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We have investigated the quantum transport through meso-
scopic systems with a toroidal carbon nanotube coupled with
two metal leads (N-TCN-N) threaded with an ac magnetic
flux. The energy shifting takes place by applying the mag-
netic flux, and this shifting arises from both the dc and ac
components of magnetic flux. The dc magnetic flux ¢ induces
the periodic variation of energy gap Eg4 of the TCN, and the
ac magnetic flux component always increases the energy gap.
As the photon energy is larger than the energy gap hw > Eg,
the electrons in the valence band can jump to the conduc-
tance band at zero temperature, and the tunneling current
appears for eV > E,/2 + nhw,(n = 0,41, +2...). The differ-
ential conductance and tunneling current display clear effect
of ac flux by modifying the current oscillation structures. The
photon-assisted tunneling current exhibits stair-like I-V char-
acteristics, and it shows different behaviors for different TCN
systems. The magnitude of the current is suppressed by the
applied ac flux. We also present the time-dependent current
evolution, which is contributed by the oscillating current com-

ponents.

PACS numbers: 73.40.-c; 73.63.Fg; 73.61.Wp; 73.22.-f

I. Introduction

Recently, the single-wall carbon nanotubes (SWCNs)
has attracted much attention due to their prospective ap-
plications on the electronic nano-devices. One of the im-
portant properties is the metal-semiconductor transition
for different structures of SWCN. Because of the spe-
cific structure and electronic properties, we can employ
these materials to study one-dimensional transport, such
as those extensively investigated semiconductor quantum
wire and hybrid device systems [1-8]. The resonant tun-
neling behavior in the SWCN based magnetic tunnel-
ing junctions as well as the dynamic conductance in the
SWCN system due an ac field are also studied [9]. As the
two ends of a SWCN connect to form a closed toroidal
carbon nanotube (TCN), the detailed carbon nanotube
(CN) structure takes the central role for the conducting
behavior, since the TCN is quantized in both of the longi-
tudinal and transverse directions. The tori proposed are

constructed by introducing a single pentagon-heptagon



pair into the perfect hexagon bonding pattern to connect
carbon tubules [10]. The construction based on the Cgp,
and local topological structures of positive and negative
Gaussian curvature were obtained theoretically in Ref.
[11]. Haddon provided theoretical investigation on the
electron properties of TCN Cjr76, and revealed the quan-
tum nature of quasi-one-dimensional ring [12]. Martel et
al. have fabricated rings from SWCNs, and they have ob-
served magnetoresistance at low temperature [13]. The
persistent current in TCN was investigated to exhibit
novel properties due to the modification of energy struc-
ture and energy gap of TCN by applying the magnetic
field [14]. TCN can also be used as functional electronic
devices, such as the switching and interference devices.
The conductance of such a device can be controlled by
adjusting the magnetic flux through TCN since its en-
ergy gap is strongly associated with magnetic flux. Latil
et al. have studied the persistent current in carbon nan-
otube based rings. The case of interacting nanotori ,
and the self-interacting coiled nanotubes are analyzed.
The rings are not really torii in the usual sense, but are
formed by small bundles of nanotubes. The ring is closed
by means of weakly interacting bonds rather than cova-
lent bonding [15]. The Aharonov-Bohm-like mesoscopic
transport through a TCN coupled to normal metallic
leads (N-TCN-N), and through a hybrid system with a
TCN coupled to normal and superconducting leads (N-

TCN-S) have been investigated to show the resonant and

Andreev tunneling controlled by the magnetic flux [16].

Usually, an electronic device is operated under an ac
electromagnetic field, especially the radio frequency field.
Therefore, it is interesting to consider the electronic prop-
erties induced by the electromagnetic field. The energy
gap is modified by the applied ac field, and the ac Stark
effect plays an important role in adjusting the electronic
feature of the mesoscopic system [17]. Electrons in the
ac field perturbed systems absorb and emit photons to
form side-band which acts as channels for electron to
tunnel [18]. Since the TCN is quantized in both the
transverse and longitudinal directions, the special quan-
tization structure causes novel transport behavior. The
electronic structure of TCN and external ac field produce
compound effect in the mesoscopic transport, and we can
obtain novel output characteristics in such systems.

