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Highly pathogenic H5N1 influenza A viruses are now endemic in avian populations in
Southeast (SE) Asia, and human cases continue to accumulate. While currently
incapable of sustained human-to-human transmission, HSN1 represents a serious
pandemic threat due to the risk of a mutation or reassortment generating a virus with
increased transmissibility. Identifying public health interventions which may be capable
of halting a pandemic in its earliest stages is therefore a priority. Here we use a
simulation model of influenza transmission in SE Asia to evaluate the potential
effectiveness of targeted mass prophylactic use of antiviral drugs as a containment
strategy. Other interventions aimed at reducing population contact rates are also
examined as reinforcements to an antiviral-based containment policy. We demonstrate
that elimination of a nascent pandemic may be feasible using a combination of
geographically targeted prophylaxis and social distancing measures if the basic
reproduction number of the novel virus is below 1.8. We predict that a 3 million course
stockpile should be sufficient for elimination. Policy effectiveness critically depends on
the ascertainment rate of clinical cases and the speed with which antiviral drugs can be

distributed.

The continuing spread of the HSN1 highly pathogenic avian influenza (HPAI) in wild and
domestic poultry in SE Asia represents the most serious human pandemic influenza risk for
decades'”. Great potential benefits would be gained from any intervention capable of
containing the spread of a pandemic strain and eliminating it from the human population.
However, the rapid rate of spread of influenza — as witnessed both in annual epidemics and

past pandemics®— poses a significant challenge to the design of a realistic control strategy.

The basic reproduction number®, R, , quantifies the transmissibility of any pathogen, being

defined as the average number of secondary cases generated by a typical primary case in an
entirely susceptible population. If R, >1a disease can spread, while if R, <1, chains of

transmission will inevitably die out. Hence the goal of control policies is to reduce R, to

below 1, by eliminating a proportion 1—-1/ R, of transmission. This can be achieved in three

ways: (a) by reducing contact rates in the population (through ‘social distance measures’); (b)



by reducing the infectiousness of infected individuals (through treatment or isolation); or (c)
by reducing the susceptibility of uninfected individuals (by vaccination or antiviral

prophylaxis).

Vaccination and antiviral drugs offer protection against infection and clinical disease.
However while effective vaccines exist for interpandemic flu, candidate HSN1 vaccines have
unproven effectiveness’ and production delays would in any case limit availability in the first
months of a pandemic. Antiviral agents — and in particular the neuraminidase inhibitors,
which show experimental effectiveness against all influenza A subtypes™ — are therefore a

key plank of recently revised pandemic preparedness plans in several countries'.

For antivirals to significantly reduce transmission, prophylactic use is necessary. Large-scale
prophylaxis has the potential to limit spread substantially in a developed country context',
but the very large stocks of drug necessary make this policy impractical if the pandemic is
already global. However, might such a policy nonetheless be a feasible strategy if applied at
the source of a new pandemic, when repeated human-to-human transmission is first
observed? We address this question here, focusing on identification of the threshold level of

transmissibility below which containment of any new pandemic strain might be feasible.

Modelling pandemic spread

We model spread in SE Asia, as that region remains the focus of the ongoing avian H5SN1
epidemic and is where most human cases have occurred. Greater data availability led us to
model Thailand, not a perceived greater risk of emergence compared with other countries in

the region; we believe our conclusions are also valid for other parts of SE Asia.

We constructed a spatially-explicit simulation of the 85 million people residing within
Thailand and in a 100km zone of contiguous neighbouring countries. The model explicitly

incorporates households, schools and workplaces as these are known to be the primary
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contexts of influenza transmission = “(see Figl and Methods) and because control measures



can readily target these locations. Random contacts in the community associated with day-to-

day movement and travel are also modelled..

Natural history and transmission parameters

Fundamental to the feasibility of any containment strategy is the transmissibility of the
emergent virus, as quantified by R, . Reliable past estimates of transmissibility are rare,
perhaps due to the antigenic diversity of the influenza and consequent complex impact of

population immunity on transmission.

