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It gives me great pleasure to welcome vou all, this morning,
to the opening of our Seminar on Clrcuits and Systems. &Sorme ¢f ycu
are newcorers to the Uhiversity of Hong Kong or even to Hong XKong
itself. To them I would extend my good wishes for a very interesting

and pleasant visit. But to all of vou may I wish you a rewardins dzy

with us here.

Today's Seminar focuses on an area of considerable interest
to the modern Electrical Engineer, not least because the subject itself
has reached a turning point. After a decade of abstraction, the field
of circuits and systems, I understand, is being re—appraised and
directed towards a more practical path. This Seminar, therefore,
is both timely and pertinent. Amongst us this morning, we are
particularly fortunate in having distinguished scholars of international
repute ,renowned for their pioneering work in the field and the
publications arising therefrom. Their contributions to the Seminar
will be extremely valuable and will provide us with food for thought
for sometime to come. Their presence here will give us the benefit of
personal contact and exchange of views - and this is a rare opportunity

of which we will take full advantage.

Hong Kong is often considered by some as suffering from academic
isolation. This criticism may have been more justified in the past,
but now, with sophisticated commmication and transportation networks,
we are much better able to keep abreast of new trends and developments
elsewhere. However, there can be no real substitute for direct

discussion and debate, for "the meeting of minds®. This Seminar,



[\
.

therefore, will serve in bringing practising engineers and academicians
in Hong Kong closer to experts from overseas, and thus closer to the
pulse of ideas. Some of our distinguished visitors have just
returned from intemational conferences, on the same subject, in

Tokyo and Taipel. With them they bring a wealth of new information
for us to learn and ponder over. May I say how much we appreciate

their presence here.

A warm welcare, too, to our colleagues from the Hong Kong
industries. We are very glad indeed to have you with us. Your
experience and expertise and your support for ocur work at the University,
have long been valued by us, and we hope that this Seminar will
strengthen the ties between us and that you will find time to visit

us often.

The University is now embarking on new building projects for the
Engineering Faculty. Do not judge us too harshly when we show you our
present facilities, for in a few years we hope to proudly welcome
you to our new Engineering building and to the rapid develcopments which

by then will have taken place.

May I wish you all a very stimulating and enjoyable Seminar.
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ABSIRACT.

A topological approach based on oriented line seg-
ments is used to implement a set of logical and
topological operations for IC layout manipulations
which are useful in IC layout design rule check ,
IC layout resizing , and IC consistency check bet-
ween the layout and the circuit/logical schematic.

INTRODUCTION

Conventional integrated circuit (IC) design con=
sists of vreparing an initial circuit schematic
and performing a circuit analysis using the come
puter simulation method. Once the designer is
satisfied with the simulated performance , the
circuit is transformed to an IC layout which is
then digitized to obtain its computerized layout
data base, The layout data base will be used io
generate IC mask for fabrication., During the IC
layout design , the size of transistors, resistors
and capacitors are scaled and converted into area
definition based on nominal circuit parameier
values used for the circuit simulation. The sizes
of the circuit components are adjustied to fit the
IC layout design rules based on minimum spacing
or width , relative element positions, and size
requirenents.

The design of an IC mask is time consuming and
expensive because of the extensive checkings of

the IC circuit and layout., Moreover , the amount
of work to perform checkings will grow rapidly
because the complexity of IC increases very rapidly
as shown in figure 1, Thus, computer aids have

been used extensively in the design and checking
of IC masks to reduce the tedium involved in the
consistency check between the layout and the circuit
[logic schematic and the design rule check. Many
computer-aided IC layout processing programs have
been developed or developing in various type of
companys such ag semiconductor manufacturing com=
panys , computer manufacturing companys , graphic
application compenys and data processing / service
companys . Most of the programs are to implement

a set of elementary operations from which a come
plete IC check can be generated . The elementary
operations are listed as follows :

*
Also with National Semiconductoxr Corp., U S A

1. Design Rule Check [1-6)

(1) Spacing Check -~ Internzl Spacing Check ,
External Spacing Check ,Enclosure Spacing
. Check , and Relational Spacing Check etc,

(i1) Logical Operations - OR , AND , ANDNOT ,
and XOR etc.( see figure 2.)

(111) Minimum Area Check
{(iv) Layout Resizing - Expansion and Contraction.,

2. IC Consistency Check between the
uit / Logic Schematic [9”12
(1) Logical Operations - OR , AND , ANDNOT ,
and XOR etc,

(11) Topological Operations : (see figure.3,)

(a.) Identify regions - each region may consist
of a get of joint polygons,

(b) Recognize two regions in two diffexent
layers are connected through contacti(s), and

(¢) Recognize a region in one layer is sure
rounded (CONTAINED) by a region in the
other layer, etc.

(411) Device Recognition - recognize devices
such as transisiors , resistors and capaci-
tors ste.

(iv) Layout Resizing ~ Expansion and Contraction,

{v) Circuit Parameter Calculation - resistances,
capacitances and w/L 's of transistors etc.

According to the basic data item that the elementary
operations operate on , there are several possible
approaches shown below to implement these elementary
operations.

(1) Polygon approach - the polygons in the IC data
b(ase) are directly used for data manipulations
1 .
{2) Trapezoid {or Rectangle) approach -'the polygons
are splitted into trapepoids (or rectangles)
for data manipulations (6],

{3) Vertex apﬁroach'- the vertices of polygons are
used for data manipulations [5 ] .

(4) Line segment approach - the polygons are splite
ted into line segments for data manipulations
[5' 9 ] .

(5) Bit map approach - ihe polygons are transformed
into a bit map such that each bit corresponds



- to & unit of area and the areas enclosed by the
po]q;gona are represented By ‘1' and that not
enclosed by *0' (2],

(6) Symbolic approach = the IC layout data base
composed of a set of symbols such that each
symbol represenis a component or part of com=
pont. The data manipulations can be on the

- gymbols (7-—8]

In this paper , we are to present a topological
approach based on oriented line segments to im-
plement the algorithms for the logical operations
and the topological operationa.

11, DEFINTTI

Ve shall first introduce the definition of oriented
ent {OLS

For each of line segments (v, s v ) , between
i %4-1

vertices vy b¥y ) oand vy o= (xy 44¥ 1)

of an (n-h-ver%ex Slockwise polygon itlre. ix

1; 25 eee y n~1 , the OLS is defined as follows 3
s
(vi’viﬂ) with orientation ‘up' 1 ¥,<Vg,4
(Viﬂ ,vi) with orientation 'down' if ¥ ¥, 4
oIS &< (v T i) with orientation 'horizontal-left'
i yy =¥y,q and xP Xy

{v.,v, ,) with orientation 'horizontal-right’

it i s
3 7y = Yyq 800 X <X

In the "y ) of an OIS, vertex v, is called the
first verteé and Yy the second vertéx of the 0IS,

Fereafter, we will use 7018, {-0LS, +~0IS, and
-3~0LS to denote the OILS's with orientations 'up',
tdown', 'horizontal-left', and 'horizontal-right'

respectively. Moreover, for 1-0IS and {-0IS , the
y ordinate of the first vertex is always smaller

than that of the second vertex. Thus, for conveni-
ence we will use (x, ,, and (x "y ) to dencte

the (x,y ) coordinates of the first and -the ‘second
vertex respectively.

II1. ALGORITHM OVERVIEW

The logical operations (OR , AND , ANDNOT , and

XOR) operate on two layers (input 1ayers) to gene-
rate another layer (ouiput layer) and the topolo~ .
gleal operations operate on one, two or three layers
to identify or recognize some topological proper-
ties, The algorithms for the logical operations

and the topological operations are outlined in

the following ;

Step 1. For each of the input layers , create an

OIS file which contains all the f{-0IS and L-OLS
of the polygons of the layer . Then soxrt the OLS
file accoxrding to the ascending oxder of y, if
the ¥y 's are equal, sort according to their ascendw
izxs order of Xp .

Step 2, Create & horizontal line y = h where h
will start from the minimum y, , g0 through all

¥, 's 5 ¥y's-and the y ordinates of the intesection
points of 0IS's , to the maximum y, of the sorted
OLS file . For each h , the set S » which contains
all the OLS's intersecting with the line y = h

end whose ¥ > h , is sorted according to the fo-.
llowing rule : '

Sorting Rule at y = h

(1) Sort the 0LS's in S according io the ascending
order of their x oxrdinates at y = h ; or

(2) If their x ordinates at y = h are equal , sort
the 0IS's according to the ascending order of
the (smallest) angle 6 measured in the clock-
wise direction from line y = h to the OLS!s ;
or

(3) If their x ordinates at y = h and @ are both
equal , then sort the OIS's according to the
orientation ; i.e., }-0IS‘'s are ordered be~
fore ¢-0LS's .

Then , the logical operations perform the followe
ing two operations on the sorted S to generate
the output layer .

(1) Grouping operation - this operation find the
QIS pairs of ithe output layer between y = h
and I h' where
nt 2 minimum{y | ¥ is the ordinate of an

intersectiion point or ¥y, of S, or ithe
y of an 0LS in thé sorted OIS file
whose ¥, > h}

(2) Linking operation - this.operation link the
OIS pairs to form the polygons of ithe output
layer.

The topological operations operate on the sorted
8 1o find the topological properties listed in
the Introduction .

In the following , we will discuss the Grouping
operation , the Linking operation and the opera-
tions to identify the iopological properties in
detail,

IV, LOGICAL OPERATIONS

We will use the” two variables I and J for counting
and N identifying the OLS's palrs.

1. OR operation

(i) Set I=0and ¥ =
the sorted S.

(ii) TFetch one OIS from the sorted S and perform
I«I+1 3if it is a 1P=0IS or I<I-1 if
it is a ‘-OLS- Then

Case 1, If 1t is & 1-0IS and I = 1 , perform
N<—N + 1 and assign it as the f-oxs of OLS pair
N of the output layexr.

0 , Then , sta¥t to scan

Case 2, If 1t 18 a $-0IS and I = O , assign it
&s the $-0LS of (LS pair N. .



For those cases other than the above two cases,
go to (1131) .

(131) If a1l OLS*s in S are fetched , stop ; other-
wise , goto (ii) .

2. AND opexration

(1) SetI=0,J=02andX
scan the soxrted S .

Fetch one OLS from the sorted S , Perform
I I41 or I« I-1 if it is a 41-0LS or a
{-0IS of the first input layer respectively,
and perform J«J+1 or JeJ-1 if it is8 a
$-01S or {-0IS of the second input layer
respectively. Then ,

Case 1, If it is a 1-0LS of the first input lay=
er , and I =1 and J #£ 0 ; or it is a {-0IS of
the second layer , and I # 0 and J =1 § then
perform Ne—N + 1 and assign it as the $-0IS of
OIS pair N., '

= 0 ; Then, start to

(1)

Case 2, If it is & {-OLS of the first input lay-
er , and I =0 and J £ 0 ; or it.is a $-0LS of
the second input layer  and I 2 Oand J = 0 3
then assign it as the {~0IS of OIS pair N .

For those cases other than the above two cases ,
g to (i11) ,
{341) If 211 0IS's in S are fetched , stop ; othewe
wise , go to (i) .

5 + ANDNOT o@ratign

(1) Set I =0, J =0and ¥ = 0. Then start to
scan the sorted S .

(ii) Fetch one OLS from the sorted S . Perform I«I+1
or T«I.1 if it.is a {-0LS or }-0LS of the first
input layer respectively , and perform J<J+1
or Je¢Jul if it is a $-0LS or §-00S of the
second input layer respectively:. Then ,

Case 1, If it is a }-OLS of the first Impit layer,
I=1and J =0 ; then perform N N+1 anc assign
it as the {-0LS of 0LS pair N .

Case 2, If it is a {-0IS of the second input lay-
erand I #£0andJ =1, then assign it as the
$~01S of OLS pair N ,

Case 2‘ If it is a j,-'OLS of the second input lay=
er and I # 0 and J = 0, then perform N+ N+1 and
assign it as the {-0LS of OLS pair N .

Case 4. If it is a }~OLS of the first input lay-

erand I = 0 and J = 0 , then assign it as the
{-01S of (IS pair X .

For those cases other than the above four cases,
g to (iii) . )

{4i1) If 211 0IS's in the sorted S are fetched ,
stop ; othexwise , go to (ii) .

4, XOR operation

(1) SetI=0,J =0 and N =0 , Then start to
10 scan the sorted S .
(11)

Fetch one OLS from the sorted S . Perform
I~ 141 or T«—1I-1 if it is & T~0LS or {-018
of the first input layer respectively , and

end perform J~—J+i or J¢—J-1 if it is a $~0IS or
$-015 of the second input layer respectively .
Then , ’ ’ :

Case 1, If it is a {~0LS of the firet input layer
and I = Yand J =0 , or it is a $~0LS of the
second input layer and I = Oand J = 1 ; then
peiform N<-N+1 and assign it as the 'f—-OLS of OIS
pair N . ’

Case 2, If it is a {-0LS of the first input layer
aid I =1andJ #0, or it is a {-0LS of the
second input layer and I £ 0O and J = 1 ; then
assign it as the | ~0LS of OLS pair N .

