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Abstract

Let R(T ), D(T ) be respectively the radius and diameter of a nontrivial tree T and I(T ) =
∑

u∈V (T ) 1/d(u) be the inverse dual degree, where d(u) = (
∑

v∈N(u) d(v))/d(u) for each u ∈
V (T ). In this note we prove that

I(T ) ≥
{

R(T ) + 1/3, if D(T ) is odd

R(T ) + 5/6, if D(T ) is even,

with equality if and only if T is a path of at least 4 vertices. This inequality strengthens a conjecture

of Graffiti.

Let G = (V (G), E(G)) be a simple, connected graph. The distance d(u, v) between two ver-

tices u, v of G is the minimal length of a path from u to v in G. The diameter D(G) of G is the

largest distance between any two vertices of G. The radius R(G) of G is minu∈V (G) maxv∈V (G) d(u, v).

If S ⊆ V (G) and u ∈ V (G) \ S, then we denote d(u, S) = minv∈S d(u, v). The neighbours of

u ∈ V (G) are vertices adjacent to u in G and the neighbourhood N(u) of u in G is the set of

1



neighbours of u. Since G is simple, the degree of u is d(u) = |N(u)|. The dual degree of u and the

inverse dual degree of G are respectively d(u) = (
∑

v∈N(u) d(v))/d(u) and I(G) =
∑

u∈V (G) 1/d(u)

[2]. When ambiguity arises we use dG(u), dG(u), etc., to emphasize that the underlying graph

is G.

The main purpose of this note is to prove an inequality between D(T ) and I(T ). As a

consequence we get an inequality involving R(T ) and I(T ) which strengthens the following

conjecture (see [1, 3, 4, 5] for results relating to Graffiti conjectures).

Graffiti Conjecture 577 For any (nontrivial) tree T , I(T ) ≥ R(T ).

(There are examples of G which are not trees such that I(G) < R(G).)

In the following we suppose T is a (nontrivial) tree and P = v0v1 . . . vD is a path of maximal

length in T , where D = D(T ). Then d(v0) = d(vD) = 1. Let

a = a(P ) = |{v ∈ V (T ) \ V (P ) : d(v) ≥ 2}|,

b = b(P ) =

{
|{i : d(vi) ≥ 3, 2 ≤ i ≤ D − 2}|, if D ≥ 4,
0, otherwise,

and c = c(P ) =

{
|{i : d(vi) ≥ 3, i = 1, D − 1}|, if D ≥ 2,
0, if D = 1.

Theorem I(T ) ≥ D(T )/2 + a/3 + +b/10 + c/12 + 5/6.

A caterpillar is a tree with the property that the removal of all degree-one vertices yields a

path, called the spine. Note that if T is a caterpillar, then v1 . . . vD−1 is the spine. To prove the

theorem we need the following lemmas.

Lemma 1 Suppose T is not a caterpillar (so in particular D(T ) ≥ 4) and u is a vertex not in

P such that d(u) ≥ 2 and d(u, V (P )) is as large as possible. Let T ′ be the subtree obtained from

T by deleting all degree-one vertices adjacent to u. Then D(T ) = D(T ′) and I(T ) ≥ I(T ′)+1/3.

Proof We first note that all but one neighbours of u have degree one, for otherwise there would

be a neighbour w of u not in P with d(w) ≥ 2 and d(w, V (P )) > d(u, V (P )), violating the choice

of u. Suppose N(u) = {u1, . . . , um, v} where d(ui) = 1, for i ∈ {1, . . . ,m} and d(v) = r. Then
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D(T ) = D(T ′). Let σ =
∑

x∈N(v)\{u} d(x). Since σ + 1 ≥ r, we have

I(T )− I(T ′)
=

∑m
i=1

1
dT (ui)

+ ( 1
dT (u)

− 1
dT ′ (u)

) + ( 1
dT (v)

− 1
dT ′ (v)

)

= m
m+1 + (m+1

m+r − 1
r ) + ( r

m+σ+1 − r
σ+1)

= 1 + 1
m+r − 1

r − 1
m+1 + ( m

m+r + r
m+σ+1 − r

σ+1)
≥ 1 + 1

m+r − 1
r − 1

m+1 .

Note that 1/(m + x) − 1/x is an increasing function of x and r ≥ 2,m ≥ 1. We have from the

inequality above that

I(T )− I(T ′)
≥ 1 + 1

m+2 − 1
2 − 1

m+1

= 1
2 − 1

(m+1)(m+2)

≥ 1
3 .

Q.E.D.

Lemma 2 Suppose T is a caterpillar but not a path and D = D(T ) ≥ 4. If d(v1) ≥ 3 (re-

spectively d(vD−1) ≥ 3) and let T ′ be the subtree obtained from T by deleting all degree-one

vertices adjacent to v1 (respectively vD−1) excepting v0 (respectively vD). Then D(T ) = D(T ′)

and I(T ) ≥ I(T ′) + 1/12.

Proof Suppose d(v1) = m + 2 ≥ 3, d(v2) = r, d(v3) = s. Then r, s ≥ 2 and D(T ) = D(T ′). We

have
I(T )− I(T ′)
=

∑m
i=1

1
dT (ui)

+
∑2

i=0(
1

dT (vi)
− 1

dT ′ (vi)
)

= m
m+2 + ( 1

m+2 − 1
2) + ( m+2

m+r+1 − 2
r+1) + ( r

m+r+s − r
r+s)

= m[( 1
2(m+2) − 1

(r+1)(m+r+1)) + r( 1
(r+1)(m+r+1) − 1

(r+s)(m+r+s))]
≥ m( 1

2(m+2) − 1
(r+1)(m+r+1))

≥ m( 1
2(m+2) − 1

3(m+3))

= m(m+5)
6(m+2)(m+3)

≥ 1
12 .

