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ABSTRACT

One-step self-etch adhesives behave as permeable
membranes after polymerization, permitting water
to move through the cured adhesives. We
hypothesize that osmotic blistering occurs in
bonded enamel when these adhesives are used
without composite coupling. Tooth surfaces from
extracted human premolars were bonded with 5
one-step self-etch adhesives. They were immersed
in distilled water or 4.8 M CaCl,, and examined
by stereomicroscopy, field-emission/environ-
mental SEM, and TEM. Water blisters were
observed in bonded enamel but not in bonded
dentin when specimens were immersed in water.
They collapsed when water was subsequently
replaced with CaCl,. Blisters were absent from
enamel in specimens that were immersed in CaCl,
only. Water trees were identified from adhesive-
enamel interfaces. Osmotic blistering in enamel is
probably caused by the low water permeability of
enamel. This creates an osmotic gradient between
the bonded enamel and the external environment,
causing water sorption into the interface.
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Osmotic Blistering in Enamel
Bonded with One-step
Self-etch Adhesives

INTRODUCTION

Contemporary dentin adhesives are available as three-step, two-step, and
one-step systems, depending on how the 3 cardinal steps of etching,
priming, and bonding to tooth substrates are accomplished (Inoue et al.,
2001). For self-etch adhesives, two-step self-etching primers have been
simplified into one-step self-etch (all-in-one) adhesives that etch, prime, and
bond simultaneously (Perdigdo, 2002). All-in-one adhesives are mostly
available as two-component assemblies, with the water component
separated from the functional acidic monomers to prevent their hydrolysis
during storage (Pashley and Tay, 2001). Recently, one manufacturer
introduced a one-bottle all-in-one adhesive, and claimed that reliable results
can be achieved without the concern for hydrolytic degradation of the ester
linkage of 4-methacryloxyethyltrimellitic acid (4-MET) in the adhesive.

Because of the high concentrations of hydrophilic and acidic resin
monomers, low film thicknesses, and lack of more hydrophobic coupling
resin layers (Cheong et al., 2003), one-step self-etch adhesives have been
reported to behave as permeable membranes after polymerization (Tay et
al., 2002a). This is due to the presence of water-attracting hydrophilic
domains (Zaikov et al., 1988) and water trees (i.e., interconnecting water-
filled channels) within the polymerized adhesives (Tay er al., 2002b) that
permit water to move from the underlying dentin through the adhesive.
Water droplets that collect along the adhesive surface are trapped by the
hydrophobic coupling composite as water blisters. Fluid flow through
porous films (Zentner et al., 1985) does not occur when completely
dehydrated dentin (Tay et al., 2003b) or relatively impermeable substrates
such as composites are bonded with these adhesives (Tay et al., 2003a).

Osmotic blistering (Pommersheim and Nguyen, 1998) is a well-
recognized problem in the resin paint-coating industry. Classic osmotic
blistering occurs in the opposite direction when resin-coated, impermeable
substrates are immersed in water (e.g., boat hulls). In the presence of
contaminating ions on a substrate surface, osmotic cells are initiated
between the coating and substrate (van der Meer-Lerk and Heertjes, 1975).
The osmotic gradient causes water to flow from the outside into the
interface. Blister formation occurs, since there is no channel for the relief of
the osmotic pressure in an impermeable substrate. With time, the blisters
enlarge to a point where adjacent blisters coalesce, eventually resulting in
the delamination of the resin coating. Blister initiation may be prevented by
reversing the concentration gradient, such as when a concentrated salt
solution is placed outside the coating, to counterbalance the hypertonicity of
the resin-enamel interface. This reversed phenomenon parallels what has
been observed along adhesive-dentin interfaces.