Case 3. If it is a {~OLS of the first input layer
end I = 0and J ¢ 0, or it is a |~0LS of the
second input layer and I # 0 and J = O ; then
N«-N+1 and essign it as the {-0IS of OIS pair N.

Case 4. If it is & V-0LS of the first. or second
dnput layer and I=0 and J=0,'‘then assign® it aa
the «~0LS of OLS pair N.

For those cases othexr than the above four cases,
go to (3i1) .

(11i) If all OLS's in the sorted S are feiched ,
stop ; otherwise, go to (ii) .

V. LINKING OPERATION . -

Let B' be the sef that contnins all the OIS pairs

8% the current h and the previous h from the group-
ing operation . First , S' is sorted according to
the Sorting Rule at y = h , then the Linking Ope-
ration will link the OLS's in 8' at ¥ = h as follows:

ILet N be a variable for identifying the.link.paix,
then , - - ’

(1) Set N = 1 and start to scan the sorted S' ,

(11) Feich two OIS's from the sorted S' and assign
them to link pair N.. The link pair are linked
either by a common vertex or by & horizontal
line segment of y = h .

(ii1) Set NN + 1 ;

(iv) 1If all OIS's in the sorted S' axe fetched ,
stop; otherwise , go to (ii).

V1. TOPOLOGICAL OPERATIONS

4, Identify the regions in a layer

The OR operation can be applied to merge the Joint
polygons of the layer so that each polygon corres-
ponds to a regiom .

-

Suppose that for each of the two input layers the
operation to ideniify the regions in a layer has
been performed such that each polygoen corresponds
to a region and is assigned a unique npumber . Then
the operations for Recognizing the connections of
two regions in two layers through contact(s) and
Recognizing the CONTAIN relationship are as

follows :
2, Recognize the connections of two regions

fet I , J.and X be the three variables for counting
and Py and p, are for identifying the polygon num-




bers of the first and second input layers respectiw
vely

(i) Set I ,J and X equal to'D., Then start to scan
thé sorted S ,

(i1) Fetch one OIS from the sorted S . Perform
T<—I+1 or I€—I-1 if it is a {-0LS or +-0LS
of the first input layer respectively; ox
J4=J+1 or J4-J-1 if it is a $-OLS or $~0LS
of the second input layer respectively ;
K<—K+1 or K<~ K=1 if it is & {-0LS or ¢
of the contact layer, Then ,

Case 1, If it is a f»DLS of the first input layer
, set Py equal to the golygon number from which
it comes, Then if J ¢ 0 and K # 0 , polygon Py

of the first input layer and polygon P, of the
second'input layfr are connedted through contact.

or
~0LS

Case 2, If it is a f—OLS of the second input
layer , set p, equal to the polygon number from
which it come§ , Then if I # 0 and K # 0 , poly~
gon p, of ‘the first input layer and polygon P,
of the second input layer are connected through
contact . .

Case 3, If it is & T-OLS of the contact layexr
and I £ O0and J # 0, then polygon p, of the
first input layer and polygon p, of the second

input~layer are connected through contact .
For those xases other than the above three cases
, g0 to (i1i) .

(311) If =211 0IS's in the sorted S are fetched ,
stop § otherwise , go to (i1) .

3, Recognize the CONTAINED relationship

Assume that any region in the first input layer

is surrounded (CONTAINED) by a region in the second
layer. We are to recognize which region in the
first input layer is contained by which region in
the second input layer.

(1) Set I =0andJ =0 . Then start to scan the
sorted S .

(i1} Fetch one OLS from the sorted S . Perform
I<~I+} or I« I-1 if is a {~0LS or |-OLS
of the first inpat layer , or perfomrm
J&~J+t. or J4—J=1 if it is a {-0LS or +-0IS
of the second input layer respectively. Then

Case 1. If it is a {-OLS of the first input layer

s 88t p, equal to the polygon number of the fee
tched © .

Lagse 2, If it is a T—OLS of the second input
layer and I = 0 , then the polygon from which.

it comes is contained by polygon P of the first
input layer . .

Por those cases other than the sbove two cases,
go to (1i1)

(111) If all OLS's in the sorted S aro fetched ,
stop } otherwise , go to (ii) .

VII. CONCLUSION

The oriented line segment approach has the follow~
ing advanizges 3

1+ The algorithm is simple because the well estia-

blished topological properties of polygons and its
oriented line segments is applied . The algorithm
implementation to handle the practical L3I layout
is not difficult because each 0LS is represented
by a fixed length record and the system SORT ecan
be used to pre-sort the 0LS's in the sequence

thai is easy to be manipulated,

3. It is straight forward to obtain OLS's from the
polygons and the Linking algorithm provides the
backward capability to form polygons from the OLS's
» thus the OLS approach c¢an easily interface
with the existing softwares such as pattern generxra~
tion programs .

Even there are a great number of companies develo-
ping the layout processing programs , it is hard
to find‘ & paper that describes the algorithm in
deep » The authors hope ihat this paper will sti-
mulate the readers interesting in the axrea and
becoming appreciated the concept of oriented line
seoguents
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GRAPHS AND FEEDBACK AMPLIFIER THEORY

Wai-Xai Chen

Department of Electrical Engineering, Ohio Universitiy, Athens, Ohio, U.S.A.

ABSTRACT

The paper presents a unified summary of the
relationships between network topclogy and feedback
amplifier theory. Topological formulas for the e~
valuation of the elements of the return difference
and the null return difference matrices are given.

INTRODUCTION

It is well known that Bode's concept of return
difference plays an important role in the designof
feedback amplifiers(l~3). Among the many important
properties, it can be shown that the return differ-
ence is a generalization of the concept of the feed-
back factor of the ideal feedback model, that the
sensitivity function of the amplifier is closely
related to the return difference, and that the re-
turn difference is basic to the study of the sta-
bility of the feedback amplifier and to the deter-
mination of its transmission and driving-pointprop-
erties.

Several important extensions and generaliza-
tions of Bode's return difference concept have been
reported (4-7). Tasny-Tschiassny (&) introduced
the concept of return-difference matrix. The re-
sults so obtained are applicable to linear feedback
networks that possess a multiplicity of physical
feedback loops., Truxal (6) introduced the concept
of the null return difference, which is shown to
be useful in measurement situations and in the com-
putation of the sensitivity. The extension of the
null return difference to the concept of the null
return-difference matrix was given by Sandberg (5)
and Hakim (7), who demonstrated its use in the e-
valuation of the closed-loop gain and the driving-
point impedance of a multiple-~loop feedback net-
work. Needless to say, these concepts have been
modified and elaborated upon by many workers (8-17).

It was shown by Chen (18, 19) that although
the return difference and the null return differ-
ence are not invariant with respect to the general
transformations of the reference frame, they are
invariant for the most common and important types
of feedback networks. These results have been ex~
tended and generalized to the multiple-loop feed-
back networks by Elsherif and Chen (20).

In the present paper, we present a unified
summary of many of these results, and indicate how
the elements of the return-difference and the null
return~difference matrices can be expressed in
terms of the directed-tree and directed-iwo-tree
admittance products in the associated digraph.

THE FIRST- AND SECOND-ORDER COFACTORS

Let Y be the indefinite-adnittance matrix of
a feedback amplifier N. Denote by ¥;; the subma-
trix obtained from Y by deleting the row i and col-
wn j. In e simllar way, Yo, gq denotes the subma-
trix derived from Y by deleting the rows = and s
and columns p and q. The first- and the second-
order cofactors of the elements of Y, which is of
order n, are the scalar quantities defined by

- i+
Yij = (-1)7Y aet zij, (1)
- _ - _ r+ptsiq
Yy, sq = 587 (v-s)sen(p-a) (1)
«det Y ,
¢ -~IP, 8q (2)

respectively, where r,s, p,q £n; and sgn u=+ 1
ifu>0, sgnu=-13if u <0, and sgn 0= 0. It
is well known that ¥ is an equicofactor matrix (21)
meaning that

Y=Y, (3)
for all i, j, v and v.

In a feedback network N, the general return
difference Fk(x) of N with respect to a network
elenment x for a general reference value k is defin-
ed as the ratio of the two functional values as-
sumed by the neiwork determinant under the condi-
tion that the element x assumes its nominal value
and the condition that the element x assumes the
value k. This gives N

Fk(s) = Yij(x)/yij(k)' (""')

where we have exhibited the importance of the ele-
ment x by writing Y33 = Yi-(x). For k = 0, we write
Fo(x) = F(x), which becoms? the ordinary return
difference.

The concept of null return difference is found
t0 be very useful in measurement situations and in
the computation of the sensitivity for the feedback
amplifiers (2,6).
~ In the literature, the null return difference
F(x) with respect to a voltage-controlled current
source I = xV for the zero reference value is de-
fined to be one plus the negative voltage appearing
at the conirolling branch of the controlled source
when the controlled source is replaced by an inde~
pendent current source of x amperes and when the
input current of the feedback amplifier is adjusted
s0 that its output current is identically zero. Re-
ferring to the general configuration of a feedback
amplifier as shown in Fig. 1, let us designate the
input and output terminals as shown. As demon-
strated by Chen (22), the null return difference

1



can be expressed as the ratio of the two functional
values assumed by a second-order cofactor of the
elements of the indefinite-admittance matrix Y un~
der the condiiion that the element x assumes its
nominal value and the condition that the element x
assumes the value k, that is

F =Y (Y o (), (5)
where, as before, we write ¥ as Y (x).
Since. rp,sq Tp,sq
Yrp,sa ) 7 7 Yap,mg¥) 7~ Ypg gy (0 (6)

the null return difference ?k(x), as given in (5),
is independent of the choice of the reference po-
tentials for the input and output ports. In other
words, there is no need to specify the terminal
labels of the input and output ports; only the i-
dentification of these ports is required for the
computation of Fk(x) .

MULTIPLE-LOOP FEEDBACK NETWORKS

The extension of the scalar return difference
and null return difference for a single loop feed-
back amplifier to the return~-difference matrix and
the null return-difference matrix for a multiple-
loop feedback amplifier will be considered in this
section.

In a multiple-loop feedback network Ny, let
the elements of interest be represented by a rec-
tangular matrix X, which can either be a transfer-
admittance matrix or a driving-point admittance
matrix characterized by

Ia = XX@) (?)

where X is of order ¢ by p. If X is a transfer-
admittance matrix of the controlling parameters of
the voltage-conirolled current sources, Vg repre-
sents a p-dimensional vector of the controlling
voltages and Iy a q-dimensional vector of control-
led current sBurces, If X represents a driving-
point admittance matrix, Iy and Vg are of the same
dimension, p = q, and they repreSent current and
voltage vectors of a p-port network. The matrix

X is important in terms of its effects to the whole
system and is imbedded in the xest designated by

Nm as shown in the block diagram of Fig. 2, where
Is denotes the input current and V, the outputvolt-

age of Np. 8Since the network Ny is linear, it can
be characterized by
XB = AT+ BI, (82)
v =gr, + DI, {(8v)

where A, B, C and D are transfer-impedancematrices
of order p x4, P X1, 1 Xg, and 1 X1, respec-
tively.

Denote by lp the identity matrix of order p.
Then the square™matrix

) - L, - & (9

is called the return difference matrix of Nj with
respect to the matrix X, and is a direct generali-
zation of Bode's scalar return difference (1) with
respect to a single element x.

The null return difference matrix of Nm with

respect to X is defined by the square matrix

Fx) =1 - &, (10)
where -
=4- (1/D)Re, (11)

provided that D # 0.

As shown by Kuh {S), the closed-loop transfer
impedance w(X), defined as the ratio of the output
voltage Vg 1o input current Ig, can be expressed in
a very compact way by making use of the return dif-
ference and null return difference matrices:

w(x) = [w(0) aet B()]/[aet F(X)]. (12)

The sensitivity function S(x3j), which is de-
fined as the ratio of the fractional change in a
transfer function w(X) to the fractional change
in an element xj4 of X, can be written as

det F(O)|,
S(xij) = i 1570 1 -
det F(X) w(X)

"], o

- (13)

TOPOLOGICAL FORMULAS

In this section, we present topological for-
mulas for the evaluation of feedback parameters in
terms of the products of admittances associated
with the directed trees and directed two-irees in
the associated digraph of the feedback amplifier.

The Digraph
For a given feedback amplifier N, let G(Y) be

the n-node directed graph, called the digraph of N
associated with its indefinite-admittance matrix

= [w;] (14)
which is of order n, as follows. There is an edge
directed from node i to node J with weight - Yij»

i # 3, in G(Y) 3if and only if y3j # 0. We remakrk
that the diagonal elements of ¥ have no directbear-
ing on the construction of G(Y¥). A careful study
of this rule indicates that G(Y) can begreatly sim-
plified if we agree that an undirecled edge stands
for a pair of oppositely directed edges such that
the weight (admittance) associated with each di-
rected edge in the pair is the same as that of the
undirected edge. With this simplification, it is
clear that the resulting G(Y) is a composite graph,
and for most practical and commonly used networks,
G(l) can easily be obtained from theequivalent nei-
work of the feedback amplifier N by inspection.For
a detailed account of this result and all the var-
jations and ramifications, the reader is referred
tobChen (21). We shall further agree that the di-
rected edges in the composite graph G(z) will becal-
led the active edges, and the undirected edges the
passive edges.

