k

)}
. (5.3)

To estimate the second integral in (5.2), one notes that each α ∈ C(M) can be written as (2.4) for
some P < q ≤ Q and 1 ≤ a ≤ q with (q, a) = 1. We now apply Theorem 2 of Ghosh [Gh], which states
that, if |α− a/q| ≤ q−2, then

∑

m≤x

Λ(m)e(m2α) ¿ x1+ε

(
1
q

+
1

x1/2
+

q

x2

)1/4

.

Hence we have

sup
α∈C(M)

|T (α)| ¿ N1/2−θ/5.

Now we take θ = 2c1η log(e/η) = 2Θ and η sufficiently small such that 0 < θ ≤ 1/25. Then by Lemma
4.1, the second integral in (5.2) satisfies

∫

C(M)∩E
¿ NΘ−1N2−4θ/5L2k ¿ NL2k−1. (5.4)
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Setting η−1 = 2k log−1 k and then using Lemmas 4.1 and 5.1, the last integral in (5.2) can be
estimated as

∫

C(M)∩C(E)
¿ {(1− η)L}2k−4

∫ 1

0
|T (α)G(α)|4dα ¿ (1− η)2k−4NL2k ¿ log2 k

k
NL2k. (5.5)

With our choice of η, we have θ ¿ k−1 log2 k, so we do have θ ≤ 1/25 for sufficiently large k, say
k ≥ k0. Combining (5.3), (5.4) and (5.5), we get (5.1) for k ≥ k0 and N ≥ Nk. For k with 3 ≤ k < k0,

(5.1) follows directly from Lemma 5.1. The proof of Lemma 5.2 is complete.
Proof of Lemma 5.3. The proof is much more easier than that of Lemma 5.2. In particular it

does not need Proposition 2.1 or Lemma 5.1.
We have, by (1.6),

∑

n≤N

r′k(n) =
∑

m2
1+m2

2≤N

f(n−m2
1 −m2

2)Λ(m1)Λ(m2),

where f(t) is the number of integral vectors (ν1, ..., νk) with 2 ≤ νj ≤ L for which 4ν1 + ... + 4νk ≤ t.

Since f(t) is non-negative and increasing,

f(N/L)
∑

m2
1+m2

2≤N−N/L

Λ(m1)Λ(m2) ≤
∑

m2
1+m2

2≤N

f(n−m2
1 −m2

2)Λ(m1)Λ(m2)

≤ f(N)
∑

m2
1+m2

2≤N

Λ(m1)Λ(m2). (5.6)

By the method of Rieger [R], Satz 4 (see also the proof of Shields [S], Theorem 2), we have

∑

m2
1+m2

2≤N

Λ(m1)Λ(m2) = π(log
√

N)2
N

log2 N

{
1 + O

(
1

log1/2 N

)}
=

1
4
πN

{
1 + O

(
1

log1/2 N

)}
.

Also, one easily sees logk
4(N/k) ≤ f(N) ≤ logk

4 N, from which it follows that f(N) ∼ Lk as N → ∞.

Inserting these estimates into (5.6), one gets as N →∞,

∑

n≤N

r′k(n) ∼ 1
4
πNLk. (5.7)

Now we estimate the difference
∑

n≤N

r′k(n)−
∑
n≤N

n≡2( mod 24)

r′k(n) =
∑
∗

(log p1)(log p2),

where ∗ indicates that the summation is over the set of pj ≥ 2, `j ≥ 1, νj ≥ 2 such that

p2`1
1 + p2`2

2 + 4ν1 + ... + 4νk

{ ≤ N ;
6≡ 2(mod24). (5.8)

Since 4ν ≡ 16(mod24) for all ν ≥ 2, we have in (5.8) that

4ν1 + ... + 4νk ≡ 16k ≡ 0(mod24)

on noting that 3|k; consequently (5.8) implies

p2`1
1 + p2`2

2 6≡ 2(mod24).
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The above congruence holds only if at least one of the pj ≤ 3, since p2` ≡ 1(mod24) for all p ≥ 5 and
all ` ≥ 1. Going back to (5.8), we see that

∑
∗

(log p1)(log p2) ¿ N1/2Lk+3,

which in combination with (5.7) gives Lemma 5.3.
Now we give
Proof of Theorem 1. We follow Gallagher [G] closely. Let R = 6πLk. Then the left-hand side of

(1.7) can be written as
∑
n≤N

n≡2( mod 24)

(
r′k(n)−R

)2 =
∑
n≤N

n≡2( mod 24)

(
r′k(n)

)2 − 2R
∑
n≤N

n≡2( mod 24)

r′k(n) + R2
∑
n≤N

n≡2( mod 24)

1. (5.9)

Clearly, the last sum in (5.9) is ∼ N/24 as N → ∞. The other two sums on the right-hand side of
(5.9) can be estimated by Lemmas 5.2 and 5.3 respectively, which gives

∑
n≤N

n≡2( mod 24)

(
r′k(n)−R

)2 ≤ 3
2
π2NL2k

{
1 + O

(
log2 k

k

)}
− 2× 6

4
π2NL2k{1 + o(1)}

+
62

24
π2NL2k{1 + o(1)} ¿ log2 k

k
NL2k.

The desired result (1.7) now follows. This completes the proof of Theorem 1.
Proof of Theorem 2. Since 3|k, we have k = 6k′ or k = 6k′+3. Let i = 3k′, and j = i or j = i+3

according as k = 6k′ or k = 6k′ + 3. Then in either case k = i + j with 3|i and 3|j. Thus by (1.8) and
(1.6) for N ≡ 4(mod24),

r′′k(N) =
∑

m+n=N

r′i(m)r′j(n) =
∑

m+n=N
m,n≡2( mod 24)

r′i(m)r′j(n) + O





(max
m

r′i(m))
∑
n≤N

n6≡2( mod 24)

r′j(n)





=
∑

m+n=N
m,n≡2( mod 24)

r′i(m)r′j(n) + O(N1/2+ε), (5.10)

by an argument similar to that after (5.7). We put

r′i(m) = 6πLi + si(m),

for m ≡ 2(mod24), and define sj(n) similarly. Then the sum in (5.10) is

36π2Lk
∑

m+n=N
m,n≡2( mod 24)

1 + 6π

{
Li

∑
m+n=N

m,n≡2( mod 24)

sj(n) + Lj
∑

m+n=N
m,n≡2( mod 24)

si(m)

}

+
∑

m+n=N
m,n≡2( mod 24)

si(m)sj(n). (5.11)

By Cauchy’s inequality and Theorem 1, the last sum in (5.11) is

¿
{

log2 i

i
NL2i

}1/2 {
log2 j

j
NL2j

}1/2

¿ log2 k

k
NLk
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if N ≥ Nk. By Lemma 5.3,
∑

m+n=N
m,n≡2( mod 24)

s`(m) =
∑
m≤N

m≡2( mod 24)

s`(m) = o(NL`)

for ` = i, j. The first sum in (5.11) is ∼ N/24 as N → ∞. Summing up these estimates, we get (1.9)
hence Theorem 2.
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