We reanalysed incubation period and household transmission data (see Methods) and derived
new natural history parameters which predict a profile of infectiousness through time which
is remarkably consistent with viral shedding data from experimental infection studies (see
Figure 1g". This profile gives an estimate of the serial interval or generation time, T, (the
average interval from infection of one individual to when their contacts are infected), of 2.6

days — to be compared with the value of ~4 days assumed by most past modelling'.

Reanalysis of both US and UK 1918 mortality data using this new value of 7, revises

pandemic influenza R, estimates’ downwards to approximately 1.8 (Figure 1a) — yielding a

predicted infection attack rate during a pandemic of 50-60%, consistent with what was seen
in the 1 and 2™ waves of past pandemics (see Figure 2b). A value of 1.8 is also consistent
with annual interpandemic attack rates seen for households where all members were highly
susceptible to the prevalent strain'’ (see Supplementary Information). We additionally
assume that 50% of infections result in clinically recognisable symptoms, with the other 50%

being too mild to be diagnosed clinically '*.

It is not certain that these parameter estimates would be applicable to any new pandemic
strain. It is possible that the mutations or reassortment event that give rise to the new viral
strain might initially only increase its transmissibility a little over the R,=1 threshold for self-
sustaining transmission. In that case, additional mutations would need to accumulate for viral

fitness to increase to its maximum. Given the extended viral shedding (and symptomatic



disease) seen in severe human cases of avian HSN1 infection, this also might mean that the

T, of the initial pandemic strain could be considerably greater than for currently circulating
human influenza viruses. We therefore examine the ability of control measures to contain

pandemic spread not just at a single value of R, but for different values in the range

1< R, <2, and analyse model sensitivity to the assumed value of 7, .

Baseline epidemic dynamics.

We consider the scenario that a novel transmissible ( R, >1) pandemic strain arises as a result

of mutations or a reassortment event in a single individual infected with an avian virus. We
seed simulations with a single infection in the most rural (i.e. lowest population density) third
of the population, assuming rural populations are most likely to be exposed to the avian virus.
Figure 2 shows the typical pattern of spread for an emergent pandemic initiated by such a

seeding event assuming R, =1.5 — though note that for low R, most epidemics seeded by a

single individual go extinct by chance before becoming established in the population.

The pattern of spatial spread (Figure 2a and Supplementary Information video 1) is of
interest: for the first 30 days, cases tend to be limited to the region around the seeding
location, with few ‘sparks’ outside that area. However, as case numbers increase
exponentially, so does the frequency with which infection events span large distances, and
the epidemic rapidly transforms from being predominantly local to country-wide between day
60 and 90. Any containment policy needs to be effective before this transition — in part
because logistic constraints are likely to preclude containment of a widely disseminated
epidemic, but also because the probability of international export of infection becomes high
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once case numbers reach the thousands .

For R,=1.5, the epidemic in the modelled population of 85 million peaks around day 150,

and is largely over by day 200, at which point 33% of the population have been infected. At
R,=1.8 the epidemic peaks around day 100 and infects around 50% of the population.



Impact of antiviral prophylaxis

In containment strategies, we focus on 2 principal outcome measures: (a) the probability of
preventing a large outbreak (which would eventually lead to a global pandemic); (b) the

number of courses of drug (here assumed to be oseltamivir) required to achieve containment.

Blanket prophylaxis of an entire country or region should be able to eliminate a pandemic
virus with an R, of 3.6 or greater (see Methods). However, such a policy would require
enough drug to prophylax everyone for up to 3 weeks (i.e. at least 2 courses per person), and
hence is unfeasible . Targeted strategies are therefore needed which minimise drug usage

while maximising impact.