& directed tree with reference node r in G(Y)}
denoted by ty, is a tree in which each of its ac-
tive edges, if they exist, 1s directed toward the
reference node r in the unique path defined by the
active edge in the tree. In particular, trees con-
sisting only of passive edges are also directed
trees., A directed iwo-tree with reference nodes %
and j, denoted by 14,3, 1s 2 two-iree separating




the nodes 1 and j, each of iis components being a
directed tree with reference node 1 or j in some
subgraph of G(Y). Also, denote by tyy,jy & direct-
ed two-tree i; j in which nodes 1 and u are in one
component and nodes j and v in the other componenti;
the first subsecripis i and j being the reference
nodes. For a subgraph g of G(Y), denote by f£(g)
the product of the weights associated with the
edges of g with £{f) = 0, § being the null graph.

¥With these preliminaries, we can now state the
following known results, whose proof can be found
in Chen (21):

Yy =T = ). £() (15)

e

(26)

=¥ =T - T
ny,sq rp,sQ IPssy rq,sp’

where the choice of the reference node k is arbi-
trary and -

T = 1t . 1
Ip,sq t}: ( I’vaq) (a2)
TP, sq

The Return Difference

Substituting (15) in (4) yields the desired
formula for the return-difference function

R (x) = 7, (x)/T,(k), (18)
where Ti = Ti(x).

The Null Return Difference

Combining (5) and (16) gives
B =, GO (5), (19)
=W M
rpvsa ™ Yrpsa(®)
The Return Difference Matrix

where W

In this section, we present topological for-
mulas for the evaluation of the elements of the
return difference matrix.

Referring to the general configuration of Fig.
3, the controlled sources can be represented by the
equation

— - pe - —

Iul Xyy Xy e xlp vﬁl
I 2 x21 122 ‘es XZP VB 2
- . (20)
I aes v
g o Tg2 %o || 'Bp
. - d

As indicated in (8a), A is the matrix relating the
controlling voltage vector Vg to the controlled
current vector Iy after the input excitation Ig has
been set to zero. Under this situation, the (1,5)-
element of AX is equal to the voliage Vpjappearing

at the ith controlling branch of Fig. 3 when the
controlled current sources Ige k=1,2, .cvy @

have been replaced by the irdependent current
sources of strengths xkj' as depicted in Fig. 4.

Thus, with
2 - [7y,] (21)
we have for the jih column elements of F{X)

Fyg= -V 8 # 3. (222)

81’ (22b)

Since the network is linear, the voltage VB' due
to the independent current sources xp: can be ob-
tained by considering each source sepirately, and
the result is given by

1= 3.

~ q
Y (0, = .Y (9. (23)
uv Bi kgl % J dka.l ) ckbi

Appealing to {15) and (16), we have for 1 # J

g
T {Q)F, , = ¥ (0); {24)
m i3 k; xkg dkbi'ckai =
and for i = j
q
T (O)F.. = T (0) + W (0). (25}
m ii n kgi Xki d‘kbi’ckai

In the special situation where X is diagonal
which occurs most often in practice, (24) and (255
reduce to

T (OF,. = x. ¥ (0) (26}
n ij JJ djbi’cjai
for i # j, and
T (QF,, =T (0) + x, W , (9)
, B ii m ii dibi’cidi
= T (x™), (27
where X*J is the matrix derived from X by setting

all of its elements to zero except xj;. Thus, XiJ
is the matrix consisting only of zeros except the
ith row and jth column element, which is x33;.

¥We remark that directed trees and ‘bwo—%rees in
(24)-(27) are to be evaluated in the digraph ob-
tained from G(Y) by setting to mero all the weights
corresponding to the elements of X. If X is the
matrix of the controlling parameters, the resultirg
digraph is simply the graph representing the feed-~
back network when the input excitation and all the
controlled sources have been removed, and the di-
rected trees and two-trees become the oxdinary
trees and two-trees.

The Null Return Difference Hatrix

« The null return difference matrix is found to
be very useful in neasurement situvations and in the
computation of the sensitivity for the multiple-
loop feedback amplifiers {2, 23). In the follow-
ing, we present topological formulas for the eval-
uation of its elements. .

The null return difference matrix F(X), as
defined in (10), is the return difference matrix
with respect to X when the input excitation Ig is
adjusted so that the ocutput voltage V., of Fig. &

(Ig is,not explicitly shown) is identically zero,
Thus, A is the matrix relating the controllingvoli-
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age vector Vg to the controlled current vector Iu
when the input excitation Ig is adjusted so that
the ouiput voltage Vo is identically zero. Under
this situation, to compute the jth column elements
of X, we replace the controlled current sources
Iok—'(k =1, 2y seey q) in Fig. 3 by the independ-
ent current sources of strengths xy:, as depicted
in Fig. 4, and then adjust the input excitation Ig
so that the gutput voliage Vo is identically zero.
The voltage Vgj appearing at th’g ith controlling
branch is the (i,j)-element of AX. Let the desired
input excitation be desigmated by Igy (j =1, 2,...,
p). Applying the principle of superposition, the
output voltage V, is given by

q
g49%=zgmﬁJQ+A;3m%Q&§@L (28)

Setting V_= 0 and using {16), the desired input
excitation can be computed by the formula

q
Tt B %t ae o @i 1@

The voltage appearing at the ith controlling branch
is found to be

(29)

~ q
Yuv(-(-"‘-)vﬁi = Isjyrai,sbi(g) * k;:l xijdkai,ck'bi(Q)'
(30)
let . R
Ex = [7; ] (31)

Then from (30) in conjunction with (15) and (16),
we obtain

A Q )

Tm(-q)Fij = kZO xkjwdkbi'ckai(g)’ i % J» (32)
~ q

T (0)F,, = T (0) + é;o xkiwdkbi*°ka1(g)' (33)

where ij = Isj’ eg= s and do = r,

In the special situation where X is diagonal,
(32) and (33) reduce to

A
Tm(_Q)Fij =1 W

0 .
sJ rbi,sai(—) * X, W

RN CIRED

for 1 # j, and from {29) and (30)

g’n =1- [Isiyrai,sbi(-@ * xiiydiai,ci‘bi(-q)]/ (@
=1+x Y (O _(0), (35)

1i"rp,sq rp,sq

where Y ,sq(0) denotes the partial derivative of
er Sq(g with respect to the element x;; evaluated

at X = 0. Using X} as defined in (27), it is not
difficult to show that Y Sq(g{_ﬁ) can be expanded
1

Y (@)= (0). (36)

rp,sq xp,sq
Substituting (36) in (35) yields

s ().

) + xiiyrp.sq

F W a7
i1 rp,sd p,sq

CONCLUSIONS

In the paper, we have presented a unified sum-
mary of the relationships between network topology
and feedback amplifiers, Topological formulas for
the evaluation of the elements of the return dif-
ference matrix and the null return difference ma-
trix in terms of the sums of the directed-iree and
directed-two-tree admittance products are given.
The significance of these formulas is that it not
only provides a short-cut for the evaluation of the
feedback matrices, but also gives an irsight into
the behavior of the feedback amplifier under con-
sideration.
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ABSTRACT

Existing layout concepts as used by electronic
industry for LSI circuit layout are compared with
the demands of VLSI circuit layout. The hierar-
chical layout approach is discussed and also the
following new concepts: Maximal partitioning using
cliques, multilayer planarization using Boolean
equations, geometrical placement using a contour
language and multilayer routability test using
logical operations.

INTRODUCTION

System designers are used to a top-down
definition of different functional levels, e.g. key
building blocks or subsystems, gates and basic
circuit elements (Table 1).

Functional LeveljLayout Level

System Chip
top~| Subsystem Macro Bottom~
down up
Gate Cell

Circuit Element | Device

Table 1. Hierarchical Levels

However, since the early years of LSI the layout
philosophy has been based rather on a bottom-up
definition of layout levels. Moreover, on the cell
level two gate array concepts are in use which do
not provide macro levels (Table 2):

(i) master slice concept
(i1) standard cell concept

Cell Concept | Cell Constraint Array

Master Slice | Rectangles of uniform|Matrix
size and shape array

Standard CelljRectangles of uniform|{Line
height array

General Cell [Rectangular polygons lArbitrary

Table 2. Cell Concepts for LSI and VLSI

The main advantage of these concepts is that
the algorithmic difficulties of layout problems,
especially of placement, are considerably reduced
because of the more or less regular gate array.
Efficient heuristic algorithms for placement (1-2)
and for channel routing (3-5) are available and
have been implemented in computer aided layout
systems (6-7).

The main drawbacks are that channel-routing
tends to long routing paths in parallel and, hence,
to higher signal propagation times and signal
crosstalk, and, still more important, that without
availablility of macro levels the gate array
approach hardly allows for a hierarchical layout,
Obviously, these disadvantages become more serious
with increasing scale of integration.

A third layout method in use is the general
cell concept or custom design (Table 2). This
provides a greater degree of freedom for shape and
position of cells and position of pins on cell
periphery. The advantages of this concept are more
design flexibility, minimal chip area and, perhaps
most important for VLSI, the availability of macros
and hierarchical layout (8-9).

Hence, the gemeral cell concept avoids the
disadvantages of ine more standardized gate array,
however, on the expense that the algorithmic
problems are much more complex and difficult. Many
problems are still unsolved. So far, there is no
working computer aided layout system based on this
concept. Custom design method is in use only for
manual design of LSI circuits on the device level
for handling the necessarily less uniform devices
and on the cell level if the single chip is pro-
duced in millions and consequently, design time
does not dominate the overall production costs.

Nevertheless, it is a strong feeling of many
in the field that making the general cell concept
accessible to computer aided design it will be of
optimal use to different design levels -- device,
cell and macro level --, to different technologies
and to both digital and analog circuits. Therefore
it{will be especially optimal for VLSI systems
housing analog aud digital ecircuits, random and
regular logic and different technologies on a
single chip.

HIERARCHICAL LAYOUT APPROACH

A hierarchical layout approach consists of
three main steps:



1) Partitioning.
The given system has to be partitioned hierar-
chically on a given number of levels. Usually,
this will be based on a functional top-dowm
definition of building blocks, gates etc., but
also should be adequate to layout considerations by
proper mapping between functional units and layout
units. .
When partitioning has been done properly, the
remaining two steps apply to each hierarchical
level. In the following the functional terms
circuit/component and the layout terms chip/cell,
respectively, are used to represent any hierar-
chical level.

2) Topological layout.
The given circuit schematic diagram of components
and interconnections is converted into a schematic
layout or stick layout. This is only a first pass
of approximate layout which provides a global chip
planning by proper top-down algorithms. It does
not take care of any geometrical constraints
(e.g. dimensions of cells and wire routes) but only
of topological constraints (global placement aznd
wirability). Hence, the resulting schematic layout
does not include accurate goemetrical dimensions
and positions.

3) Geometrical layout
The schematic layout is converted into the actual

layout., Only in this final pass all the geometrical

requirements and design constraints are taken into

account. Top-down or bottom-up placement algorithms

or combinations of both may be used. Routing still
may be split into two steps: Routability tests
during the steps of placement improvement and
actual routing after placement is finished.

Finally, it should be mentioned that inter-
active methods are necessary in all three parts of
this approach at proper intermediate steps for the
efficient handling of special technological design~-
rules and unforeseen constraints.

The following sections give a discussion of
some of the problems encountered in a hierarchical
layout approach and possible scolution methods and

algorithms. They all are aimed to an implementation

on a minicomputer with interactive graphics.

PARTITIONING USING CLIQUES

Heuristic partitioning usually is done by
bottom—up techniques of growing components from
Y'seeds.” TFor a good decision on the number T of
'seeds a knowledge of the upper bound rmax is

necessary. It can be found by maximum partitioning.

However, this should not be based on devices but
rather on the preceding top~down definition of
functional units.

Each functional unit incident to n distinct
interconnection nets is mapped into 2 complete
graph on n nodes, i.e. into a clique (10). Hence,
a graph representation of the given circuit is an
‘aggregation of cliques. Clique aggregations have
special properties which benefit the partitioning
procedure. Especially, a clique is the only type
of graph which does not posses an articulation set,
i.e. cannot be partitioned.

The problem can be now restated as follows:
Given a circuit with clique aggregation C. Find a

ninimum articulation set of € with maximum

articulation degree T .
max

The algorithm for maximal partitioning of
graphs based on this clique concept is described in
(10} and has been implemented on a DEC—-computer
PDP 11/60.

MULTILAYER PLANARIZATION

A main problem of topological layout is to find
2 schematic layout with an approximate placement of
cells that optimally benefits the routing.

Definition 1. Given an undirected bipartite
graph G representing the given circuit. A
minimum set of branches B such that G-B is planar

is called a minimum planarizing set of G.