Although dentin adhesives are usually coupled to composites when they
are applied to dentin, direct exposure of adhesive-coated enamel to the oral
environment may occur when these adhesives are used as dentin desensitizers
(Prati et al., 2001), as adhesive flash during the bonding of orthodontic
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brackets (Bishara et al., 2001;
Korbmacher et al., 2002), for
sealing of ground enamel surfaces
(Glasspoole et al., 1999; Kuhar et
al., 1999) following interproximal
stripping, or with the use of filled
self-etch adhesives as alternatives
for conventional pit-and-fissure
sealants (Simonsen, 2002). Since
enamel is less permeable than
intertubular dentin (ten Bosch e
al., 2000; De Munck et al., 2003),
it is anticipated that the classic
features of osmotic blistering may
occur when enamel coated with a
one-step self-etch adhesive is
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placed in water. Thus, the
objective of this study was to test
the hypothesis that osmotic
blistering occurs when one-step
self-etch adhesives are used as
enamel coatings in the absence of
additional composite coupling.

MATERIALS & METHODS
In vitro Study

Twenty-four non-carious human
premolars were collected after the
patients' informed consent had been
obtained under a protocol reviewed
and approved by the institutional

review board of the Medical College

of Georgia (Augusta, GA, USA).
Within one month of extraction, the
roots of these teeth were removed
along the cemento-enamel junction
by means of a slow-speed saw
(Isomet, Buehler Ltd., Lake Bluff,
IL, USA) under water-cooling. The
crown of each tooth was further

Figure 1. Optical micrographs illustrating the phenomenon of osmotic blistering in enamel. (A,B)
Optical microscopy photographs illustrating the phenomenon of osmotic blistering in enamel bonded
with one-step self-etch adhesives such as (A) Adper Prompt and (B) iBond. Water blisters (pointers) are
present between the adhesive and enamel (E) after the bonded specimen was immersed in water for 30
min. No water blisters can be observed in the bonded dentin (D). (C,D) A series of photographs taken
from specimens bonded with One-Up Bond F, showin$ the effect of reversal of the osmotic Srcdienf on

existing water blisters. (C) Water blisters that were tormed in enamel (pointer) but not dentin after
immersion in distilled water for 30 min. (D) The same specimen after re-immersion in the CaCl, solution
for 10 min. Collapse of the blisters occurred due to the withdrawal of water from the blisters into the
external salt solution.

sectioned longitudinally into two
halves. The exposed tooth surfaces
were polished with wet 180-grit
silicon carbide paper.

Experimental Design

Five one-step self-etch adhesives were examined in this study.
They included 4 two-component systems (Prompt L-Pop and
Adper Prompt, 3M ESPE, St. Paul, MN; One-Up Bond F,
Tokuyama Corp., Tokyo, Japan; Xeno III, Dentsply DeTrey,
Konstanz, Germany) and one single-component system (iBond,
Heraeus Kulzer, Hanau, Germany). Four teeth were used for each
adhesive. The numbers of coats of adhesives that were applied to
the tooth halves and light-cured were in accordance with the
manufacturers' instructions.

Optical Microscopy
The bonded tooth surfaces were examined without additional
composite coupling. Since it was impossible to differentiate
between adhesive-coated enamel and dentin under a scanning
electron microscope, we first determined the location of osmotic

blistering from one half of each tooth using a stereomicroscope
(Nikon SMZ10, Tokyo, Japan) at 20-30X magnification.

For each adhesive, 3 bonded specimens were immersed in
distilled water for 30 min before examination. After examination,
they were replaced in distilled water for 30 min, followed by
immersion in 4.8 M CaCl, for 10 min to reverse the osmotic
gradient. The last specimen was immersed for 30 min in the CaCl,
solution only, without prior immersion in distilled water, and was
used as a control.

Field Emission-Environmental Scanning

Electron Microscopy (FE-ESEM)
The other half of each tooth was bonded similarly when it was
scheduled for FE-ESEM examination, with the same sequence of
fluid immersion as described previously. The bonded specimens
were examined with a FE-ESEM (Philips XL-30, Eindhoven, The
Netherlands) under wet conditions (Cowan et al., 1996).
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was performed by both direct and
indirect techniques. For the direct
technique, clinical photographs were
taken at different periods after the
application of the adhesive to labial
enamel. High-magnification clinical
photographs were also taken with a
camera attached to an endodontic
microscope (OPMI pico, Carl Zeiss,
Oberkochen, Germany). For the
indirect technique, polyvinyl
siloxane impressions (Affinis
LightBody; Colténe AG, Altstitten,
Switzerland) were taken of the
adhesive-bonded enamel, from
which epoxy resin replicas were
prepared, according to the replica
technique reported by Itthagarun and
Tay (2000). The replicas were coated
with gold/palladium and examined
under a SEM (JEOL, Model 5400,
Tokyo, Japan) at 5-10 kV.