Social targeting is the most straightforward approach — namely prophylaxing individuals in
the same household, school or workplace as a newly diagnosed symptomatic case.
Unfortunately, if such a policy is only initiated after 20 or more cases, purely social targeting
only has a has >90% probability of eliminating the pandemic strain if R, <1. 25 (lowest curve
of Figure 3a; see also Supplementary Information). In reality, at least 10 cases might need to
be detected to be sure that viral transmissibility had significantly increased®’, and detection
and decision-making delays could easily mean 20-30 cases had arisen before policy initiation.
A containment policy will therefore probably need to go beyond social targeting to succeed.
Since most community contacts are local, geographic targeting — namely when a case is
detected, prophylaxing the whole population in neighbourhood of the household of the case —
is an obvious policy extension, though one which undoubtedly will dramatically increase the
logistical challenges to delivery. In the absence of detailed administrative boundary data, we
simulated geographic targeting as the prophylaxis of the population within a ring of a certain
radius centred around each detected case, though in reality targeting administrative areas is
likely to be more practical. For socially or geographically prophylaxis, we assume individuals
are given a single course of 10 days of drug, after which time they come off drug unless more
cases have arisen in their vicinity, in which case a second round of prophylaxis is delivered.

The policies therefore automatically cease within 10 days of the last case being reported.



Our analysis indicates that the substantial additional effort required to deliver a geographic
policy pays substantial dividends in policy effectiveness. With a 2 day delay from case onset
to prophylaxis, a Skm ring policy is capable of containing pandemics with an R, of 1.5
(Figure 3a) at the cost of an average of 2 million courses (Figure 3b) - though the maximum
number of courses needed can by an (unfeasible) order of magnitude for scenarios where
cases arise in Bangkok at an early stage of the outbreak. Policy effectiveness increases with
the radius of the treatment ring selected (though little benefit is gained from exceeding
10km), but so does the number of courses required (Figure 3b). Policy outcome is still
sensitive to the speed of case detection and drug delivery, but containment is always

substantially better than for the purely socially targeted policy (Figure 3d).

Since pure radial prophylaxis is costly in terms of drug, we also examined a policy variant
which limits the number of people targeted for prophylaxis per case by only targeting the
nearest m people (where m=10,000-50,000) within 10km of a newly diagnosed case. In areas
of low population density, this drug-sparing policy has the impact of a pure 10km policy, but
in high density areas many fewer courses of drug are used. The improved effectiveness in
rural areas outweighs decreased effectiveness in urban areas resulting in greater impact than a

pure Skm policy and much lower drug use (Figure 3e-f).

Epidemiologically, elimination either occurs because the treatment strategy reduces R, to

below 1, or because it reduces it to close to 1 when the epidemic is small, hence enhancing
the probability of random extinction. In scenarios where the pandemic strain is successfully
eliminated, geographic spread is usually limited. For example, the root-mean-square (rms)
radius of spread is 27km for R,=1.5 using the 5km radial geographic targeting strategy.
When containment is successful, total case numbers are also limited to an average of fewer

than 150 cases.

Policies to increase social distance



Measures to increase social distance have been employed in past pandemics, and remain
important options for responding to future pandemics'. Predicting the impact of policies such
as closing schools and workplaces is difficult, however, as potentially infectious contacts may
be displaced into other settings. Furthermore, it is likely that population contact rates change
spontaneously (as well as a result of policy) during severe epidemics (e.g. 1918) in response
to the perceived risk. Therefore the estimates of pandemic transmissibility we derive from

past pandemics may implicitly incorporate the effects of some degree of social distancing.

We are therefore deliberately conservative in the assumptions made as to the impact of school
and workplace closure here, by assuming household and random contact rates increase by
100% and 50% respectively for individuals no longer able to attend school or work. Figure 4a
illustrates how adding area-based school and workplace closure, to a drug-sparing

prophylaxis policy increases policy effectiveness significantly, with the combined policy

having a >90% chance of elimination for R =1.7.