In this paper, we investigate the physical properties of
N-TCN-N threaded with an ac magnetic flux. We assume
that electrons in TCN are affected by the homogeneous
vector potential in the direction along the ring. This vec-
tor potential induces a magnetic flux threading through
the TCN parallel to the axis of the ring. Electrons in
the TCN are driven by the electric field along the ring
to form current. This kind of current is the dynamic
current caused by the ac magnetic flux and the interfer-
ence behavior of electrons in the ring. As the TCN is

coupled to two metallic leads, the current transporting

through the TCN from the leads is determined by the



magnetic flux and the source-drain bias. The feature of
current depends sensitively on the detailed structure of
TCN. We are interested in both the time-averaged and
time-dependent tunneling behaviors, such as the time-
averaged current, differential conductance, and the time-
oscillating current evolution. We employ the nonequilib-
rium Green’s function (NGF) technique to derive trans-
port formulas which exhibit the information of electro-
magnetic field and structure of TCN. The numerical cal-
culations are performed to reveal the tunneling behav-
iors at zero-temperature. The tunneling current and dif-
ferential conductance versus source-drain bias, magnetic
flux, and time are calculated. We make the comparison
between the systems in the presence and absence of ac
magnetic flux. We present the formalism and derivation
of tunneling current in Sec. II, and the numerical calcu-
lations in Sec. III. The concluding remarks are given in
Sec. IV.

II. Model and formalism

The system is composed of three parts: the right
and left normal metallic leads, and the central TCN.
The TCN is formed by rolling a finite graphite sheet
from the origin to the vectors Ry = mja; + msas, and
Ry, = pi1a; + pra» simultaneously, where the primitive
lattice vectors of the graphite a; and ap are defined as
a; = (3'/%a/2,—a/2) and ay = (3'/%a/2,a/2) in the
(ex,ey) coordinates. The two primitive lattice vectors

possess the same magnitude as a =| a; |=| ay |= bx 3%/,

where b = 1.44 A is the C-C bond length of CNs known
to be slightly larger than that of graphite [19]. The
TCN is denoted by (mq,me;p1,p2) as convention, and
it satisfies the periodic boundary conditions along both
of the longitudinal and transverse directions. We spec-
ify that Ry is in the transverse direction and Ry in the
longitudinal direction. A time-dependent magnetic flux
B(t) = ¢+ sin(wt) is threading through the TCN paral-
lel to its axis e,, where ¢ is a time-independent magnetic
flux, ¢ is the magnitude of ac flux component, and w
is the angular frequency. In the rotating coordinate sys-
tem with the base vectors (e,, ey, €,), the time-dependent
magnetic flux ¢(¢) is induced by the spatially homoge-
neous electromagnetic vector potential A(t) in the eq di-
rection, i.e., A(t) = (A, Ap,A,), with A, = 0,4, =0,
and Ag = Ag + A, sin(wt). This kind of vector potential
can be realized by applying the time-dependent magnetic
field in the e, direction as B(t) = Agye,/r, where r is the
distance of the field pointing from the z-axis. We denote
the diameter of CN as d;, and the diameter of meso-
scopic ring as D;. Two kinds of TCN with highly sym-
metric structures are armchair (m,m;—p,p) TCN and
zigzag (m,0; —p, 2p) TCN. The armchair TCN possesses
the symmetry with armchair structure along the trans-
verse direction and zigzag structure along the longitudi-
nal direction. The zigzag TCN has the structure in both
of the directions being zigzag. The diameters of the arm-

chair TCN are d; = 3bm/w, and D; = 3'/?bp/m, and the



diameters of the zigzag TCN are given by d; = 3%/3bm /7,
and D; = 3bp/7. In the absence of electromagnetic flux,
the armchair TCN is a metal when p = 3v (type I TCN),
while it is a semiconductor with narrow energy gap as
p=3v+£1 (type IT TCN), where v is an integer. For the
zigzag TCN in the absence of electromagnetic flux, there
exists a large energy gap when m # 3v (type III TCN)
[14]. We consider the situation that the leads broaden im-
mediately at the connections to the TCN, and the leads
are large enough to be considered as equilibrium elec-
tron reservoirs. The diameter ratio of the nanotube d; to
the diameter D; of mesoscopic ring is much smaller than
1, i.e., k = di/Dy << 1. We assume that the TCN is
well coupled to the normal metal leads shown as in Fig.
1. This geometry of system implies the well coupling of
the energy levels of electron in the TCN to the leads. It
also signifies that the wave-functions resided in the inner
and outer circumferences of TCN roughly couple to the
leads equally. The tight-binding model is employed for
calculating electron transport through the CN systems
where the Coulomb interaction is neglected [20,21]. The
tight-binding calculation is relatively simple compared
with the first principles calculation [22]. On the other
hand, the theoretical prediction [23,24] of Luttinger lig-
uid behavior in a SWCN at low energy scale has been
verified in the transport experiment [25]. However, the
tight-binding calculation can provide main properties of

CN systems, such as the electron structure, local density

of state, and electron transport. Many scanning tunnel-
ing spectroscopic results are fully interpreted in terms
of independent electrons model [26]. We are interested
in the mesoscopic transport through the TCN systems
responded by an external ac field. We take the tight-
binding approximation to describe the TCN by avoiding
the complexity of involving the Coulomb interaction.
The central TCN is described by the tight-binding
Hamiltonian, and the two normal metal leads are de-
scribed by the free electron grand canonical ensembles.
In the diagonalized representation of TCN, the electronic
properties can be determined by the total Hamiltonian
of the system which is the summation of the three sub-
Hamiltonians and the tunneling interaction term