Q.E.D.

Lemma 3 Suppose T is a caterpillar but not a path and D = D(T ) ≥ 4. If d(v1) = d(vD−1) = 2

and let T ′ be the subtree obtained by deleting all degree-one neighbours of vα, where vα is the

vertex nearest to one terminal vertex of P such that d(vi) ≥ 3. Then D(T ) = D(T ′) and

I(T ) ≥ I(T ′) + 1/10.
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Proof Without loss of generality we may assume α ≤ bD
2 c. Let u1, . . . , um be all the degree-one

neighbours of vα. We have d(vα−1) = 2. Let d(vα−2) = r (r = 1 if α = 2 and r = 2 otherwise),

d(vα+1) = s, d(vα+2) = t. Clearly we have D(T ) = D(T ′). If D ≥ 5, then t ≥ 2, hence we have

I(T )− I(T ′)
=

∑m
i=1

1
dT (ui)

+
∑α+1

i=α−1(
1

dT (vi)
− 1

dT ′ (vi)
)

= m
m+2 + ( 2

m+r+2 − 2
r+2) + ( m+2

m+s+2 − 2
s+2)

+( s
m+s+t − s

s+t)
= m

m+2 + ( 2
m+3 − 2

3) + ( m+2
m+s+2 − 2

s+2)
+( s

m+s+2 − s
s+2)

= m(m+5)
3(m+2)(m+3)

≥ 1
6 ≥ 1

10 .

If D = 4, then a straightforward calculation shows that

I(T )− I(T ′)
= 1

6 + 4
m+3 − 2

m+2 − 2
m+4

= 1
6 − 4

(m+2)(m+3)(m+4)

≥ 1
10 .

Q.E.D.

Now let us prove the main theorem. If T = Pn, the path with n vertices, then

I(Pn)−D(Pn)/2 =





3/2, n = 2
1, n = 3
5/6, n ≥ 4.

If D(T ) = 2, then T is a star with a = b = 0, c = 1 and I(T ) −D(T )/2 = 1 ≥ c/12 + 5/6. If

D(T ) = 3, T 6= P4, then a = b = 0 and T has exactly two vertices with degree ≥ 2. Suppose the

degrees of them are l + 1,m + 1. Then max{l, m} ≥ 2 and

I(T )−D(T )/2
= `+m+2

l+m+1 + l
l+1 + m

m+1 − 3
2

= 1
l+m+1 − 1

l+1 − 1
m+1 + 3

2

≥ c
12 + 5

6 .

In the following we suppose T is not a path and D = D(T ) ≥ 4. If T is not a caterpillar,

let u be the vertex not in P such that d(u) ≥ 2 and d(u, V (P )) is as large as possible. Then

all but one neighbours of u have degree one. Removing from T all the degree-one neighbours of
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u we get a subtree T1 with D(T ) = D(T1), I(T ) ≥ I(T1) + 1/3, according to Lemma 1. If T1

is not a caterpillar, then repeat this procedure until a caterpillar is obtained. It is clear that

after a steps we get a sequence T = T0, T1, . . . , Ta such that each Ti+1 is a subtree of Ti and

D(Ti) = D(Ti+1) and I(Ti) ≥ I(Ti+1)+1/3. So we have D(T ) = D(Ta) and I(T ) ≥ I(Ta)+a/3.

If d(v1) ≥ 3 in Ta, then delete all the degree-one neighbours of v1 except v0. We get Ta+1

with the same diameter as T such that I(Ta) ≥ I(Ta+1) + 1/12, according to Lemma 2. If

d(vD−1) ≥ 3, we do the same thing. In this way c subtrees are added to the sequence above and

we get T = T0, T1, . . . , Ta, . . . , Ta+c with D(T ) = D(Ta+c) and I(T ) = I(Ta+c) + a/3 + c/12.

Now we have dTa+c(v1) = dTa+c(vD−1) = 2 and dTa+c(vi) = d(vi), i /∈ {1, D−1}. If Ta+c is not

a path, then according to Lemma 3 we can delete all degree-one neighbours of some vα and obtain

a subtree Ta+c+1 with I(Ta+c) ≥ I(Ta+c+1)+1/10. Repeat the procedure until we obtain a path

P . When the process stops we get a sequence T = T0, T1, . . . , Ta, . . . , Ta+c, . . . , Ta+c+b = P with

I(T ) ≥ I(Ta+c)+a/3+c/12 ≥ I(P )+a/3+b/10+c/12. Since I(P ) = D(P )/2+5/6, as we have

just proved it for paths, and since D(P ) = D(T ), we get I(T ) ≥ D(T )/2+a/3+b/10+c/12+5/6.

This completes the proof.

Note that R(T ) = dD(T )/2e for any tree T and a, b, c are non-negative integers. Hence we

have the following corollary.

Corollary For any (nontrivial) tree T

I(T ) ≥
{

R(T ) + 1/3, if D(T ) is odd
R(T ) + 5/6, if D(T ) is even,

with equality if and only if T is a path of at least four vertices.

This corollary tells us that I(T )−R(T ) is bounded below. We point out that it is unbounded

above. In fact, for the full binary tree T of height h ≥ 3 we have I(T )−R(T ) = 2h+2/5−h−1/4,

which can be arbitrarily large as h tends to infinity.
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