Quarantine zones — in which movements in and out of the affected area are restricted — are
another strategy for enhancing containment, and may in any case be thought necessary to
prevent population flight from affected areas or people deliberately entering prophylaxis
zones to receive drug. Figure 4a (see also Supplementary Information video 2) shows that
such a strategy can dramatically boost the effectiveness (to 90% containment at R, =1.8) of a
radial geographic targeted prophylaxis even if only 80% effective at reducing movements.
Combining school and workplace closure with area quarantine and prophylaxis further
increases policy effectiveness (90% containment at R =1.9) and as importantly, the
robustness of the policy to shortcomings in case identification or treatment rates. For all these

policies, containment is typically achieved after fewer then 200 cases have been detected.

Logistical constraints and sensitivity to parameter assumptions

Other constraints may affect the ability of public health authorities to deliver containment

policies. Figures 4c shows that size of antiviral stockpile can have a substantial effect on



policies which use pure radial geographic prophylaxis since very large numbers of courses
are required to prophylax around cases arising in large urban areas. However policies
employing drug-sparing geographically-targeted prophylaxis (Figure 4d) retain high
effectiveness so long as at least 3 million drug courses are available. For the scenarios where
containment fails given a finite stockpile, Figure 4e shows that even an unsuccessful
containment strategy can delay wide-scale spread by a month or more — a potentially critical

window of opportunity for accelerating vaccine production.

Another possible constraint is that capacity to implement these containment policies may not
be present in all countries in the region, A policy restricted to one country alone may have a
substantially reduced chance of success (Figure 4f and Supplementary Information video 3),

should the initial case cluster arise in a border region.

Multiple assumptions inevitably need to be made in undertaking preparedness modelling for a
future emergent infection. Sensitivity analyses are therefore critical to assessing the
robustness of policy conclusions. Here, critical assumptions not already discussed include (a)
the ratio of within-place to community transmission, (b) the expected generation time, 7,, of
a new pandemic strain (largely determined by the duration of viral shedding and therefore
infectiousness), (c) the level of heterogeneity in individual infectiousness (e.g.

21
‘superspreaders’

), (d) antiviral efficacy/take-up, and (e) the sensitivity and specificity of
case detection during the control programme. The impact of these assumptions on model
output is presented in the Supplementary Information, but in summary, (d) and (e) are — as
one might expect — the most critical. If antiviral coverage or efficacy is considerably less than
assumed, then policy effectiveness is substantially reduced. Similarly, if surveillance picks up
fewer than 40% of infections (i.e. 80% of symptomatic cases), again policy effectiveness is

reduced. Poor surveillance specificity (i.e. false positives) has an indirect effect on

effectiveness through wasted drug and logistical capacity..

Conclusions



10

We have shown that containment and elimination of an emergent pandemic strain of
influenza at the point of origin is potentially feasible using a combination of antiviral
prophylaxis and social distance measures. A key conclusion is the need for multiple
approaches: simple socially-targeted prophylaxis is unlikely to be sufficient if the emergent
virus has transmissibility near that of past pandemic viruses. Geographically targeted policies
are needed to achieve high levels of containment, with area quarantine being particularly
effective at further boosting policy effectiveness. The only scenario under which purely

socially targeted strategies might be sufficient would be if viral transmissibility evolved

incrementally and the emergent virus initially had R, only slightly above one (see

Supplementary Information); however R, will be probably be uncertain at the time

containment policies have to be implemented, arguing for policies be precautionary in

assuming transmissibility will be comparable with that seen in past pandemics.

A number of key criteria need to be met for a high probability of success: (a) rapid
identification of the original case cluster, (b) rapid and sensitive case detection and then
delivery of treatment to targeted groups — preferably within 48 hours of a case arising, (c)
effective delivery of treatment to a high proportion of the targeted population — preferably
>90%, (d) sufficient stockpiles of drug — preferably 3+ million courses of oseltamivir, (e)
population cooperation with the containment strategy and, in particular, any social distance
measures introduced, (f) international cooperation in policy development, epidemic
surveillance, and control strategy implementation. Lastly, containment is unlikely if R,
exceeds 1.8 for the new pandemic strain. While our analysis of past pandemics suggests that
transmissibility will be in this range, it is unlikely that sufficient data will exist to verify this

before a containment policy needs to be introduced.