Figure 2. FE-ESEM micrographs demonstrating the appearance of osmotic water blisters after enamel
bonded with different one-step self-etch adhesives was immersed in water. (A) A single water blister
(arrow) in Adper Prompt that was found next to a large, irregular blister (pointer). The ?cﬂer were more
commonly observed in this adhesive and were probably formed by the coalescence of multiple smaller
blisters. The surface texture of the adhesive (A) adjacent to fKe blisters was also altered (open
arrowheads), and appears swollen and exhibits cracking, even when the specimen was examined under
wet conditions. (B) Another view of a coalesced osmotic water blister (OB) in Adper Prompt, showing that
the film coating that formed the blister wall was derived from, and is still connected with (arrows), the
underlying qdﬂesive resin (A). (C) A partially collapsed blister in Xeno-lll-bonded enamel after the
specimen was re-immersed in the concentrated CaCl, solution. The top of the blister (asterisk) is partially
collapsed. Connection of blister with the underlying adhesive can be clearly identified (arrows). A,
adhesive. (D) Partial (arrow) and complete collapse of the pre-existing water blisters in iBond dfter re-
immersion in the concentrated CaCl, solution. Subsurface adhesive cratering (pointer) can be observed

RESULTS

When bonded specimens were
immersed in distilled water,
optical microscopy clearly
showed that osmotic blistering
occurred in enamel but not in
dentin. This phenomenon was
seen in all the one-step self-etch
adhesives examined and is
illustrated with specimens bonded

beneath the completely collapsed blisters.

Examination was conducted without coating at 15 kV, with the
temperature of the Peltier (cooling) stage fixed at 4°C and the
vapor pressure of the vacuum chamber varying between 5.8 and
6.3 Torr, to generate a relative humidity of 99-100%.

Transmission Electron Microscopy (TEM)

Prompt L-Pop and iBond were selected for TEM examination. The
adhesives were similarly applied to the sectioned tooth halves but
were coupled with a microfilled composite (EPIC-TMPT, Parkell,
Farmingdale, NY, USA) to prevent osmotic blistering from
damaging the resin-enamel interfaces. The bonded interfaces were
immersed in a 50 wt% ammoniacal silver nitrate tracer solution for
24 hrs, followed by immersion in a photodeveloping solution to
reduce the diamine silver ions into metallic silver grains, according
to the nanoleakage protocol described by Tay et al. (2002b).
Undemineralized, unstained, epoxy-resin-embedded, 90-nm-thick
sections were prepared and examined under a TEM (Philips
EM208S) operated at 80 kV.

In vivo Study

To validate the clinical fidelity of the in vitro results, we applied the
adhesives to the labial enamel surfaces of the central incisors of two
co-authors, after obtaining their informed consent to a protocol that
was reviewed and approved by the institutional review board of the
Medical College of Georgia (Augusta, GA, USA). Documentation

with Adper Prompt (Fig. 1A) and
iBond (Fig. 1B). For Prompt L-
Pop, osmotic blistering in enamel
was so severe that delamination
of the adhesive layer could be seen within 30 min of water
immersion. No osmotic blistering could be observed when the
bonded specimen was immersed in the control CaCl, solution
(not shown). The effect of reversing the osmotic gradient on
existing water blisters is illustrated by specimens bonded with
One-Up Bond F. Osmotic blisters that were located in enamel
after 30 min of water immersion (Fig. 1C) were almost
completely collapsed after re-immersion in the CaCl, solution
(Fig. 1D).

ESEM images of osmotic blistering that occurred in Adper
Prompt are shown in Fig. 2. Both individual blisters and large
irregular blisters that were formed by the coalescence of
smaller blisters could be identified (Fig. 2A). Subsurface
adhesive damage could be seen around the blisters when these
specimens were examined under wet conditions (Fig. 2B).