_ t t
H=Y epal ,a0k0+ Y Brjs(t)ch, ics00
vyko jléo

+ 3 SN TR je(R)el, otk + Heel, (1)

vko jO5
where afy,,w (@y, ko), and c:r;w.é (¢ss,j¢) are the creation
(annihilation) operators of electron in the two leads and
TCN, respectively, with v € {L, R}. R,s j¢(k) is interac-
tion strength of electrons between the yth lead and TCN.
We take the chemical potential of the right lead as the
reference of energy measurement to ensure py —pug = eV,
where V is the voltage between the two leads. The spin
o has the values as ¢ = +1, and —1 corresponding to
the notations 1 and | respectively in the subscripts of
equations. Ejy;s(t) is the energy of the TCN. The energy

of TCN is intimately associated with the structure of the



TCN. However, in the presence of ac magnetic flux, the
energy oscillates with external magnetic flux ¢(t). The
time-dependent energy can be derived by making gauge
transformation and by employing the periodic boundary
condition. The time-dependent energy of the armchair

TCN can be found in the tight-binding approximation as

xerpl—tea(6,60)(t — ) = i(nt — miw},  (5)

(for n,m =0,%£1 £ 2,...), where g¢;,5 is the quasi-energy
of TCN defined by taking the time average in the period

T over the energy Eyj 5(T) as

/ Eyjs(T (6)

€ o(P, 1) =

Eyj,s(t) = 0v0{1 + 4cos?[Be(t)] + dcos[Be(t )]COS( )}1/2 (2) The function Fe(::sn) is defined by the two-time Fourier

The time-dependent energy of zigzag TCN is given sim-

ilarly by taking tight-binding approximation

Eu; () = 670{1 + 4cos> (]m)+4cos[ﬂg( )]cos(m)}1/2 3)

In the energy formulas (2) and (3), B¢(t) = #(£ +

b(t)/¢o)/p, where j = 1,2,...m;{ = 1,2,...,2p; 6 = =+,
Y = 3.033 eV, and ¢y = h/e is the flux quantum. j
and ¢ are the quantum numbers of energy describing the
transverse and longitudinal quantization of the TCN, re-
spectively. The upper half of the energy dispersion curves
describes the 7*-energy anti-bonding band (unoccupied
state), and the lower half of the energy dispersion curves
is the m-energy bonding band (occupied state).

The time-dependent retarded Green’s function of the

isolated TCN in the response of ac flux is defined by

i) = =58 = eapl— [ Buisryar). @)

This Green’s function depends on both ¢ and ', and it can
not be written as the form of time difference in general.

However, it can be expressed by

ge(t,t) = Z F{ (6, 1)

transformation as

ea:p{—%/l (Eejs(T) — €e5,6(0, 01)]7}

ZF&” (9, 61)eap[—i(nt — mt')w]. (7)

Expanding the time-dependent energy formulas given in
Eqgs.(2) and (3) around the time-averaged quasi-energy
€¢5,5(¢, 1) to the first-order approximation, and employ-

ing the relation

exp[tilcos(wt)] =

Z(:I:i)"Jn(A)e:Up(:I:inwt), (8)

n

we obtain the leading terms of Fl(ﬁn) for the TCNs. In
fact, they can be determined by the Bessel function of
the first kind J,,(A) as

FL™™ (6, 61) = (= 1) T [ty (9, 61)] I [Aas s (6, 61)]

9)

The argument of the Bessel function Asjs(¢, ¢1) is asso-
ciated with the detailed structure of TCN. For the arm-

chair TCN, we have the argument of Bessel function

4

Agjs(¢,01) = 5ﬂJ1(a1)[cos(7Z

» Vsin(Be)+Jo(a1)sin(28)],



and for the zigzag TCN, we obtain the argument of Bessel

function as

4 .
Aejs(o, 1) = 5% Jl(al)cos(;—J)sin(m),

where 8y = 7({+ ¢/do) /p, and oy = 71 /po. The func-
tion Fg’rgn) modifies the magnitude of tunneling current
in each channel of the quantum system in the presence of
ac flux. This reveals additional feature of the mesoscopic
transport, which is strongly associated with the structure
of central region. As a; — 0, Ff(%n) — 1, which is the
situation in the absence of ac flux.

The mesoscopic transport under the ac fields can be
derived by NGF technique, and the detailed derivation of
current formula can be found in Refs.[27-29]. The time-
dependent tunneling current of the yth lead is determined
by the current formula

L,(t) =2eRe /dt1 (G0 (t,11) S5 g0 (t1, 1)

djlo
G5 (4 1)S8 550 (t, 1)), (10)

where Efﬁéjl(tl,tg) is the self-energy of the ~th lead

defined by SX:.,(t,t") = Sp | Rysje 7 0500 (61,

(X € {r,a,<}). In the self-energy, g=,,(t,t') is the
Green’s function of the yth lead.