The mathematical model we have used to examine the feasibility of pandemic containment is
perhaps the largest-scale detailed epidemic microsimulation yet developed. A key modelling
goal was parsimony. While the representation of the population is detailed, this detail is
underpinned by available demographic data. The natural history parameters used here have

been estimated from primary data on existing influenza strains. The model has 5 key
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transmission parameters, of which 2 were estimated from household data and the remaining 3
were qualitatively calibrated to historical age-dependent attack rates. We believe that this
type of simulation will increasingly become a standard tool for preparedness planning and

modelling of novel disease outbreaks.

Given the set of criteria listed above for successful containment, the obstacles to practical
implementation of such a strategy are undoubtedly formidable. Surveillance is perhaps the
single greatest challenge. Success depends on early identification of the first cluster of cases
caused by the pandemic strain®’, and on detection of a high proportion of ongoing cases.
Some level of mildly symptomatic infection is to be expected (and has been observed for
human H5N1 infections®), but key to successful containment is the proportion of such cases
and their infectiousness. Should the high pathogenicity of recently reported human infections
with the H5N1 virus be even partly maintained, then containment might paradoxically be

more likely as case-ascertainment levels would be higher.

Achieving the rapid delivery of antiviral drug to a large proportion of the population poses
many challenges. Thailand, the country modelled here, is one of the best prepared and
equipped countries in the region in being able to implement a large-scale and very rapid
public health intervention. Other countries in the region need considerable development input
in basic healthcare and disease surveillance infrastructure in order to meet the needs of

containment.

Antiviral resistance represents an as yet unquantifiable challenge to a prophylaxis-based
containment strategy. Key is not whether genotypic or clinical resistance is seen in a
percentage of individuals, but whether resistant viruses are capable of self-sustaining
transmission (i.e. have R,>1). As yet, the evidence is indicative that fitness deficits mean
transmissibility is limited for oseltamivir-resistant strains™~* but the possibility that
compensatory mutations which increase transmissibility might be selected cannot be ruled
out completely. If a transmissible resistant strain did emerge during a containment policy, it
would be essential for prophylaxis to cease, lest wild-type virus be eliminated and the world

be left with a pandemic of resistant virus. If prophylaxis were abandoned, the likely higher



12

fitness of wild type would give every chance that the resistant strain would then be excluded

from the population.

A feasible strategy for containment of the next pandemic offers the potential of preventing
millions of deaths. It is therefore in the interest of all countries to contribute to ensuring the
resources, infrastructure and collaborative relationships are in place within the region
currently most likely to be the source of a new pandemic. Even if the challenges are great, the
costs of failure are potentially so catastrophic that it is imperative for the international
community to prepare now to ensure containment is given the best possible chance of

SUCCCESS.

Methods

Demographic data: The model used Landscan data® to generate a simulated population
realistically distributed across geographic space (Figure 1a). Thai census data’**’ on
household size and age distributions was used for demographic parameterisation (Figure
1b,c). Thai National Statistical Office data’’ was used to determine the number and
proportions of children in school as a function of age, and Thai Dept. of Education™ data on
24,000 schools was used to determine the distribution of school sizes (Figure 1d). Data on
travel distances within Thailand was limited; here we used data collected in the 1994

29,30

National Migration Survey” ™" on distances travelled to work (Figure 1e and see

Supplementary Information) to estimate movement kernel parameters. The best fit kernel had

asymptotic power law form as a function of distance d given by f(d) ~ 1/[1 +(d/ a)b},

where a=4 km and »=3.8. Thai workplace sizes’' also follow a power law distribution®* with

an estimated maximum single workplace size of approximately 2300, and a mean of 21.