The assignment of the clements of B to proper
layers depends on technology. Different planari-
zations, i.e. different minimum planarizing sets,
may cause different parasithic effects. Therefore,
it is worthwhile to find the family {Bv} of all

minimum planarizing sets Bv in order to allow for

an optimum choice.
In (11) a Boolean planarity function F has
been introduced based on the following definition.

Definition 2. A binary variable ui is

associated with branch j in layer X such that:

u

5 {:0 if branch j is placed in layer 1
1=

1 if branch j is NOT placed in layer A.

A necessary and sufficient condition for
planar multilayer layout of a circuit with
planarity function F(u) of its associated circuit
grah is (L = number of layers):

5 o
Fu,) + F(1 ©,) =0
e I = Y

0y

where w denotes the Boolean AND and I the OR
operator, as usually. The planarity function F(u)
of the given circuit graph can be found by detec-
tion of wreathes (11).

For L = 2 the planarity equation reduces to:

F(u) + F(u) = 0.

The set of solution vectors u corresponds to the
fawily {B_} Each single solution vector u
representg a planar schematic layout which is

fourd by planar embedding of G according to the
values of the elements in the solution vector u.
The method is well-adopted to computer
implementation. Well-known minimization techniques
of Boolean algebra can be used to optimize the
solution.

GEOMETRICAL PLACEMENT

The topological placement using multilayer
planarization is a top-down technique. Hence, it



seems appropriate to combine this with a bottom-
up geometrical placement. The procedure starts
‘with a first cell and adds a single cell in each
.step of the procedure. Well-known constructive
placement algorithms can be used for this step
(12-13). However, they shall not be based on the
circuit schematic diagram but rather on the
schematic layout as represented by the planarized
circuit graph.

Each single cell to be started with or to be
added is a rectangular polygon of any complexity,
i.e. of any number of rectangular corners.

' Consequently, the same holds for the resulting
layout in all intermediate steps of the construc-
tive placement.

Since the inner layout of cells is to be done
in a different level of the hierarchic layout
approach a description of layout contcurs is

sufficient on the cell level. This can be most
efficiently done by a layout language using 12
different corner types (14). They differ from each
other by two informations:

(i) in which direction a corner is approached
and

(ii) change of direction from horizontal to
vertical and vice versa at the corner.

(Supposed is a mathematical positive passage along
the contour.) The complete description of a layout
structure is given by an ordered corner sequence:

Ga) (o) ea) ~~ea)

where Ci is the type of corner i and Di its distance
to the next corner in order.

Integer nmumbers can be associated with the
corner types. Then, basic layout operations, e.g.
rotations by multiples of 90° and flipping of
layout structures, can be done efficient by INTEGER
operations.

MULTILAYER ROUTABILITY TEST

Routability has to be tested at proper steps
of the hierarchical layout procedure based on the
approximate or final placement of cells. The
problem can be stated as follows: Given an order
of nets and layout structures in the different
layers (cells and routing paths). Test whether
the next net is routable and find layer assignment
and vias.

A strict automatic multilayer routability test
(15) has been based on a set theoretic description
and processing of the given layout structures in
all layers. The following two concepts are
essential:

(i) Domain is the union of all points in a
single layer, which are planar routable within
this layer.
(ii) Two domains in adjacent layers are called
incident if their intersection is not empty.

Technologically the incidence of two domains
opens the possibility of a via between adjacent
layers. Since the basic concept is free of any

metric it is independenc of technology. It can be
adjusted to any technology by implementing metric
constraints.

The routability test is based on the
following:

Theorem. A net with m pins is routable on n
layers if and only if the following holds:
An ordered sequence of domains (A,B,C.....Z) exists
for each pin pair {a,z} in a set of (m-1)
independent pairs of pins of the net such, that
2 € A and z € 2 and adjacent domains in the
sequence are incident.

The routability test is described in (15).
It only needs logical operations and is independent
of the choice of a starting pin.
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ABSTRACT

A new concept of fuzzy tension and fuzzy potent~
ial is proposed as a mathematical tool for qualitative
analysis of network problems. In this paper we first
describe modeling of curriculum networks and fail-safe
networks in which the concept of fuzzy temsion appears
paturally as an well-balanced curriﬁhlum plan or
reliability assignment. Algebraic properties of fuzzy
tensions and potentials are thoroughly investigated
and consistency of specifications is shown to be
expressible by a simple condition on circuits.

MODELING OF CURRICULUM AND FAIL-SAFE NETWORKS

1. Curriculum Networks
A curriculum of an educational institute or
program is an interconnection of course works and can
be modeled by a weighted directed graph G=(V,E) of the
node set V and edge set E. A node x represents a state
of education and an edge e=(x,y) represents a course
work whose teaching starts from state x and ends at
state y. Course e possesses educational contents:
maximum goal g(e) and minimum requirement a(e). aor B
is a list of teaching items to be covered by the
teacher and associated grades of the student's
knowledge level. An actual scholastic achievement t(e)
gained from course work e lies somewhere inbetween
ale) £ t(e) < gle).
Here we express gfor g, t) by a vector
ale)=(a1(e)y agle), .., arle) )
where component value ai(e) represents the grade of
knowledge level or scholastic gain on teaching item
#i from course work e. The component valuemay be 1 or
0 if knowledge level or scholastic gain is yes or no
type nature, but often assumes a real number in [0,1].
Note that these quantities are regarded as fuzzy sets.
We assume the following notations and conventions.
(1)asB iff of g By for all i
(2av g=y, yi=max( aj, 8;)
(3aag=y, Yi=min( aj, B1)
(&)an 8=Y, Yir-ri if a3> 84
’ 0 otherwise
(5) e=(0,0,...,0), I=(1,1,...,1).
When the component value is 1 or 0 type, oforf3,
t) is just the characteristiec value representation of
a subset of a finite teaching item set U={#l,#2,...,
#L} and the above notations are reduced to the
ordinary set theoretic notations,¢,U,N,—.
Anode x represents a state of knowledge level at
node x of the curriculum network N=(G,a,8) where
graph G represents a precedence relation among course

works. A quantitative measure of the student's
knowledge level at node x is denoted by a fuzzy set
m{x). 7 and t are assumed to obey the following rule.
(a) For each edge e=(x,y) in E
a{e) t(e) g B(e), nly)=n(x) V t(e),
(b) If two edges a=(x,z) and b=(y,z) are incident
to node z, we require a balancing condition
m{x) V t{a} = n{y) V t(b)
to hold.

Reasons behind these rules are as follows(no
generality is lost even if discussion is made on a
single teaching item, say #i): Rule (a) expresses
nature of learning. Understanding of #1 is hierarchi-
cal so that gain tj(e)=0.5 does not contribute to an
increase in knowledge if the initial knowledge level
is already higher, say mj(x)=0.6, but does contribute
when the initial level is lower,say m;(x)=0.4. Hence
our assumption is that learning takes place only when
the gain exceeds the initial level. Rule (b) expresses
balanced teaching of well~coordinated curriculum.
Suppose unbalance 7{s) V t(a) # n(y) V t(b) has taken
place in Fig.l

Fig.l Explanation of
rule (b),the balanc—~
ing condition at mnode
z.

.

For course work c=(z,w),the teacher must base his
teaching on students' common knowledge level at node
z. Some students take a.c combination with w(x)Vt{(a)
and others b.c combination with #(y)Vt(b). Hence

n{z)={n(x)ve(a)l Aln{y)Vt(b)].
This unbalance may be viewed as loss and can be
avoided by good coordination among courses by
imposition of rule (b).

Good coordination is expressed more rigorously by
Kirchhoff's voltage law on fuzzy sets,

FKVL: Vee I t(e)= vee r t{e)

for all circuits L=I'yL where L' (or L) is the set of
forward (or backward) edges whose edge direction
agrees (or disagrees) with the circuit orientation.
Scholastic gain t satisfying FKVL is called a fuzzy
tension on the curriculum metwork N. It is quite
natural to expect some progress from any course work,
hence

Monotonicity: w(x)g n(y)
holds for all e=(x,y) in E. In gencral a mapping
from the node set V into fuzzy set is called a fuzzy
potential of G if it satisfies the monotonicity. A
curriculum is a fuzzy tension satisfying

Admissibility: a(e)g t(e) & B(e)



for all edges in E.
Problems immediately confronting us are
o feasibility condition of existence of admissible
tensions in N (consistency of requirement g(e)
and goal g{e).
e construction of an admissible tensiont in N.
o maximum scholastic achievement of the program.

In this paper we will present answers to these
guestions by means of thorough investigation of
algebraic properties of fuzzy tensiong and potentials,

2. Fail-Safe Networks

Functional interconnection of a system is conven-
iently expressed by a directed graph G=(V,E) where a
node represents @ subsystem and an edge represents
a functional connection between associated nodes. To
each edge e=(x,y) there is a weight g(e) which is a
list of failure susceptibility g;(e) (mot necessarily
probability) of node x affecting node y with regard
to failure cause #i in the failure cause set U={#1,
#2,...,#F}. Larger value B; (e) more susceptible to
failure cause #i.

If two edges a=(x,y)} and b=(y,z) are in tzndem,
the failure cause accumulates and a higher suscepti-
bility dominates a lower one for the same cause.
Hence letting 7(x) denote the failure potential at
node x, we have

n{2) = 7(x)v gla) v g(b).

In the network, incidence of two edges a=(x,z) and
b=(y,z) into node z means a fail-safe mechanizm
operating at z such that,for failure cause #i, the
mechanism chooses the smaller susceptibility for #(z)

w(z) =[x(x)v g@IA [v(y)V ed)].
In designing a fail-safe network, we have some cont-
rol over distribution of available resources to
realizing failure susceptibility of each interconn-
ection. Realized susceptibility of interconnection e,
t(e),is bounded above by the network specification
g(e) and below by technology g(e). Therefore
susceptibility assignment t satisfies the admissibi-
lity afe)g t(e)< g{e) on each e in E. Since unbala-
nced assignment is waste of resources, we should
require the balancing condition f(x)v t( a)=x{y)vt(b).

We proceed as before in the case of the curriculum
network and conclude that well-balanced reliability
assignment may be adequately modeled by an admissible
fuzzy tension in the fail-safe network N=(G,q, 8).

DEFINITIONS OF FUZZY TENSIONS AND POTENTIALS

Let N=(G,a,B) be a fuzzy network. A mapping t:
EXU->[0,1] satisfying fuzzy Kirchhoff's voltage law
FRVL ; VeeL"t(e) =V L.t:(e)

on every circuit L=LYyL of G is said a fuzzy tension
on G. Furthermore it is called admissible on N if
the admissibility a(e)< t{e)< 8(e) holds on every e
in E. Here U is some set of interests {(finite or
infinite, such as teaching item or failure cause).
o and B are mapping @ EXU—>{0,1] and a(e),B(e),
t(e) are mappings: U->[0,1], often called fuzzy sets.
A mapping m: VXU->»[0,1] is called a fuzzy potent~
ial on G if it satisfies the monotonicity n(x)& w(y)
for all e=(x,y) in E and 1is said admissible on N if
Admissibility: a(e)vr(x) & v(y) < B(e)v n(x)
holds on every e={x,y) in E.
We assume the following operations on fuzzy sets
A,B,C

1% A< B iff A(u) < B(u)

2° AvB=C, C(u)=max(A{u),B{u))
3° AAB=C, C(u)=min(A(u),B(u))
4° A~nB=C, C(u)=${A(u) if A(u)> B(u)

0 otherwise
5° 8 is the minimum fuzzy set, ©(u)=0 and
I is the maximum fuzzy set,I(u)=1

for al1 u in U.

The ordinary set is a special case of the
fuzzy set. That is, m.pping A:U->{0,1} is 2
characteristic function of subset A of U where
A(u)=1 if u is in A and A(u)=0 if otherwise. We
should note that our operations on fuzzy sets are
natural extensions of the set theoretic operations
€ ,U,N,~— and that 8 corresponds to the empty set and
I to the universal set U. Although discussion and
theorems are described in terms of fuzzy sets, they
are completely valid for the ordinary set.

ALGEBRAIC PROPERTIES OF FUZZY TENSIONS

The edge set of a circuit L, closed edge sequence
J, cutset K, and cut C generated by node set W is
decomposed into the forward edge set(+) and backward
edge set (- )

L=L urL, J=J%J _

—K"UK” c= Wy @EWw.
Here (W W) is the set of edges e=(x,y), x in W and
y in W. When L=J —K—(W W= é, we_use adjective
"directed" and notation L, , K, z.

[1] Let t st1sty be fuzzy tensxens on G=(V,E).
(a) For a closed edge sequence J=JTyJ
Ve eJ*t(e) -t(e).

eeJ
{(b) 5U\t, tiv t2 are also fuzzy tensions on G where
8 is a fuzzy set.
(c) t(e)=8 for all edges e on a directed circuit L.
(d) A mapping ty : EXU->[0,1] defined by
£, (&)= {1 il edsin K
] otherwise
becomes a fuzzy tension on G if K is a directed
cutset K= K'ude
{e) For every e, in E, the following identity holds
tles)= kek/\e e® £e

where K, is the class of all directed cutsets
containing e,. More precisely for each u* inU
there exists a directed cutset *ccontalnlng 2o
such that t(e,,ux){ t(e,ux) for all e in K*a

Proofs are straight forward but tedious and hence
omitted.