The time-dependent Green’s function of the coupled
TCN can be expanded by
=2 5 (9,

6g£ t t _M(nt_mt’)égg.é(t,tl)-

(11)

Here the Green’s function G’ggé(t,t’ ) is associated with

the system in the absence of ac flux. The retarded

Green’s function is determined by the Dyson equation

Ngje(t,t ) = G5je(t,t") //dtldt2gdg€ (t,t1)

XESJE(tl’tZ)GNgjl(t%t,)a (12)

where gg;,(t,t') is the retarded Green’s function of the
isolated TCN in the absence of ac flux. The Keldysh
Green’s function of the coupled TCN is given by the

equation [27]

G5 (t.1) / / dtydts Gy (1, 11)

XE55(t, 1) G (b2, 1) (13)

The self-energy above is defined by summing the self-
energies of the leads as %35, (t1,12) = > XX 5. (t1,12).
A. Time-averaged mesoscopic transport
The time-averaged tunneling current is related to the
Green’s function of the TCN expressed by the pseudo-
equilibrium state. For this situation, the diagonal ele-

ments of the function Fl(;?gn) = FE(J”()s = J2[Agj (0, d1)]

(for m=n) contribute to the Green’s function

gyt t) = ——e ZF(") (¢, 1)

xerp{—[euslo,61) +nholt = 1)) (14)

The Fourier transformed version of the Green’s function

above is then expressed as

g5je(e ZFWMI)W( — nhw), (15)

where g, (€) is the Fourier transformation defined by

1
€—eejs(d, 1) +in

95je(€) = (16)



with = — 0. The tunneling current formula can be
derived from the Heisenberg equation and continuity
equation by employing the NGF technique. The time-
averaged current in the «th lead can be expressed as the
Landauer-Biittiker-like formula [30]

L=32 % / deTy5n(€)[fy(e) = fa(e)),  (17)

no y#B

where Ty5.(€) = 5455 T,aje (€)T3,65¢(€) FL1) (6, 61)

X | C?gﬂ (e — nhw) |? is the transmission coefficient rep-
resenting the electron tunneling from the yth lead to the
Bthlead. It possesses the symmetry property about leads
as T,3(€) = Tp~(€). This means that the electron trans-
porting from the Sth lead to the yth lead is equal to the
transporting from the yth lead to the Sth lead. T' 5;¢(€)
is the line-width defined by Ty 5;0(€) = 27>, | Rys,j¢ |
d(e — €41). The function f,(e) is the Fermi distribution
function of the yth lead. We consider the wide-band
limit for the leads, which means that the line-widths
are independent on the energy levels. For this situation,
[ 55e(e) =T, and Ggﬂ(e) is the pseudo-equilibrium re-
tarded Green’s function of the coupled TCN determined
by

1
€ —¢eejs(h, d1) +il"

jele) =

where I' = (T';, + T'g)/2.

The electron band structure and transport property of
this TCN system are mainly determined by the 7 valence
electrons. Tight-binding calculation for the 7 electrons is

proven to be in good agreement with experiment. It can

provide important insights for understanding the elec-
tronic structure of 7 energy level in the CN system. As
the external electromagnetic field is applied to the sys-
tem, the energy spectrum is modified considerably. By
taking time-average over the time-dependent energy from
Eq.(6), the calculation reveals that the quasi-energy of
the armchair TCN in the tight-binding approximation is

given as [17]

etio(p, 1) = 070{1+4 Y [J3,(ar)cos® (B)

. j T
T34 (en)sin® (Be)] + 4 (e Jeos (B cos(o)} /2. (19)
The quasi-energy of the zigzag TCN is given similarly by

taking tight-binding approximation

e0j,5(p, 1) = 6v0{l + 40052(%)

+4J0(051)COS(B[)COS(%)}lm. (20)

In Eqs.(19) and (20), 8¢ = 7(£+¢/¢o)/p, a1 = w1 /péo,
where j = 1,2,...,m;¢ = 1,2,...,2p. We have denoted
that § = £, which indicates the upper half and lower
half of the energy dispersion curves. The highest occu-
pied state and the lowest unoccupied state meet with
each other at the Fermi energy Er in the absence of ex-
ternal magnetic field for the armchair type I TCN, while
it possesses a small energy gap for the type I TCN. Due
to the symmetric structure, the Fermi energy is located at
Er = 0. As the external electromagnetic field is applied
to the TCN, the energy gap changes, and it is intimately

related to the magnitude of field. Obviously, the quasi-

energy formulas Eqs.(19) and (20) reduce to the energy



formulas of TCN given in Ref. (14) by letting oy — 0.
This can be seen by noticing that J,,(0) = dno-

