Abstract View
 REPEATED DOSES OF MELATONIN PROTECTS AGAINST FOCAL CEREBRAL ISCHEMIA IN THE RAT.

Z. Pei ${ }^{1}$; S.F. Pang ${ }^{2}$; R.T.F. Cheung ${ }^{1 *}$

1. Medicine, The University of Hong Kong, Pokfulam, Hong Kong
2. Physiology, The University of Hong Kong, Pokfulam, Hong Kong

We studied the time window of neuroprotection against focal ischemia by a single dose or repeated doses of melatonin (MT) at $5 \mathrm{mg} / \mathrm{kg}$. Adult male Sprague-Dawley rats (280 to 360 g) were anesthetized with sodium pentobarbital ($60 \mathrm{mg} / \mathrm{kg}$, I.P.) to undergo reversible right-sided endovascular middle cerebral artery occlusion (MCAO) for 3 hours. Arterial blood pressure, heart rate and cerebral blood flow were monitored, and rectal temperature was kept between 36.5 and $37.5^{\circ} \mathrm{C}$ throughout anesthesia. The control rats received 1 I.P. dose of the vehicle at the onset of ischemia, whereas experimental groups of rats received either 1 I.P. dose of MT at 0 or 60 minutes after onset of ischemia or 3 doses of MT at 1,24 , and 48 hours after onset of ischemia. The rats were decapitated on day 3 of MCAO, and their brains were stained with 2% triphenyltetrazolium chloride for determination of infarction. Results were compared using 2tailed student's t test. When compared to the relative infarct volume of $27.0 \pm 4.6 \%$ (mean \pm SEM; 7 rats) in the control group, a single ($5 \mathrm{mg} / \mathrm{kg}$) I.P. dose of MT did not significantly reduce the relative infarct volume ($20.1 \pm 4.1 \%$ in the 0 -minute group [8 rats]; $19.8 \pm 3.2 \%$ in the 60 -minute group [9 rats]). Nevertheless, the relative infarct volume was significantly reduced to $13.9 \pm 3.4 \%$ (8 rats, $\mathrm{P}<0.05$) in the group which received 3 doses of MT. There was no significant difference in hemodynamic parameters among the groups. Thus, repeated doses rather than a single dose of exogenous MT protects against focal cerebral ischemia, when given 60 minutes after onset of ischemia.
Supported by: the CRCG Research Grant 10202138 of the University of Hong Kong