[2] A mapping t : EXU~?[0,1] is 2 fuzzy tension
on G=(V,E) iff it possesses the following decomposi-
tion *

R R [5-’1\1:-0}
wherei? is the family of all directed cutsets of G,
tp is the tension defined in (d) of [1], and 6f is
any fuzzy set.

[proof] The "if" part is obious from properties
in [1]. To prove the "only if" part, define a mapping
g by

= - -
&= Veer VRek,
fo Aeeftce)'
Then we have
glee) =V, g VReR, Log Arples)]

lspAcpl



= VgeR, S
VEeRNeer £
= tle,)
The last equality follows from { e} of [1].

QED
[3] ¢ Construction of An Admissible Tension
1° Start from any admissible tensijon t ,say t=.
2° Find edge e, satisfying g(e,)~t{e,)#5. If none
t is admissible and we are through .
3° Find a directed cutset K containing e,=(%,z)
whose increment is nonzero

ep= G(eo)/\[/\ee*ﬁ_eo B(e)]~t(es) #6

by the following procedure.

(a) Label node Z with mark (z).

(b) Take any labeled node x and scan for
unlabeled adjacent node y connected through
e. If e is directed fromy to x, or if
e is directed from x to y and ufe,)~B(e)#8,
then label node y with mark (x).

(e} Let W be the set of labeled nodes. Then %=
(W,W)L’d is the desired dirlected cutset,

4° Modify the tension

t < tVI&E/\ tg]

5° Return to 3° if a(e,)~t(eo)# Hstill holds.
Else return to 2°.

We note that i) t never exceeds B,ii) t(e,,u)
increases strictly for some u in U at each iteration,
and iii) the same directed cutset is never used
more than once for each e,. Hence the process is
finite 4if fuzzy set operationsV ,A,~ are finite
processes. The validity of the algorithm is proved
in the next theoren.

{4] An admissible ﬁeq§ion exists in N=(G,q,g8)iff
for every circuir L=L'UL the following consistency
condition holds

Veema(®) < Vee 8l
Veerra(® & ec 1-8(8)-
Under this condition the algorithm [3] yields an
admissible tension on N.
[proof] The "only if" part. Let t be an admissi-
ble tension on N. Comwbining admissibility and FKVL,
we easily obtain

.veeL'c“(e)gv el

as was to be proved.

The "if" part. We need only to show that under
the stated condition the labeling procedure of 3°
always yields a valid cutset K=(W, W)U 4 so long as
a(es)~t(e,)#6. This is equivalent to a fact that
node z is not labeled,i.e. z not in W. Suppose
otherwise. We trace the node mark one by one back~
ward and find a circuit LomﬁiLJL. such that eqelg,
a(e.)~g(e Y#ofor all e in I,. Hence

Voo a(@l~v,  1+8(e)1#D

holds but this contradicts to the first consistency
condition of the theorem. QED

rt(e)=v ﬂt(e)gveeﬁs(e’-)

MAX~-PRESSURE MIN-DISTANCE THEOREM

{5] Adunissible tension t is saild maximum on eo=
(Z,z) if all admissible t satisfy t(e.) ¢ t(es).

T is obtzined from any admissible t by successive
modification t<tviepaty)

ep= [A, e gle)l~te,)#0

until £2=8 for all directed cutsets K containing e,.
Moreover

Max tle.)=t(e,) e K[A ¢ 8(e)]

vhere K, is the famlly of all directed cutsets
containing e,.

The proof is obious from the previous algorithm.
A x5y two terminal tension t is a restriction of
a tension t* of N*=(G¥,u*,R*) onto N=(G,a,B) where
N# is an expansion of N by adding the terminal edge
é=(x,y) with
a* (e)= {a(e)
8

if e is in E

if e=ge
B* (e)= {s(e) if e is in E
I if e = B,

The value t*(€) is called x3y pressure p(x,y) from
X to y. The maximum pressure is denoted by P(x,¥).

[6] (Max-pressure Min-distance Theorem) The max
pressure P(x,y) of the network N=(G,z,8) is given
by

=V - 5
Dx,y) Xke&( mee'ﬁ g8{e}] : primal form

"Aqe o [\1
where k is the class of all x»y directed cutsgfs
K—K\)é'and Q is the class of all x»y paths Q=Qud.

{proof] Fxrst we observe two points.
i) It suffices to prove a scalar identity

Vgefy Moez B(e,u)]=/\QEQxy[VeEQ+B (e,u)]

for any u in U.
ii) For any pair ¥ and Q from
intersection R(\Q is not empty.

dual form

+B(e)] :

ee€ Q

and Qxy’ the

Hence taking a parc.icular e, in (\Q, we have
Aeéks(e U)QB\-o,U)QV Q+B(e u)
which implies
Vee R, Nee w8 “”“"Qeq VeeqgB el

To prove the reverse inequality, deflne
Fom 1egiBlegrm) =V, ¢ ¢+ Blesw),@=QUC in 2 ]

Q

Then we clalm that there exists K, in wholly
contained in Fy. To prove this assertion, we suppose
otherwise and lead to contradiction. That is assume

for each ﬁ, h—FQ is not emty. Let B_Uﬁ’eﬁ [é F

We proceed the following labeling operatlon.
(1) Label node x with mark(*).
(2) Take any labeled node w and scan adjacent
unlabeled node z connected through e.
i) If e is directed {rom z to w, or
ii) if e is directed fromw to z and e is
in B,
then label node z with mark (w).
We assert node y becomes labeled(if not,let X be the
set of labeled nodes. Then cutset generated by X,K=
x, X)L)(X X) satlsfles
&,X)=8, (X, X)(\B~
This means K is a directed cutset wholly contained
in F,, contradiction to the hypothesis). Backtracking
the node label sequentially from y, we are able to
trace »»y path Q.=Qty @, with a property that QonFq~¢.
This is a contradiction to the fact that FQ has at
least one edge from every Q.
Hence we have established existence of h.C FQ
From this



@ Age gy eer(eu>Aeepqs<eu>
(2) Vo A g Blesu)> Aeei’, g (e,u)
3 /\eer{a B(e,u)zl\eeF g(e,u).

Combination of (1), (2),(3) yields the desired
inequality,as was to be proved. QED

{7] The maximum pressure P(x,¥) satisfies
1) p(x 2) € PYIvB(y,2)
) P&,2)= «{/\ye r<z)[p(x,y)vﬁ(y,2)]}(/\ .
Aye T P 572
where}"(z) is the set of immediate successor(+),
predecessor(~) nodes of z.

PROPERTIES OF FUZZY POTENTIALS

[8] Let R=(W,ﬁfl;¢ be a directed cutset generated
by W. Then a mapping g,: VXU~[0,1] defined by
nw(x)= 8 if x is in W
I atherwise
is a fuzzy potential on G=(V,E).
[proof] If e=(x,y) is not in ¥, then 5 (x)=r(¥)
=8 or I depending on whether x and y are both in W
or W. If e is in K, 7(x)=6 < I=n(y). Since K is a
directed cutset, no possibility of x in W and y in
W occurs. Hence the monotonicity holds. QED
[9] A mapping w:VAU->[0,1] is a fuzzy potential
on G=(V,E) iff it possesses the following decompo-
sition
Voe W[é ATl
where W is a collection of node sets W producing
directed cutsets, (W,W)=@.
[proof] The h if" part is obious.
Since 7 assumes the same value for nodes in the
same strongly connected component, we may assume the
graph acyclic without loss of generality. Let x be
any node and Y, be a set of nodes not reachable from
x by directed paths. Define mapping g by
g=Ver[ x/\wYx]’ 62<=TKX)'
Let us examine the value g(v) at node v.
g@%ueﬂ&A%Jﬂ]
—ver,véYx bx
=V [#(x) :there is x>v directed path].
Since the molictonicity of T is transitive, existence
of x»v directed path implies w(x)sw(v),
= 7(v).
Hence mapping g is exactly the desired decomposition.
QED
[10] Let G=(V,E) possess a single source block
containing node z. If t is a fuzzy tension on G,then
mapping 5 defined by
w(z)=6 , r(x)“V e t(e)

becomes z potential of G where Q is any z3x directed
path. Conversely if 7 is a fuzzy potential of G,then
mapping t defined by

tled=n(y)~u(x), e=(x,¥) in E
becomes a fuzzy tension on G.

[proof] The first half: Tis well defined. That is
the value of ® does not depend on selection of z»x
path Q For if 31, 2 are two 29X dlrected paths, then
L=Q1* Q2 is a closed edge sequence where is the
reverse of Q. Here Qibecomes the forward edge set
and 32 becomes the backward edge set of L. By FKVL,
we have

Ve& al t(e)=V t{e)

ee®

as was to be proved., Note that concatenation of e=
(x,¥) in E to the end of z+x directed edge sequence
@ produces zsy directed edge sequence (Q-e. The
monotonicity is verified by

K(X)=Vaeé~ t(a)g [Vaé g t{a)lvt(e)
nvaeﬁ’-e t(a)=n(y).
of G. Then L is consisted
paths.
Qs
Q

The second half:
let L=Uy L be any circuit
of the following directed
XodXy directed path
xy&xp directed path

-
e

xZL 1€Xe directed path Qpy_3
where L‘Vl—even Qi, 1= vl-Odd Qi.

We calculate
Voept@=v,_ v ceq; [m(yiam(x)]
=vl—even [“(x1+1)“'“(xi)]
where we use a simple identity for a nmondecreasing
fuzzy set sequence A < A1€ Ap
(A ~ AV (Al ~ Ag)= Ay ~Ay.

Similarly
V, g t(e)= Vi—odd VeeQ [r{y)~n(x)]
4= In(x )~n(x 1
Note that i=0dd

wlxg_g)s wlrg )€ wlxg)

holds for odd i and hence the next lemma can be
applied to conclude FKVL. QED

[11] Let Aj, aj (i=0,1,2,...,k-1) be two sequences
of fuzzy sets satisfying
ag, ai+1  Ag
Then identity
k-1
im0 A5~ 20 =
holds

(i modulo k)

k 1
[A ~ a:.+1}

The proof is omitted due to space limitation.

CONCLUSIONS

We have introduced 2 new concept of fuzzy tensions
in a network as a mathematical tool of modeling well-
coordinated curriculum or reliability assignment,and
investigated its theoretical implications. Concrete
applications to network problems are yet to be
followed.

A dual of the fuzzy tension is the fuzzy flow upon
which we have made some preliminary investigation[l].
The boolean flow is easily extended into the fuzzy
flow.
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RELEVANCE OF NETWORK THEORY TO MODELS OF
DISTR;BUTED/PARALLEL PROCESSING*

Tadao Murata
Department of Information Engineering
University of Illinois at Chicago Circle
Chicago, IL 60680 U.S.A.

ABSTRACT

This paper is concerned with the applicability
of network theory to those aspects of distributed/
parallel processing that can be modeled by marked
graphs. First, several examples are given to il-
lustrate that a wide variety of computation schemes
can be modeled by marked graphs. Subsequently, the
following topics are discussed: application of KVL
to fault detection and isolation; KCL and Tellegen's
Theorem applied to marked graphs; and the relation~
ship between the maximum (minimum) storage require-
ment and the minimum (maximum) power.

I. INTRODUCTION

There is a similarity between distributed com-
puting systems and electrical networks: both are
physically and functionally interconnected systems
with many components or resources interacting each
other. There is also a contrasting difference bet—
ween them: distributed computing is a young and
more complicated field, whereas network theory is a
comparatively mature ' field. Little formalism and
few fundamental principles have emerged in the
former, whereas highly developed techniques are
available in the latter.

The purpose of this paper is to examine wheth-
er there are techniques of network theory that may
be applicable to distributed/parallel processing.
It goes without saying that network theoretic ap-
proaches alone are far from being sufficient for
describing the complex behaviors of distributed/
parallel processing. However, in view of the lack
of a sound framework for distributed computing, it
is worthwhile to search for methodologies which
permit the use of results from a well-developed
field such as network theory.

As the widespread interest in distributed com~
puting has developed recently, there has been grow-
ing evidence in the literature that network theory
is relevant to certain models of distributed/paral-
lel processing. For example, it has been shown
that an analogue of “Norton's theorem" is useful
for analyzing queuing network models of multipro-
grammed parallel processing [1,2]. For the control
model of distributed processing propesed in [3],
the max-flow min-~cut theorem in network flow theory
is used to minimize the sum of execution and inter-

*This work was supported by the National Science
Foundation under Grant ENG 78~05933.

process communication costs for a group of distrib-
uted program modules. The flowgraph model discus~
sed in [4] is analogous to resistive networks,
where analogies are drawn between resistance and
the execution time of a program segment, and be~
tween current and the execution frequency of a
program segment.