We take the potential of right lead as the reference by
setting ur = 0 in the formula. At zero temperature, the

tunneling current formula (17) is reduced to

e eV
=23 [ Tuneae (21)

where the transmission coefficient T, g(€) is defined as

Z FLFRF[(;()s(Qbaﬁbl)

Trr(e) = [ —eejs(p, 1) — nhw]? + T2

(22)
6ljn

T r(e) is the transmission coefficient of electrons trans-
porting from the right to the left lead. It is the contribu-
tion of electrons tunneling through all of the channels in
the TCN. The electrodes are considered to be large elec-
tron reservoirs which provide the possibility for electrons
to meet the transport through each of the channels. The
applied ac magnetic flux induces side-band due to the
absorption and emission of photons. The central TCN
acts as a scattering center, and the Breit-Wigner reso-
nant transport takes place as € — g 5(¢, $1) — nhw = 0.
The evidence for the resonant transmissions has been ob-
served experimentally in SWCN system [3].

B. The time-dependent mesoscopic transport

In this subsection, we study the time-dependent meso-
scopic transport through the N-TCN-N system. We make
Fourier transformation over the time-dependent current
formula Eq.(10) to give the tunneling current of the ~yth

lead

= 2eRe Z

/d€1d€2€$p[—ﬁ(€1 — €2)1]
6jlo

x[Gje(€n, 52)2;5]'[(62) + G5<je(€1a €2)X5 5je(e2)], (23)

where G(;Xﬂ(el, €2) and Egg.l(q) are the Green’s function
and self-energy in the energy representation. The self-
energy is determined by the Green’s functions of the leads
Zk | Rys 50 |2 gfﬁka(e), (X € {ra,<}),

where g;(“)( ) = 1/(e — ey, £ in), (n — 0), and the

as E’y 6]4( ) =

Keldysh Green’s function is gika(e) =2mify(e)d(e—eyr).

The time-dependent tunneling current expression

Eq.(10) now becomes

—_ 1 2
I(t) = Qefm;;(%h)

XF,Y,aj[(GQ)[Ggﬂ(Gl, 62)']“7(62) + %Gfﬂ(el,a)]. (24)

1
/d€1d€261‘p[—ﬁ(61 — 62)t]

The Dyson equation for the retarded Green’s function in

the energy representation is obtained from Eq.(12)

- R 1 R
Grjere) = Giese) + oz [ derileen)
xT5j0(e1)Ghje(er, ). (25)
By making Fourier transformation over Eq.(11), the

Green’s function of the TCN in the presence of ac flux

can be expressed by the expansion of ngé (¢) as

Gaﬂ(e €)= QWFLZF mn) (9, gbl)égg.[(e

mn

— nhw)

xdle — € — (n —m)hw], (26)

for X € {r,a,<}. The Fourier transformed Keldysh

Green’s function in Eq.(26) is

G~’6<ﬂ(e —nhw) = 5115( €) | G’(w(e —nhw) |?. (27)

We consider the wide-band limit for the leads such that

the self-energies 255(;) () = Fi>_, /2, and 5;,(e) =



iy, Ty fy(e). We are interested in the time-oscillating
tunneling current induced by the ac flux for general V.
Obviously, when V' = 0, the time averaged current is zero
from Eq.(21). The retarded Green’s function égﬂ (€) is
given by Eq.(18).

Substituting the Green’s functions given in Eq.(26) and
wide-band limit self-energies into Eq.(24), we immedi-
ately obtain the time-dependent tunneling current in the

presence of source-drain bias as

L) =2 3 3 B (60 o)1 ncoslWam (8)]

djlo mn

+I,§,?7)nnS’L.TL[an ]}, (28)

where Wiy (t) = (n —m)wt — (n+m)7/2 and L(Yly)nn and

Igﬁnn are defined as

=3 [ deD, T | Gt = nio) |
,YI

x{fyle + (m —n)hiw] = fr ()},

v, mn

I =ar, / deReC?gﬂ(e — nhw) fy[e + (m — n)hw].

In Eq.(28), we have defined the relation Fg’rgn) =
i”*mﬁéﬁn). The time-averaged tunneling current given
in Eq.(17) corresponds to the case m = n in Eq.(28).
One observes that although the time-averaged tunneling
current is zero when V' = 0, we can have time-oscillating
current induced by the ac flux. However, the tunneling
current depends on the detailed structure of the TCN
and the applied magnetic field.
ITI. Numerical calculation

In this section, we perform the numerical calculations

on the tunneling current in the presence of ac magnetic

flux at zero temperature. Defining Q = ¢o/3'/%7b =
5.3 x 107* T.m, the dimensionless quantity a; can be
expressed as a; = A, /Q. The energy is an periodic
function of ¢, and its magnitude depends on the magni-
tude of ac field. In the numerical calculations, we take
Go = 2¢?/h as the measurement scale of conductance,
and Iy = 2eyo/h = 2.35 x 107* A as the scale of tunnel-
ing current. We consider the symmetric situation where
the two leads are composed of the same material, and
they are equally coupled to the quantum TCN. So that
the line-widths are equal and energy independent. The
equally coupled symmetric system is considered by choos-
ing I', = 'r = 0.0017y. The frequency is scaled by the
quantity vo/h = 7.36 x 10'* Hz.