The effect of reversing the osmotic gradient on pre-existing
water blisters could be observed in detail under ESEM
examination. In Xeno-III-bonded specimens, individual fully
developed water blisters that were seen after immersion in
water became partially collapsed following re-immersion in the
CaCl, solution (Fig. 2C). Similar features were also observed
in specimens bonded with iBond, with subsurface cratering
occurring beneath the thin, adhesive film derived from the
collapsed blisters (Fig. 2D).
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Figure 3. TEM micrographs demonstrating the pathways of water movement through one-step self-etch adhesives. The micrographs were taken from
unstained undemineralized sections of adhesive-bondﬁd enamel that were immersed in an ammoniacal silver nitrate tracer solution. Water trees
(pointers) can be identified within the adhesives. In addition, isolated silver grains (open arrowheads), probably representing the hydrophilic resin
cﬁ)mcins, can be observed throughout the adhesive-enamel inferfaces. They represent the pathways for water movement within the polymerized

adhesives (A). (A) In the more a
along the surface of the enamel
is incompletely dissolved and separated
3B, showing the hybridized enamel smear layer (ES) that separated from the adhesive and was probably embedded by the
(XR). The hybridized smear layer consisted o{

gressive self-etch adhesive, Prompt L-Pop, the enamel smear layer is completely dissolved, and water trees are seen
ybrid |o?/er (R) and above the resin tags (T). (B) In the mild self-etch adhesive iBond, the enamel smear layer (arrow)
r

om the adhesive during specimen preparation. S, empty grid space. (C) A high-mo?nificoﬁon view of Fig.
aboratory epoxy resin
fractured chips of enamel crystallites and can be distinguished from the underlying 300- to 500-nm-

thick enamel hybrid layer (between open arrows) that comprised intact apatite crystallites.

TEM of the resin-enamel interface in Prompt L-Pop (Fig.
3A) revealed two distinct modes of nanoleakage (Tay et al.,
2002b) that appeared as isolated silver grains and silver-

impregnated water chan-
nels (water trees). These
pathways for water move-
ment within the adhesive
were also seen in the less
aggressive  adhesive
iBond (Fig. 3B), in which
the enamel smear layer
was retained as part of the
hybridized enamel com-
plex (Fig. 3C).

Figs. 4A-4C are
clinical photographs
documenting the appear-
ance of osmotic blisters
after iBond was applied
to the labial enamel
surface of one co-author.
Similar results were also
observed with the use of
the indirect resin replica
technique from im-
pressions taken of another
co-author following the
application of Xeno III to
labial enamel surface
(Figs. 4D-4E).

DISCUSSION

Since no water blisters
were observed when

specimens were immersed in a concentrated CaCl, solution,
and pre-existing blisters collapsed after re-immersion in the
latter, it appears that the water blisters formed in resin-coated

A,

Figure 4. Clinical validation of osmotic blistering in enamel affer the application of one-step self-etch adhesives. (A)
Photograph of tooth 11 immediately after the application of iBond. (B{) The same tooth surface after 1 hr, showing
a rough fexture (pointer). (C) A high-magnification view of the rough adhesive surface in tooth 11, showing the
presence of osmotic blisters (open arrowheads). (D) SEM micrograph of an epoxy resin replica of the enamel
surface of tooth 11, reproduced from a polyvinyl siloxane impression that was taken 3 hrs affer the application of
Xeno lll. Osmotic blisters (open arrows) could be observed between the polymerized adhesive (A) and the enamel
surface (E). (E) Epoxy resin replica of the same surface 24 hrs after the application of Xeno lll. There was almost
complete delamination of the adhesive from the enamel surface. Small, undisrupted blisters (open arrows) can still
be seen from the fragments of retained adhesive (A). Striae of Retzius (pointer) were evident along the exposed
enamel surface (E).
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enamel after water immersion were caused by osmosis
(Pommersheim and Nguyen, 1998). Although this phenomenon
is novel in dentistry, osmotic blistering is the major cause of
adhesion loss when a resin-coated substrate (e.g., painted walls)
is exposed to high relative humidities (Schwenk, 1981), and
such blisters are the initiation sites that precipitate cathodic
corrosion of resin-coated metal surfaces (Nguyen et al., 1996b).