Disease data: The natural history of any H5 based pandemic strain will not be known until it
emerges, so we used parameter estimates for current human influenza subtypes, and
employed sensitivity analyses to investigate what impact deviation from these estimates

would have on policy effectiveness (see Supplementary Information). The mean and
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standard deviation of the incubation period distribution were estimated as 1.48 and 0.47 days

. . . 33
respectively from data on a multiple exposure event occurring on an aeroplane

We adopt a more biologically realistic approach than most past modelling studies (though see

ref. **), and rather than assuming infectiousness is constant from the end of the latent period

to recovery, we model it as a function, x(7) (assumed normalized), depending on the time
elapsed from the end of the latent period. The generation time, 7,, is just given by the mean

latent period plus J: Tx(T)dT . Experimental infection data®® indicates the start of

symptoms to be coincident with a sharp increase in viral shedding, so we assume
infectiousness starts at the end of the incubation period. We further assume a 0.25 day delay
from when symptoms start to when diagnosis or health-care seeking behaviour is likely. We
employed Bayesian methods (see Supplementary Information) to estimate x(7') from data
collected in a recent household study of respiratory disease incidence®*’. Combined with the
estimated incubation period distribution, this gives the profile of infectiousness shown in

Figure 1f. 7, is estimates as 2.6 days (95% credible interval: 2.1-3.0) — shorter than

previously assumed (though see ref. *%).

Transmission model: The model is a stochastic, spatially structured, individual-based
discrete time simulation. Individuals are co-located in households, with households being
constructed to reflect typical generational structure while matching empirical distributions of
age structure and household size for Thailand (Figure 1b,c). Households are randomly
distributed in the modelled geographic region with a local density determined by the
Landscan data®. In any timestep of AT =0.25 days, a susceptible individual i has probability
1—exp[—AAT] of being infected, where 4, is the instantaneous infection risk for individual i.
Infection risk comes from 3 sources: (a) household, (b) place, and (c) random contacts in the
community. The last of these depends on distance and represents random contacts associated
with movements and travel, and is the only means by which infection can cross national
borders. Analysis of household infection data (see Supplementary Information), gave a

within-household R, of 0.6 and an overall R, of 1.8. We partition non-household

transmission to give levels of within-place transmission comparable with household
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transmission (i.e. R, = 0.6 ) and to qualitatively match 1957 pandemic age-specific attack

rates. When varying R, , the relative proportions of household, place and community

transmission were kept fixed. Full model details are given in the Supplementary Information.

Antiviral drug action: We use recent statistically rigorous estimates of antiviral efficacy”,
but these are broadly consistent with previous estimates®. Prophylaxis of uninfected
individuals is assumed to reduce susceptibility to infection by 30%, infectiousness if infection
occurs by 60%, and the probability of clinically recognisable symptoms by 65%>°. In theory
therefore, blanket prophylaxis of a population should be able to contain a pandemic with an
R, of 1/[(1-0.6)(1-0.3)], approximately 3.6. Treatment of a symptomatic case is assumed
to reduce infectiousness by 60% from when treatment is initiated. Overall, for the parameter
values used here, antiviral treatment of a symptomatic case can reduce total infectiousness

throughout the course of infection by a maximum of 28%.

Correspondence and requests for materials should be addressed to N.M.F.

(email: neil.ferguson@imperial.ac.uk).
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Figure Legends

Figure 1. Data. (a) Modelled population density of Thailand and 100km contiguous zone of
neighbouring countries, based on Landscan™ data, plotted on logarithmic scale (light=low density,
dark=high density). Inset shows Bangkok in more detail. (b) Age distribution of Thai population in
2003 in 5 year bands and corresponding age distribution of simulated population. (c) as (b) but
showing distribution of household sizes. (d) Observed (solid lines) and modelled (dashed lines)
distributions of school sizes (blue=elementary, green=secondary, red=mixed). (e) Probability of
travelling over a certain distance to work estimated from data and from the simulated population . (f)
Weekly excess influenza-related mortality in 1918-19 in GB and corresponding estimates of the

reproduction number, R, calculated assuming 7, =2.6. (g) Viral shedding data for experimental

influenza infection®® compared with the modelled profile of infectiousness over time. Note that the
infectiousness profile was not fitted to shedding data. See Methods and Supplementary Information
for more details.