The differential conductance dI/dV at zero tempera-
ture is given directly from Eq.(21) that

dl  e?
= > Tpr(eV). (29)

Figure 2 is the differential conductance versus the source-
drain bias eV. The bias eV is scaled by 7y, which corre-
sponds to 3.033V source-drain voltage. The frequency of
ac magnetic flux is f = 7.36 x 10'2 Hz, which is in the
order of tera hertz. In the absence of ac component mag-
netic flux, i.e., ¢; = 0, the metal-semiconductor phase
transition takes place in the type I and IT TCNs by vary-
ing dc magnetic flux ¢ which has been documented in
the literatures [14,16,31,32]. The type III TCN is always
semiconductor with energy gap E ~ 1.0 eV. The en-

ergy gaps increase with increasing the ac magnetic flux



¢1. In the absence of magnetic flux, the energy gaps of
type I materials in Fig.(2a) and (2b) are zero E, = 0.
The energy gaps of the type II TCN in (2c) and type
IIT TCN in Fig.(2d) are about E; ~ 48 meV, and 1.0
eV, respectively. As the ac magnetic flux is applied, the
energy gaps increase due to the two components of mag-
netic flux ¢ and ¢;. The photon energy with tera hertz
frequency f = 7.36 x 10'2 Hz is about 30 meV. If the
magnitude of ac flux is small enough, i.e., @; < 1, the
energy gap of armchair TCN is small. The zero-biased
conductance is small, but it becomes large by applying
nonzero bias voltage. There may exist tunneling current
as eV # 0 by absorbing enough photons. For the type IIT
TCN one observes that the energy gap is large F, ~ 1.0
eV. For such material, the valence electron can not jump
to the conductance band by absorbing the photon energy
with tera hertz frequency. The resonant peaks reflect the
discrete energy levels in the TCNs, and the level spac-
ings reduce as the TCNs become large. As the ac flux
is applied, some of the resonant peaks are suppressed,
and some of them are enhanced to form photon-assisted
resonant structure.

Figure 3 displays the zero-biased and source-drain bi-
ased differential conductance versus dc magnetic flux ¢
at zero temperature. The zero-biased conductance is
strongly dependent on the ac flux. However, the con-
ductance oscillation versus dc magnetic flux ¢ exhibits

the symmetric and periodic properties G(¢)

G(=9)

10

and G(¢) = G(¢ + ndy), (n = 0,£1,+2,...). For the
type I TCN as a; = 0, the zero-biased conductance
resonates at ¢ = n¢y, where the metal-semiconductor
phase transition takes place. Away from these transi-
tion points, the conductance declines with the minimum
value G = 0.3Gy. For the type II TCN, the resonances
of G(¢) occur at ¢ = (1/3 + n)¢o, (2/3 + n)¢po, where
the metal-semiconductor phase transition takes place (di-
agram (a)). This indicates that the Aharonov-Bohm
magnetic flux controls the conductance from metal to
semiconductor changes periodically, and different types
of TCN possess different transport behavior. In the semi-
conductor regimes, we also have nonzero conductance,
however it is small. As the ac flux is applied, one ob-
serves that the conductance is very small, and the oscil-
lation behavior is similar for type I TCN as the case for
a1 = 0, but it is quite different for the type II TCN as
the case for ay = 0 (diagram (b)). The two peaks in
a period of type II TCN unite to form one, and it has
¢0/2 phase difference from that of type I TCN. Since the
ac flux component ¢, always increases the energy gap of
TCN [17], it is clear that the double-peak oscillation in
type IT TCN only exists as the energy gap is small. The
differential conductance dI/dV versus magnetic flux ¢
at zero temperature in the presence of source-drain bias
is given in diagram (c). The dI/dV is sensitive to the

applied voltage V and the types of TCN. For the type

I TCN, one observes that cluster oscillation takes place,



i.e., in one period ¢g, there exist 4 peaks located on the
main hill, and they are symmetric about the center of
the hill.