In the present paper, our discussion will be
focused on the applicability of network theory to
those aspects of distributed/parallel processing
that can be modeled by marked graphs[5,6]. Sectiomn
IT provides several examples to 1llustrate that a
wide variety of computation schemes can be modeled
by marked graphs. Subsequently, the following
topics are discussed: application of KVL to fault
detection and isolation in Section 1II; KCL and
Tellegen's theorem applied to marked graphs in
Section IV; and the relationship between the maxi~-
num (minimum) storage requirement and the minimum
(maximum) power in Section V.

II. COMPUTATION MODELS USING MARKED GRAPHS

In this sectiovn, several examples are given to
illustrate that a wide variety of computation sche-
mes can be modeled by marked graphs. Most of these
examples appeared in the literature as Petri net
models, but they possess the structure of marked
graphs. To save space, it is assumed that the
reader has some knowledge of Petri nets [7]. Mark-
ed graphs are a subclass of Petri nets, where each
place has exactly one incoming arc and exactly one
outgoing arc. Thus, signals or data passing
through each arc come from a predetermined source
(the initial node), and are sent to a predetermined
destination (the terminal node). In this sense,
marked graphs can model only decision-free and de~
terministic systems., More general Petri nets have
greater modeling power (up to the power of Turing
machine if the “zero testing" capability is added
[8]), but their analysis tends to be computation-
ally 'intractable if not undecidable. Since the em—
phaéis of this paper is not on modeling itself but
on those aspects which are relevant to network
theory, we have chosen the marked graph model,

For distributed computing, it is necessary to
communicate among many processes Or pProcessors.
Communication protocols are used to initiate com-
munications. The marked graph shown in Fig. 1
models a communication protocal between two proces-—
ses A and B, and has been discussed, for example,
in [9,10]. Each arc of this graph is labeled by 2
statement indicating a condition which holds while
a token resides on it. For example, the token



distribution in Fig. 1 indicates that process A is
ready to send a message and that process B is ready
to receive a message. After process A has sent a
message (firing node 1), process B receives that
message (firing node 2). At this time, there will
be a token on the "wait for acknowledgement” arc
and a token on the "message received” arc. The
reader may easily follow the rest of token move-
ments and the corresponding changes in conditions.

Baffer Ready to

Ready to
full 2 ___receive message

send message

ait for

Process A ack. Process B

’
Ack. signal 3 Buffer Ack. signal
received full sent

Fig. 1 A communication protocol

The second exanple is an n-stage pipelined op-
eration shown 1in Fig. 2, where n stages of a compu~-
tation can be performed concurrently as long as
there is a steady stream of data coming from the
input queue and taken out from the output queue.

Computing Computing Computing
stage 1  stage 2 stage n

soret output
q . Qﬂ_&

Fig. 2 N-stage pipelined operation

Note that two successive stages in Fig. 2 could be
modeled in more detail by a marked graph similar to
the one shown in Fig. 1, in order to show explicit-
ly that each pair of successive processors commu-
nicates through ready and acknowledgement signals.

Parallelism is another important consideration
in distributed computing. Fig. 3 illustrates the
marked graph representation for the parallel activ-
ities between central processing (CP) and disc or
I/0 jobs as discussed in [11].

Data-flow or data-driven computations [12,13,
14] are newly emerging concepts in computer archi-
tectures and languages. These computations exhibit
a very high degree of concurrency since each pro-
gram segment or elementary operation may be execu-
ted as soon as its input operands are present.
Fig. 4 illustrates the main idea of a data-flow
computation using a marked graph model, where each
arc represents a first-in first-out data queue and
each node a program segment performing the opera-
tion indicated in a cirecle. A sequence of data-
flow snapshots are shown in Fig. 4(a), (b) and (c),
where program segments £ and g are executed concur—
rently between time t, and t,, and segments f,g,y,
and p are executed concurrently between time t, and
t; while data items a3,b3,c3, and d3 arrive on the
respective queues.

Another example of a computation scheme that
can be modeled by marked graphs is the chaining
operations in the GRAY-1 computer as pointed out

¥ Job requesting CP

Job ready to relinquish CP

Job done with CP & Disc

Fig. 3 Parallel CP and Disc activities

(b) At time t1 > o

[f(a?,bl),g(cl,dl)]

plglc, »4,)]

(c) At time ty > tl

Fig. 4 Snapshots of a data flow computation

in {10].

JFinally, it should be noted that marked
graphs can be used for representing iterative num-
erical algorithms such as the parallel predictor—
corrector algorithm for solving a class of non—
linear differential equations [15].

IYI. FAULT DETECTION AND ISOLATION BY KVL

Throughout the paper, we assume that a marked
graph G has t nodes and p arcs. Let A = [aij] be
the t x p incidence matrix of G, where a ., ="1 (-1)
if arc j is an outgoing (incoming) arc of“node i,
and 233 = 0 otherwise. Let My be the p x 1 marking

2



vector whose jth entry is the number of tokens on
arc j at some stage (or time) k. When node i fires
(execute an operation) once, one token is removed
“from each incoming arc j of node i, and one token
is added to each outgoing arc j of node i. Thus,
the firing of node i changes a marking vector M, to
My = My + AQ, where Aj 1s the transpose (column
vector) of the ith row of A. After node i fires vy
times for i = 1,2,...,t, a marking vector My
changes to

M =My + ATVk 183}

where V, = [v.] is a t ¥ 1 firing count vector and
AT is the tra%spose of A.

Eq. (1) can be written as

M = ATVk, @

where &M = M, - My. When AM and V, are interpreted,
respectively, as the branch and noge voltage vec—
tors for an electracal network, (2) expresses the
branch voltages AM in terms of the node voltages Vi
Thus (2) is equivalent to Kirchoff's voltage law
(XVL) given by

BfAM = 0, 3

where B_. denotes a fundamental circuit matrix. It
has been shown in [6] that (3) is a necessary and
sufficient condition for reaching a marking My from
an initial marking MD.

The KVL equations (2) or (3) can be used for

fault detection and isolation as follows:

1) Store the initial marking Mo and the incidence
matrix A of a given marked graph model.

2) At each stage (or time) k, form Ve = [v.],
where v, is the number of times node i fas
fired for i = 1,2,...,t.

3) At each stage (or time) k, form = [m,],
where m, is the number of tokens on arcjj for
j = 1,22...,p. T

4) Compute AX = M, - Mg - AV, or
AY = Bf(Mk - MO .

5) If the jth entry of AX is different from zero,
then a subsystem involving arc j is at fault.
If the qth entry of AY is different from zero,
then there is a fault in a subsystem involving
the qth fundamental circuit.

When it is known a priori that a given system
has certain operations which will not be execu-
ted for a particular task, the initial marking M,
need not be live and there may be token-free
directed circuits [6]. Thus, for fault analysis,
the marked graph can be reduced by coalescing
each token-free directed circuit to a single
node.

Example 1: The marking Mé of the marked graph
in Fig. 5(a) is not live, so the token-free di-
rected circuit (e,f) can be reduced to a single
node denoted by 1 as is shown in Fig. 5(b). Let
M?, Ml, and M, be the marking vectors of Fig.
5(b), (), ané (d), respectively. Suppose that
after executing the operations represented by
node 2 twice and node 3 once, the marking MO
changes to Ml' Then

T
X = Ml - MO ~ A Vk

afll 2 1-1 010 1
= bIili -0 ~-10 1-2}i2f{ = {0
ciO 1 0-11}{1 0
d {0 1 104 0

{c) Ml

@ M,
Fig. 5 Example 1

The entry of AX corresponding to arc a is not zero,
which indicates that a subsystem involving arc a is

at fault. Also, with respect to a tree (c,d), we
have:
AY = Bf(M1 - Mo)
a b ec d
=11 0-1-1
0110

H
O N
i
O
e nd

OO s

which indicates a fault in the fundamental circuit
(a,c,d). For V., = [0 2 1}T, the correct marking
reachable from ﬁo is shown in Fig. 5(d). The
reader can easily verify, in this case, that

Ty =
AX =M, ~ M, - AV, =0

and AY = Bf(M2 - O) = 0,

IV. INVARIANT, KCL, AND TELLEGEN'S THEOREM

Let I be a p x 1 vector satisfying
B Al = 0, (&)
where A is the t x p incidence matrix of a marked
graph G. Due to the invariant property expressed
by .{5) below, I is called an invariant of G. If I
is interpreted as the branch current vector, (4)
represents Kirchhoff's current law (KCL) in an
electrical network whose incidence matrix is A.
From (2) and {4), we obtain

peI = vi (A1) = 0 ()

T T
or MbI = Mkl. (6)



Eq. (6) states that the inner product of vectors My
and I is equal to that of and I, for any two
mutually reachable (live) markings M, and M. In
other words, the weighted sum of tokens for MO is
the same as that for M), vhere the weight of each
arc is defined by the corresponding entry of I.

Eq. (5) or {6) can also be used for detecting
faults, but not for isolating them since (5) or (6)
yields a scalar quantity.

It should be noted that (5) is analogous to
Tellegen's theorem in the following sense: the in-
ner product of the branch voltage vector AM and the
branch current vector I is equal to zero. Just as
in electrical networkds, the relation MTI = 0
holds even if AM is taken from one marked graph and
I from another, as long as both have the same in-
cidence matrix. Since Tellegen's theorem is very
useful for computer aided network design [16], and
is applicable in many areas of electrical engineer—
ing [17], it can be expected that this theorem or
its analogue may become equally useful for the
analysis of distributed/parallel systems.

Example 2: TFor the marked graph shown in Fig.
5() and (d), I = {132 -11T is an iovariant since
abcd
1001 1 G
AT ={~-1 1-1 0 31=10
0-1 1-1 0

2
=1

For the two mutually reachable markings My and M.
shown in Fig. 5(b) and (d) (Mz reaches My by firing
node 1 twice and node 3 once), (6) is easily veri-
fied as follows:

. MI=[20111%[132-1]=3
MT=[0100] *[132-1]=3

where * denotes the inner product.
V. MAXIMUM STORAGE REQUIREMENT AND MINIMUM POWER

Let R(M,) denote the set of all possible mark~
ings reachab?e from Mg, and |M| denote the total
number of tokens in a marked graph for a marking M.
For a marked graph G with a bounded initial marking
M,, it is known that !M] is bounded for any M in
R{M,) if and only if the underlying digraph of "G is
strongly connected. In this section, we are inter-
ested in the problems of finding the maximum and
pinimum values of |M| for all M im R(MO) of a
strongly connected marked graph G. To make these
problems more general, we associate a nonnegative
integer-valued weight function w(e.) to each arc e
in G. w(e,) may represent the stofage space or
cost to acCommodate a token on arc e,. Let Wbea
P x 1 column vector, whose ith entry Is w{e,). Then,
the inner product M'W denotes the total weighted
cost for a marking M. In particular, MW = ]M} if
w(ei) = 1 for all ey.

Given a live initial marking M, with weight
function W for a strongly connected marked graph G,
we have

Max (MW | Me R(MO)} = Min {ng J>w, O

- and

Min (€W | M e ROY)Y = Max {Mgi 1<}, (8

vhere I is an invariant of G.

Egs. (7) and (8), which specify the maximum
2nd minimum values of M°W, was originally given in
[18] and can be proved by using the duality theorem
in linear programming [19]. The network theoretic
interpretations of these equations are as follows.
When M,is interpreted as the braach voltage source
vector, MOI represents the power supplied by the
voltage sources. Thus, (7) (and (8)) states that
given M, with W for a strongly connected marked
graph G, the maximum (minimun) total cost or stor-
age space required is equal to the minimum (maximum)
power supplied to G by a current distribution I
such that I > W (I < W,

Example 3: Consider the marked graph shown in
Fig. 6, where ¥y = [10100)7 and w=[12121]%,
The current distribution shown by the dotted lines
in Fig. 6(a) is an invariant I. = [2 2 2 2 4]T > W,
Thus, the maximum storage required is equal to -
M'W = 4, which is attained with M = [0 2 0 2 0]7.
The current distribution shown by the dotted lines
in Fig. 6(b) is an invariant I, = [01 1 0 1]T < w.
This yields the maximum (powerY, M I, = 1 under the
constraint I < W. Thus, the minimum storage re-
quired is equal_to My = 1, which is attained with
M=[00001]".

(a)

Fig. 6 Example 3

VI. CONCLUSION

We have shown that network theory is relevant
to certain models of distributed/parallel proces-—
sing. One notable application of the network theory
as discussed in this paper is the method given in
Section ITI for detecting and isolating faults.

This method may be suitable for real-time fault
analysis since it requires a very small amount of
computation (essentially only ome vector addition
for each firing).

It is hoped that this paper motivates network
theorists to investigate methods for applying their
highly developed techniques to the areas of distrib~
utegiparallel processing.
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ABSTRACT

The problem of fault diagnosis of large-scale
analog circuit is studied. Any fault diagnosis
procedure is limited by the number of circuit param-
eters to be diagnosed. When such limit is exceeded
by large-scale circuits, some kind of tearing proc-
ess has to be implemented before a fault diagnosis
procedure can be applied. In this paper, a tear-
ing process via accessibility of subnetworks is
presented. The necessary and sufficient condition
for accessibility is obtained. The implementation
of this tearing process is discussed. The tearing
process can be applied to nonlinear circuits.