Figure 2. Expected pattern of spread of an uncontrolled epidemic. (a) Sequence of snapshots of the
epidemic showing extent of spread of a single simulation of a R, =1.5 epidemic. Red indicates

presence of infectives, green the density of people who have recovered from infection or died. (b)
Daily incidence of infection over time in the absence of controls for R,=1.5. Thick blue line

represents average for realisations resulting in a large epidemic, grey shading represents 95%
envelope of incidence timeseries. Multiple coloured thin lines show a sample of realisations,
illustrating large degree of stochastic variability. (¢) Root Mean Square (RMS) distance from seed
infective of all individuals infected since the start of the epidemic as a function of time. Thick blue
line represents average distance for realisations resulting in a large epidemic, grey shading represents
95% envelope. (d) Proportion of the population infected by age averaged across realisations giving

large epidemics, for Ry = 1.5. The infection attack rate is 33% for R,=1.5, and 50% for R,=1.8. (e)

Distribution of number of secondary cases per primary case during the exponential growth phase of a
R,=1.5 epidemic. Between 50 and 1000 realisations were used to calculate all averages (see

Supplementary information).

Figure 3. Prophylaxis strategies. We assume 90% of clinical cases (=45% of infections) are detected.
Social targeting assumes prophylaxis of 90% of household members and 90% of pupils or colleagues
in 90% of the schools or workplaces of detected cases. Geographic targeting assumes 90% of people
within 5, 10 or 15km of a detected case are also prophylaxed. (a) Probability of eliminating an
otherwise large epidemic using social plus geographic targeting, as a function of R, of the new strain

and the radius of prophylaxis. Results assume policy initiation after 20 cases detected and a 2 day
delay from case detection to prophylaxis. Error bars show exact 95% confidence limits. (b) as (a) but
showing average numbers of drug courses required for containment of an otherwise large outbreak.
(c) Map (of 150x150km square of northern Thailand) showing extent of spread during one contained

R,=1.8 epidemic assuming 10k radial prophylaxis and other parameters as (a). Blue represents

treated areas. (d) as (a), but varying the delay (from 0-4 days) from case detection to prophylaxis for
the Skm radius policy. (e-f) as (a-b) but for drug-sparing policies which target only the nearest 10, 20,
30 or 50 thousand people within 10km of a detected case.

Figure 4. Social distance measures. (a-b) as Fig 3(a-b), but showing impact of drug-sparing
prophylaxis (50,000 courses per case, as Fig 3¢) combined with: no social distance measures (as Fig
3); closure of 90% of schools and 50% of workplaces within Skm of a detected case for 21 days; 80%
‘area quarantine’ (i.e. reduction by 80% of travel in and out of a zone defined by merging Skm rings
around all detected cases) for 21 days; combination of school/workplace closure and area quarantine.
(c) as (a) but showing effect of limiting availability of antiviral drugs to 1, 3 or 5 million courses on
the effectiveness of the combined area quarantine and Skm radial prophylaxis policy. (d) as (c) but for
drug-sparing geographic prophylaxis (50,000 courses per case) plus area quarantine. (e) Case
incidence over time without pandemic control and with the 3 million course policy of (d), showing the
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approximate 1 month delay achieved even when containment is unsuccessful ( R, =1.9). (f) as (a), but

showing the reduction in policy effectiveness seen if the combined school/workplace closure and
drug-sparing prophylaxis policy is restricted to Thailand alone.
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