The transport behavior is strongly dependent on the
magnitude a; associated with the ac flux, since it makes
contribution to the quasi-energy e¢; 5 and weight function

(n)
Fyjs-

The weight function is determined by the Bessel
function J,(A) with its variables A itself composed of
the Bessel function Ji(aq) (see Egs.(9)). Therefore, the
transmission coefficient becomes very complicated due to
the influence of an the flux. However, when «; is the zero
of Bessel function Ji(ay), the transmission coefficient re-
duces to a very simple expression. The corresponding

F™ 1

behavior is obtained by by taking n = 0, and 0.6

in Ty, r(e). For this circumstance, the transport behavior
is similar to the case when the external ac flux is switched
off. However, the ac field still contributes to the quasi-
energy through the other Bessel functions. The ac flux
increases the energy gap which is obviously seen in Fig.4.
Figs.(4a) and (4b) show the current-voltage characteris-
tics of the type II armchair and type III zigzag TCNs
system. As the external ac flux is applied at the zero
of Ji () with oy = 3.8317, the current appears obvious
steps, and the threshold increases. The tunneling cur-
rent of the system in the absence of ac flux is larger than
that of the system in the presence of ac flux in region
0 < eV < 1.84vp, and an intersection occurs at about

eV = 1.84~.
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We show the photon-assisted tunneling versus the
source-drain bias in the presence of ac magnetic flux in
Fig. 5. As the magnitude «a; increases from 0.1 to 0.3,
the magnitude of tunneling current decreases. We also
observe that the energy gap is increased by increasing a;
(the solid and dashed curves). The stair-like structure
of the current-voltage characteristics is associated with
the emission and absorption of photons. The steps of
the current are related to the quantum level of the TCN
and side-band caused by photon energy. For the time-
averaged tunneling, the effect of the photon absorption
and emission is to split the energy level of TCN and mod-
ifies the current. The tunneling current resonate with the
local electron in the quantum TCN, and with the applied
photons. The dotted curve shows the tunneling current
of type IIT TCN as a; = 0.1. The magnitude of the cur-
rent is larger than the type II TCN, and the stairs are not
obviously observed compared with the type I TCN. The
I-V curves are quite different from the ones in the absence
of ac component of magnetic flux shown in Ref.[16]. We
can also see that the energy gap F, increases by applying
the ac magnetic flux stated in Ref.[17].

The tunneling current versus dc magnetic flux ¢ is pre-
sented in Fig. 6 to show the oscillation and influence of
the dc and ac flux components. Diagrams (a),(b) are
the tunneling currents through the type II TCN (7,7;-
160,160) as a1 = 0, and «; = 3.8317, respectively . Dia-

grams (c),(d) are the tunneling currents through the type



I TCN (7,7;-159,159) as a; = 0, and o3 = 3.8317, re-
spectively. The currents exhibit periodic behaviors with
period ¢p, but the magnitude of the oscillation and shape
structure are different between type I and type IT TCNs.
The magnitude of the current is suppressed by the ap-
plied ac flux. This is resulted from the fact that the
applied ac field increases the energy gap FE, from the
original one of TCN. The tunneling electrons residing in
the conductance band for the semiconducting TCN are
much less than those in the metallic TCN. The modifi-
cation of current is associated with the modification of
quasi-energy for each TCN. The modification of current
by the ac flux is obviously seen for the type I TCN. In
the absence of ac flux, the tunneling current oscillates
with two kinds of vibration structure. One kind of wave
packet is located at ¢ = ngo, (n = 0,£1,+2,...), and the
other one is located at ¢ = (n+1/2)¢o. As the ac flux is
applied, the current oscillation is modified to form only
one vibration structure, with the modified wave packets
located at ¢ = ngy.

For the symmetric system, the net tunneling is deter-
mined by I(t) = [I1(t) — Ir(t)]/2, because the currents

coming out of the quantum TCN are cancelled exactly.

Therefore, the net tunneling current is derived as

- —FZZF/””) (¢, 1) {IY cos[ Wy (1)]

djloc mn

+I sin[Wom ()]}, (30)

where
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pr + eV —egis(o, 1) — nhw

1) = tan™| : ]
—tan—l[uR - Eej,d(?a ¢1) — nhw], (31)

(2) = 1 ['UR teV - 62.7‘75((157 (bl) - nhw]2 —+ F2
K 2 & (R —€ejs(, d1) — nhw]? + I 3 (32)

The time-dependent tunneling current is induced by the
ac magnetic flux, and the net current is zero as the
source-drain bias is zero for the symmetric system. This
can be understood that the pumped current coming out
of the central TCN to the two leads are equal as eV = 0.
The oscillating current evolves periodically with wt in the
period associated with the superposition of oscillation
components (n — m)wt. We depict the time-oscillating
current versus wt in Fig. 7 to show the current evolution
procedure. The current oscillation structure is observed
to have strong relation with the magnitude ay of ap-
plied ac field. In diagram (a), there exist two kinds of
oscillation structure with the same period. A small oscil-
lation with split peaks is embedded in the valleys of the
main oscillation with larger single peaks. As «; increases,
the oscillating current is suppressed, and the oscillating
structure changes. Two kinds of oscillation merge to form
the time-evolving current with three peaks located on a
main peak. The time-dependent current is determined by
the resonant levels, the magnitude of the ac flux, and the
frequency. As a; increases, the energy gap E, increases,
and the weight function Fp; s makes contribution to the
current significantly.