I. INTRODUCTION

In the study of Large~Scale Dynamical Systems
(LSDS), in order to simplify a problem we often re-
duce it from the level of the overall system to that
of its components or subsystems. Tearing or Dia-
koptics [1] is such an approach for the analysis of
large~-scale networks. For the fault diagnosis of
LSDS there is to technique which is equivalent to
tearing. Existing methods of fault diagnosis (for
example [3-6]) attack the problem at the LSDS level.

The easiest way to transfer the problem of
fault diagnosis from the level of the overall sys-
tem to that of the subsystems is to have direct
access to the inputs and outputs of each subsystem.
However, such direct access may not be available to
us. In such a case if we can determine the inputs
and outputs of the components of interest from the
LSDS inputs and outputs, we have effectively ac-
cessed them. Intuitively, we can say that this
would be possible if a mapping existed from the
space of input-output waveforms of the LSDS to the
space of input-output waveforms of the components.
Such a map would be the basis of our tearing ap-
proach. 1In this paper, we explore these concepts
and determine the necessary and sufficient condi-
tions for the existence of such a map which takes
as much advantage of the known information as pos-
sible. We then lay the intuitive basis for a
strategy of tearing which simplifies the problem
of fault diagnosis. The results presented are a
generalization of an earlier work by Saeks, Singh
and Liu [2] and Liu and Visvanathan [7].

1'l‘his research is supported in part by ONR Grant
No. N00014~78~C-0444.

University of California
Berkeley, CA 94720

II. ACCESSIBILITY FROM INPUT/OUTPUT TERMINALS

The LSDS model consists of three parts, the
masked subsystem, the unmasked subsystem and the
connection-box as shown in Figure 1. The vectors
u and y denote the input and output vectors of
the LSDS, ¢ and d of the unmasked subsystem and r
and s of the masked subsystem. The connection—
box consists of the connections between the above
variables. The equations for the three parts are:

a) Unmasked Subsystems

We assume that the unmasked subsystem is a linear
dynamical system described by:
x(t) = Ax (t) + Bec (t)
1)
d(t) = Cx (t) + Dc (t)
where A,B,C, and D are constant matrices and x is
the state vector for the unmasked subsystem.

b) Connection Box

The connection box is described by [10]:
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The L's and R's are constant matrices. Note that
d,s and u are inputs to the connection-box and c,r
and y are the outputs.

¢) Masked Subsystem

The inputs and outputs of the masked subsys-
tem are related by some functional form

s=f r 3

which is assumed unknown. For example, the rela~-
tion (3) could be a state equation or a zero-memory
nonlinear function.

Equations (1), (2) and (3) completely describe
the LSDS. The unmasked subsystem has been included
in the LSDS model to provide us with a greater
flexibility. Components that are known to be fault~
free or have been independently diagnosied can be



included as part of the unmasked subsystem. We
further assume that the LSDS is well-posed, i.e.,
the initial value solution (x(t), c(t), d(t), r(t),
s(t)) exists and is unique for all admissible in-
puts u(*).

Definition 1.

The masked subsystem of the LSDS is said to be
accessible from input/output terminals, or simply
accessible, if Vpe[0,«), (r(t),s(t)) can be unique-
ly determined from (u(t), y(r)) for t1e[0,t] by use
of equations (1) and (2) but not (3), with the in-
itial state x(0) = 0 of the unmasked subsystem. It
is said to be anticipativelv accessible if (x(t),
s(t)) can be uniquely determined from (u(t),y(t))
for te[0,t+8] for some & > 0 but not for & = 0.

Theorem 1 [11]

The masked subsystem of the LSDS is accessible
if and only if the matrix J

R +L ,D-I R L
cc [ cr

d cs

J = R +L .,D R -I L
re rd T rs

R +L D R L
ye vd yr y¥s

has full column~rank.

Note that the accessibility only depends on
the memoryless part of LSDS. The application of
Theorem 1 to large-scale networks is considered
next.

III. ACCESSIBILITY OF SUBNETWORKS

The above result can be applied to the diagno-
sis of subnetworks. A given network can be decom~
posed intc three parts as shown in Figure 2. Those
R-elements, which are known to be reliable, are
placed in the resistive-network box. Those L,C-
elements and/or (nonlinear) devices are placed in
the masked box. The last box contains all the ele~
ments to be diagnosed.

Note that (u,y) and (r,s) are the port-volt-
ages and the port-currents of the overall network
and of the subnetworks in the masked box respect-
ively.

The unmasked part has a state-equation repre-
sentation (1),

x

Ax + Bc
d = Cx

1
where A= 0, C = I, and B = diag (C,, L.),
€= Ug vy dod = (vp 5 3 ) ’
i 3 i

Associate each network in Figure 2, construct
a LC-reduced network, or simply reduced network,
by replacing each inductor by an open circuit and
each capacitor by a short circuit as shown in
Figure 3. Note that the reduced network is a re-
sistive network.

Theorem 2, [11]

#

The masked subnetwork in Figure 2 is accessible

, ry8) can be uniquely deter-

if and only if (ic,vL

mined by (u,y) from its reduced resistive network.
IV. ACCESSIBILITY OF FURTHER REDUCED SUBNETWORK

For the purpose of testing the accessibility,
it is possible to further simplify the network.
In order to do this, more notations are needed. In
this section, m-terminal masked box is decomposed
into m~1 2-terminal X-devices and the set of X-
devices-branches is denoted by Gy. Note that the
knowledge of all X-devices completely describes
the behavior at the terminals of the original mask-
ed box. Similarly, the set of all inductor-,
capacitor-branches are denoted by G., G. respectively
As for the resistor-branches, since somé of them
may be in a particular tree we choose in the net-
work, we denote the set of them in the tree by GR,
and the rest in the corresponding cotree by G..
Now consider a network N satisfying the gollow—
ing assumptions.

(1) The network N is a connected graph.

(2) The sources, including voltmeters and ammeters,
are considered as a set of branches with
measurable voltages and currents. The symbol
GS is used to denote the set.

(3) G_UG, contains mo loop, otherwise ammeters are

igsegted to break the loops.

4) GSUGL contains no cut set.

(5) All resistors have positive resistance.

These five conditions are assumed to be satisfied in
the networks considered in this section.

Under above assumptions, there exists a tree
(t) which contains (GX’GC’GR) and does not contain
(GS,GL,GG). Let the set of all such t be denoted
by T. Then for each t in T, we have the following
equations:

KCL:
r .o T[]
Iy sx Tsc Tsw s
Il = |Fix Fre Fwr| (% (4a)
Iy Fox Foc Tor ] Ic’
KVL:
Vs Fox Fse Fsrl| |Yx
VL Fix Fre Tr | | (4b)
v
Ve Fax Fac Ter) |'r
Ohm's Law:
Vg = R I
(4c)
I, =GV,

where R and G are diagonal matrices with positive



diagonal elements.

Define
T ¢ -1 T
F ]
w = | for CFox iR+ FT G R
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Then from Equation (4) and Theorem 2, the following
lemma can be proved.

Lemma 1.

The X-devices in network N are accessible if and
only if the associated matrix W has full column-rank.

Although the size of matrix W is smaller than
the original matrices, that is only superficial be-
cause some of the submatrices cannot be determined
without the knowledge of the original matrices. The
following lemmas will provide a better solution.

Lemma 2.

In a network N, the associated matrix W has Full
column-rank in the generic sense [12] if the matrix
FSX has full column-rank.

Lemma 3.

The matrix F_,. of a network N has full column-
rank if (1) there“exists a tree teT such that GRUGS
contains no loop in LC~reduced network of N and
(2) the matrix W associated with N has full column-
rank.

The second condition in Lemma 3 will be referred
as Assumption (5) in the sequent paragraphs.

Note that not only the size of the matrix F
is smaller than W but also the matrix itself c3h
be determined by the subgraph N constructed by
shorting all resistor-branches in the particular
tree and opening all resistor-branches in the cor-
responding cotree in the LC-reduced network N'. We
call the subgraph N'" RLC-reduced network. Then
Theorem 3 follows.

Theorem 3.

Let N be a network satisfying Assumptions (1)
to (5), then X~devices in N are generically access-
ible if and only if the matrix F_., in RLC-reduced
network associated with t has fu§§ column-rank.

Remarks

1. Theorem 3 enables us to determine the accessi-~
bility of X~devices in a network by dealing
with a considerably smaller subnetwork N" with
only sources and X-devices in this subnetwork.

2. From graph theory, F., has full column-rank if
and only if G_ contaifiS a tree in RLC-reduced
network. Thefefore, to achieve the accessi-
bility of X~devices, we only need to add some
voltmeter-branches into G, to make it contain
a tree in RLC~reduced netWwork.

3. 1In this theory, in order to access all the X-
devices in a network, the number of sources
must be at least equal to the number of X~
devices as can be seen from the required full
column~-rank of F,__.

4. The choice of trie in a network is crucial in
determining the minimalset of test points to
obtain accessibility. Altough the algorithm of

fi?ding the tree is still under development, it is
quite possible to pick the tree.in a network of
ieasonable scale by inspection as shown in Example

Example 1

Consider the accessibility of the two tran-
sistors in the two~-stage amplifier circuit as
shown in Fig. 4a. It is clear to see that (C_,
T,, C2, TZ’ C.) form a loop. From Assumption™ (2),
t%e 1G6op can ge broken by inserting an ammeter A
in series with C.. Then, by choosing the tree
consisting (X, % » X5, X, R.) in Fig. 4b, the
agsociated RLC«reéuceg neéwcrg is shown in Fig.
4c.  Apparently, the branches (E., E,, E., A) con-
tains a tree in Fig. 4c. Thus, (X,,"X,,7X,, X,),
so that (T,, T.), are accessible a%terzthe3 4
insertion of thie ammeter.

V. APPLICATION TO TEARING PROCESS

The purpose of diakoptic or tearing process
[1] is to find a way of partitioning a large-scale
network into smaller subnetworks so that the solu—
tion of the large-scale network can be obtained by
solving the (decoupled) subnetworks. Clearly, this
represents a reduction in computation time.

If fault diagnosis is of our interest instead
of the network solutions, new tearing process
should be developed so that it is compatible to
fault diagnosis problem. The accessibility can
fulfill such purpose. Let us consider the network
in Figure 2. If each masked subnetwork is diagnos-
able from its input/output pair (r,s) and is acces-
sible, then the entire network is diagnosable from
its input/output pair (u,y). This is because (r,s)
can be obtained from (u,y) indcpendently from the
characteristics of masked submetworks.

In summary, if accessibility is achieved, one
can diagnose the entire network by diagnosing each
of the (smaller and decoupled) masked subnetworks
individually.
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ABSTRACT

This paper is concerned with the nonsymmetric
half-plane (NSHP), recursive, two-dimensional (2-D)
digital filters. Such a filter is characterized by
a linear, shift-invariant (LSI), constant coeffi-
cient difference equation that is nonanticipatory
in one index but is recursively computable for a
fixed direction of recursion. A computer-aided
iterative approach is described for the design of a
stable, NSHP, 2-D digital filter approximating a
specified magnitude response. This approach incor-
porates a nonlinear optimization procedure to con-
verge to a (locally) optimum half-plane filter
while the stability is checked at every iteration
using the spectral factorization stability test of
Fkstrom and Woods. A novel "penalty function"
technique is used to satisfy the stability con-
straint. Next, the realization of a given NSHP di-
gital transfer function using the basic building
blocks {such as delay elecments, advance elements,
multipliers, and adders) is considered. A general
technique which takes into account the restriction
of a fixed direction of recursion is described.

INTRODUCTION

An LSI, 2-D digital filter operates on a 2-D
input sequence {x(m,n)} to develop a 2-D output se~-
quence {y(m,n)} in accordance with a linear con-
stant-coefficient difference equation of the form

LIb(k,)y(m-k,n-2) =ZZa(k,)xm-k,n-2) 1)
k2 kg

or equivalently, in the frequency domain by the
digital transfer function H{zl,zz) defined as

k-2

Ifa(k,2)z. Kz
H(z »Z )"’Z{y(m’n)} = kL ' : = Atzé’zz)
VU Zxmm)} Eblk,)z, Rz, B(z,,z,)

k& @)
where Zly(m,n) } and £{x(m,n)} denote the 2-D -
transforms of the output and the input sequences,
respectively. The inverse Z-transform of H(z,,z,)
is a2 2-D sequence {h(m,n)} known as the unit sample
or impulse response of the 2-D filter. The output
sequence can also be expressed as a convolution of
the innut sequence with the unit impulse response
sequence

y{m,n) = ; ? h(k,2)x (m-k,n~-2) 3)

koo fzmuto

R. E. Twogood

Lawrence Livermore Laboratory
University of California
Livermore, CA 94550

If the unit impulse response has nonfinite num-
ber of nonzero samples, the corresponding filter is
called an infinite impulsc response (IIR) 2-D digi-
tal filter. The output has then to be computed Te-
cursively from the input and a sufficient set of
initial conditions by using some explicit form of
(1). As a consequence this type of filter has also
been called recursive. The general 2-D IIR digital
filter is the so-called NSHP digital filter [1],
which is nonanticipatory in only one index. But
the filter algorithm is recursively computable in
that it only uses output values which can be pre-
viously computed or are given as initial conditions.