The clinical data complemented our in vitro observation of
osmotic blistering in enamel. Although one-step self-etch
adhesives are normally used for coupling with resin composites
or luting cements, they may be present as enamel coatings
either intentionally or inadvertently. A clinically relevant
question is whether non-rinsing self-etch adhesives may be
used in lieu of composite surface sealants for refurbishing
cavosurface margins in direct and indirect restorations. The
results of this study suggest that one-step self-etch adhesives,
because of their high water permeability, should not be used for
such purposes. Incompletely removed unbound water may exist
as water trees (Fig. 1E), providing channels for rapid water
movement within the polymerized adhesive (Tay et al., 2002b).
Bound water may also exist in the form of primary or
secondary hydration shells, due to hydrogen bonding between
water molecules and hydrophilic/ionic monomers (Zaikov et
al., 1988). These sites were represented by the isolated silver
grains (Fig. 1D) and allow for water sorption via diffusion into
the polymerized adhesive.

In this study, we did not attempt to quantify the number and
size of the blisters in different adhesives, since a statistical
analysis that involves the comparison of only the physical
appearance of these water blisters will not truly reflect the total
volume of water that was trapped between the adhesive and
enamel (Davies et al., 1983). Quantification of such water
movement should be contemplated in future studies, with
Fourier transform infrared-multiple internal reflection (FTIR-
MIR) spectroscopy (Nguyen et al., 1996a), or capacitance
measurements of electrical impedance (Wittman and Taylor,
1995), that were used in other branches of science for assessing
the water content at the organic coating/substrate interface.

It is remarkable that water blisters can emerge within resin-
bonded enamel, despite the relatively strong bonds and enamel
hybridization reported when these adhesives were applied to
enamel (Pashley and Tay, 2001; Hannig et al., 2002; Ibarra et
al., 2002). In this study, we immediately immersed the cured
adhesives into different fluid media after light-curing to
approximate what could have occurred in the oral cavity after
rubber dam removal. FTIR-MIR examination revealed that the
degrees of conversion of some of these adhesives were low
immediately upon polymerization and that a longer period was
required for bond maturation to occur (Mr. Byoung Suh,
personal communication). This probably permitted the adhesive
to have a relatively high permeability to water. Presumably,
during self-etching, the acidic monomers form calcium salts
that create a hypertonic environment at the resin-substrate
interface. This caused osmosis of water into the hypertonic
region. The increased pressure at the interface apparently
induced delamination and creep of the resin, resulting in blister
formation. Since water could drain way from resin-dentin
interfaces through the dentinal tubules, no blister formation
occurred, whereas water that accumulated within the relatively
impermeable enamel allowed blisters to form with the
continuous build-up of osmotic pressure. Nguyen et al. (1996a)
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further demonstrated that increasing the film thickness of a
resin coating only prolonged the time required for water from
the outside to reach the resin-substrate interface, but did not
completely arrest the process of osmotic blistering. Conversely,
the use of multiple coating may help reduce the propensity of
osmotic blistering due to the variation in the courses of
conductive channels within the different resin layers.

We had initially anticipated the expression of water droplets
from bonded dentin (Tay et al., 2002a) following immersion of
the specimens in CaCl, solution, since water could have been
withdrawn from the dentinal tubules through the permeable
adhesive layer. However, no water droplets could be seen from
bonded dentin. This was probably due to the rapid evaporation
of these minute water droplets once the specimens were
retrieved from the CaCl, solution to be examined by FE-ESEM.
Dentin fluid droplets were seen when impressions of both vital
and non-vital dentin bonded in vivo with one-step self-etch
adhesives were examined by a resin replica technique (Chersoni
et al., unpublished results). Since no osmotic gradient is
generated with the use of a water-insoluble impression material,
the driving force for water extrusion from bonded dentin may
additionally be caused by the bending moment produced by in-
plane compression stresses (ca. 5 MPa) created within the film
coating after water sorption (Chuang and Nguyen, 1997). It is
possible that competition may exist between the osmotic
induction of blister growth and the fluid extrusion that is caused
by the bending moment created within a swollen adhesive layer,
with the former process dominating in enamel and the latter in
dentin. While these complex issues should be further clarified in
future studies, their manifestations are indirect verification of
the permeability that is associated with the use of contemporary
one-step self-etch dentin adhesives.
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