IV. Concluding remarks



We have investigated the quantum transport through
the N-TCN-N systems threaded by an ac magnetic flux.
The tunneling current formula is derived by employing
NGF technique. The time-dependent and time-averaged
currents are calculated. The frequency-dependent trans-
mission coefficient T, 3,,(€) plays the central role for the
coherent transport. Because of the perturbation of ac
magnetic flux, the transmission coefficient appears very
complicated form by involving the field effect in the
quasi-energy and the weight function Fp; 5. This makes
the tunneling behaviors complicated when the electron
does not match the quasi-energy of the TCN. The en-
ergy shift takes place by applying the magnetic flux, and
this shift arises from both the dc and ac components
of magnetic flux. The dc magnetic flux ¢ induces the
periodic variation of energy gap, and the ac flux com-
ponent always increases the energy gap. On the other
hand, the time-dependent magnetic field produces side-
band of quasi-energy, which provides novel channels for
electrons to tunnel through. As the photon energy is
larger than the energy gap hw > E,, the electrons in
the valence band can jump to the conductance band
at zero temperature, and the tunneling current appears
as eV > E;/2 + nhw,(n = 0,£1,42,...). The tun-
neling is very simple for the resonant circumstance as
€ — €4j,6(¢, 1) — nhw = 0. The transport features are

different for different TCN systems as type I, II, and III

TCNs. The differential conductance and tunneling cur-
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rent display obvious effect of ac flux by modifying the
current oscillation structures. However the modification
is quite simple as «; is a zero of Jy(a1). The time-
dependent current oscillates periodically with wt. The
detailed evolution structure is the superposition of dif-
ferent components of oscillating current branches. The
magnitude of the ac flux ¢, plays an important role for
the photon absorption and emission procedure, and it
affects the tunneling current considerably. Since the sys-
tem is controlled by the external magnetic flux, we can
adjust the magnitudes of dc and ac components of mag-
netic flux by varying ¢, ¢; and w to obtain desired tun-
neling current. This system acts as a magnetic flux con-
trolled interference switching device.
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Figure Captions

Fig. 1, The schematic diagram of a TCN coupled to
two normal metal leads N. The TCN is embedded in the
two leads indicating the well coupling of the energy levels
of electron in the TCN to the leads.

Fig. 2, The differential conductance dI/dV versus
source-drain bias eV at zero temperature for ¢ =0, =

0.01, hw 0.01yp. Diagrams (a), (b) (c) and (d)
are associated with the type I (5,5;-120,120), (10,10;-
480,480), type II (10,10;-481,481) and type IIT (10,0;-
480,960) TCNs, respectively.

Fig. 3, The differential conductance dI/dV versus dc
magnetic flux ¢ at zero temperature. Diagram (a) is
the conductance oscillation of TCNs when a; = 0 and
eV = 0 for (10,10;-480,480) (the solid curve) and (10,10;-
481,481) (the dotted curve). Diagram (b) is the conduc-
tance of TCNs when a; = 0.01, iw = 0.01y9 and eV =0
. The solid and dotted curves are associated with (10,10;-

480,480) and (10,10;-481,481) TCNs, respectively. Dia-

gram (c) is associated with the case for @; = 0 and the
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source-drain voltage V' = 0.61 Volt. The solid and dotted
curves are related to the type I (10,10;-480,480) and type
IT (10,10;-481,481) TCNs, respectively.

Fig. 4, The I-V characteristics of TCN with applied ac
flux as ¢ = 0. The dotted and solid curves are associated
with a; = 0 and «; = 3.8317, respectively. Diagrams
(a) and (b) correspond to the systems associated with
(7,7;160,160) and (7,0;-160,320) TCNs.

Fig. 5, The I-V characteristics of TCN with applied
ac flux when ¢ = 0 for different a;. The solid and
dashed curves are related to the (7,7;-160,160) TCN when
a1 = 0.1 and a3 = 0.3, respectively. The dotted curve is
associated with ( 7,0;-160,320) TCN for ay = 0.1.

Fig. 6, The tunneling current I(¢) versus the magnetic
flux ¢ at eV = ~. Diagrams (a) and (b) correspond
to the (7,7;-160,160) TCN with the parameter ay = 0
and a; = 3.8317, respectively. Diagrams (c) and (d)
correspond to the (7,7;-159,159) TCN with the parameter
a1 = 0 and a; = 3.8317, respectively.

Fig. 7, The time-dependent current evolving periodi-
cally with wt for the (7,7;-160,160) TCN. The parameters
are chosen as eV = 0.8y, ¢ = 0. Diagrams (a) and (b)

are associated with a; = 0.1 and 0.8, respectively.