HALF-PLANE DIGITAL FILTER DESIGN

Until rccently, design techniques for 2-D re-
cursive filters have emphasized the design of
quarter~-plane, or so-called "causal' filters with
impulse response on only one quadrant. Murray [2]
has recently shown, however, that the class of mag-~
nitude functions realizable by quarter-plane fil-
ters is quite restrictive. On the other hand, half-
plane filters possess no such restrictions and are
capable of realizing an arbitrary magnitude func-
tion. It is therefore understandable that increas-
ing interest is being shown in design techniques
for 2-D half-plane recursive filters.

One technique for designing half-plane filters
via a spectral factorization procedure was proposed
in [1]. That technique involved factoring the
specification spectrum into its potentially infinite-
order stable and unstable components and windowing
the stable half-plane to finite order. Unfortunate-
ly, this technique tends to give scverely suboptimal
results.

A second approach to the design of half-plane
recursive filters has recently been proposed by
Chang and Aggarwal [3]. In their approach, an ex-
ponential weighting sequence is first applied to the

"autbcorrelation sequence, which is the inverse

Fourier transform of the specified magnitude squared
function. A finite-order half-planar (or "semi-
causal") form of the planar least squares inverse
(PLSI) filter is then computed; a numerator poly-
nomial is added when desired using a cepstral fac-
torization and simple truncation. Two potential
problems with this technique are 1) the resulting
filter's response is in no way an optimal approxi-
mation to the desired response and 2) the half-

1



planar PLSI is not guaranteed to be semiminimum
phase (and hence, stable) in general.

A third and evidently more powerful technique
was first proposed by Twogood in [4]. This techni-
que incorporates a nonlinear optimization procedure
to converge to a (locally) optimum half-plane fil-
ter, while the stahility constraint is satisfied
via a "penalty function" approach which checks
stability using the spectral factorization stabili-
ty test of [1]. This design procedure has also
been discussed in some detail in [5]. The steps of
this all-pole design algorithm are shown in Fig. 1,
where QD+(m,n) denotes the half-plane denominator

ju, Ju,
polynomial of the recursive filter, Eaz;(ej&),e
J
is the 2-D DFT of b, _(m,n), and |H(e —,e ..)]| is

the desired magnitu%g‘specification. The super-
script i denotes the iteration number. Use of a
modified Marquardt algorithm for the nonlinear op-
timization generally results in a converged solu-
tion after 5 or 10 iterations [4]. The three
blocks in the center of Fig. 1 simply perform the
following: the current half-plane filter bt +(m,n)
is tested for stability; P is set to 0 if it s
stable, otherwise, P is set to some large

number M. The block on the right side of Fig. 1 is,
of course, the computation of the magnitude squared
response of the current half-plane filter and a
comparison with the desired specification. Finally,
the objective function to be minimized is just the
sum of the magnitude errors plus the penalty func-
tion P. The algorithm is therefore simply a solu-
tion to a nonlinear optimization problem (i.e.,
find the half-plane filter b§+(m,n) whose magni-
tude response in some sense "best" approximates the
given specification) with a nonlinear constraint
(i.e., the constraint that b +[m,n) is stable).
The technique used is a standard one for such prob-
lems; namely, using a nonlinear optimization al-
gorithm with a penalty function to enforce the con-
straint.

The design algorithm of Fig. 1 can be modified
in a trivial manner to design filters with both a
numerator and denominator; this only requires aug-
menting the {h(m,n)}, denominator coefficients
being optimized with the {a(m,n)}, mumerator coef-
ficients, and computing the magnitude-squared re-

jw, jw ju, juw,

sponse as |A(e e 2)!%/’§§§ (e e )Iz. This
has been demonstrated in [6], where even better de-
sign results are achieved due to this numerator-
denominator interaction. For instance, a 3 X3 half-
plane denominator with 4 X4 numerator (41 total co-
efficients) has been designed in [6] using the
above technique for an ideal fan filter specifica-
tion. The magnitude-squared response of that fil-
ter is shown in Fig. 2. That result appears to be
significantly superior to any other design result,
recursive or nonrecursive, to be found in the
literature, and is indicative of the power of this
technique.

HALF-PLANE DIGITAL FILTER REALIZATION

A 2-D NSHP digital filter configuration can be

conveniently represented by block diagrams, the .
basic elements of which are: constant multipliers,
multi-input adders, delay elements zl"land :2-1,
and advance clements z, and z,. Using these ele-
ments, a circuit-theoretic 1ealization of 2 rational
2-D digital transfer function (with unit nunerator)
is outlined in this section. The aim is to obtain
a single input, single output configuration with no
delay-free loops which is admissible in the sense
that for a fixed direction of recursion 211 the
internal node variable values in_the configuration
aTe uniquely determined by previously computed node
signal values. Consider the realization of the
transfer function H(z:,zz) = 1/3(21,22) using the
configuration of Fig. 3, where

+ I L,z Yz, 4)
=0 §=0
and b(0,0) =1.

The blocks.ﬂ$ and ng are known LSI 1-D digital

networks characterized by the transfer functions be-
tween the input and the (L2+1)~ and (K1+l)*0utputs:

-1
glle Y, 2=0,1,...,L,, and fk(zlj, k:=~K],...,0,
respectively, Lilewise, the blocks J; andAJ; are

known LSI 1-D digital metworks characterized by the
transfer functions between the (L2+1)- and (K2+1)-

inputs and the output: pn(zz'l), n=0,1,...,L,, and
hm(zz'l), m=0,1,...,K , respectively. Thus £ 's,

glii, hm's,a?d pn's could all be polynomials in z,,
z, *, and z, ~. Note that an extra block of trans-
fer function zzalz: has been used preceding thefln

block in order that the resulting realization be
admissible. The blocks ﬂn and ¥_ are unknown K -
and (L,+1)-input, (K,+1)- and (L,+1)-output net-
works consisting only of multipliexrs and adders.
Let d(q,r) {d(q,r)} denote the constant transfer
function between the q-th input and the r-th output
of ﬁ% {2 }. Thus the realization of (4) using the

configuration of Fig. 3 is equivalent to the deter-
mination of the constants d(i,j) and d(k,%).

Let us now assume that

Mb~1

£)= I a(u,k)zlu, k=-K,,...,0;
i ¥ =0
R -A
hm(z2 )= ¢ B(mAz, 7, m=0,...,K,;
A=0
T e
gz(z’ 1) = I 7(532')21 » 2=O:--"L1;
e=0
-1 Nb -T
and p (z, ) = Tfoﬁ(n,ﬂzz » m=0,...,L,.



Then from Fig. 3, the denominator Q(z;,z2) of the
transfer function is given by

Mol N1l o g,
1+ £ % I Fa(i,k)d0,m80m, ) 2,
i=0 j=0 \k=-X m=0
Mp Np Ly L2 s s
+r ]I Ty@E,RAEmemidn 5)
i=0 j=0{2=0 n=0

i+l —3 -1

Comparing the coefficients of like powers of
Q(z1,22) in (5) and B(z1,z2) in (4) we have:

B,=IDA and B =ADA ©
where,
gp = 0 b(0,1) ... B(O,N,)
b(1,0)  b(,1) ... B(LN)
b4, ,0) e DO LN)
I = Iv(i,31, 02i2M, 0<3<1,
2 = [dfl,j)3’ Of_iiLla OijiLZ
B = Ib(i,5)), -M 2i<-1, 12<N
A = [e(i,5)], -M <ic<-1, -K;<j<0
b - M@, k<120, 0552k,
A = IB(i,3)], 0<i<Ky, 155<Ny 7

Determination of D and D from (6) can be
easily done by assuming L= Mb L,=N, K = Mb 1,

and K, =N, -1, and choosing A%, f}, l;, and & such
that the polynomials fk's (or respectively gz's,
hm's, pn's) are linearly independent of one an-

other with respect to the basis (of polymomials)
which is an appropriate subset of

QL -1) _ - (N, ~1)
{1, zl,zlz,,..,z b } (resp. {1 221,...,22 b 1,
{1,2% ,z;z,...,z1 }, {1, zzl,zzz,...,z2 1), say.

In that case A, A, E_ and A are invertible square
matrices.

B=atp gltanap=rtp a7t ®

Without any loss of generality in the following we
shall assume A, A, T, and A to be invertivle.

The realization in Fig. 3 is possible because
there exists at least one realization for o

l;, and“J' [7] and because both.z and 3 contain

only forward paths as shown in Flg. 4. 0bv1ou51y,

. realization in Fig. 3 has no delay-free loop. The
coefficients of fk's gz’s, hm’s, and pn‘s can be

used as parameters of design to achieve low-noise

or low sensitivity realizations. The realization
of Fig. 3 employs the minimum number of both 2,

and z;l—blocks but in general uses more than Nb

z_l-delays By simple manipulations, the structure

can be modified to have only (N, +1J, 221~de1ays as
is discussed in [7]. Note that although the modi-

fied structure will use one extra g{l-delay than is
suggested by (4), it can be called a "minimal®

realization., One extra z;l—delay is the minimum
number of such elements needed to perform one step
prediction and is a must for making the configura-
tion admissible,
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respectively.
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A CHARACTERIZATION OF THE INVARIANCE OF POSITIVITY FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

I. W. Sandberg

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

For systems of functional differential
equations that can take into account finite or in~
finite delays, a complete characterization is
given of the invariance of positivity in the sense
that all solution components are positive vhenever
the initial condition function is positive. 4
related result concerning a comparison of the solu—
tions of pairs of initial value problems is also
given. One application of the results described
concerns a model for synchronizing geographically
separated oscillators, and arother is in the area
of economics.

I. INTRODUCTION

Consider a system of functional differential
equations of the form

v = > =

% = £(t, xt), £ 2>ty xto ¢ (@)
in which x is a real n-vector valued function of t,
% denotes dx/dt, ¢ is an initial condition functionm,
and xt denotes the function defined by xt(s) =

x(t+s) for s < 0. (When £(t, xt) depends only on

t and x _(0), (1) reduces to a system of ordinary
differential equations.)

The main purpose of this paper is to give a
solution to the problem of determining conditions
under which (under certain typically very reason-
able conditions on £), x(t) of (1) has components
that are all positive for t > t, whenever ¢ is pos—
itive in, for example, the senseé that ¢(s) has pos~
itive components for s < 0. The problem arises in
connection with the mathematical modeling and anal-
ysis of economic processes, and it comes up in
several other areas as well. (An example concern-
ing the synchronization of geographically separated
oscillators is described in Section 2.6.) In some
instances, the invariance of positivity in the
sense described above is crucial, in that the lack
of positivity of a component of x(t) for some t and
positive ¢ means that the associated model is
inappropriate.

Our main result, Theorem 1 of Section II, is
concerned with the case in which f is continuous
and locally Lipschitz. It provides an explicit
and useful condition under which positivity is
invariant, and it also asserts that positivity is
invariant if and only if (1) preserves nonmegativ-

ity in the sense that x(t) has nonaegative comp-
onents for t > to whenever ¢ is nonnegative.

The nonnegativity-preservation problem has
been considered im [1], [2], and [3}, and the
relationship between Theorem 1 and the earlier
material is indicated in Section 2.3.

A corollary of Theorem 1 is as follows.
Suppose that (1) is a2 system of ordinary dif-
ferential equations, and that £ is continuous and
satisfies a global Lipschitz condition (in the
usual sense). Let g(t, x) denote {(t, xt). Then
positivity is invariant for (1), by which we
mean invariant for each starting point to, if and

only if for each i, gi(to, v) > 0 for each ty and
each real n-vector v such that v, = 0 and v, > 0

for j # i. Notice that for the special case in
which £(t, xt) = Ax. where A is a real n X n
matrix, our condition is equivalent to the require—
ment that the off-diagonal elements of A are non-
negative. The corresponding proposition concerning
nonnegativity preservation for this case is well
known [4]. Of some interest is the fact that the
corollary described sbove becomes false if the
Lipschitz hypothesis is replaced with the assump-
tion that (1) has exactly one solution for each
initial condition (see Section 2.3).

A result related to Theorem 1 that provides a
necessary and sufficient condition for the invari-
ance of positivity, or of nonnegativity, of the
difference of the solutions of a pair of equations
of the type (1) is given in Section 2.4. Specific
applications of that result, as well as of Theorem
1, are described in Section 2.6.

II. CHARACTERIZATION OF THE INVARIANCE OF
POSITIVITY

2.1 Preliminaries
We shall use the following notation and def-
initions. n
 With n an arbitrary positive integer, R de-
notes the set of real n-vectors v = (vl, Vgsrees
n
vh)’ R+ n n
max }vi] for ve R, For u and v in R, the in-
:
equality u > v (u > v) means that ui_z vy (ui > vi)

= {veR": v; 20 for each i}, and Jv] =

for each i. The zero n-vector of R is denoted by
e.
We denote by C the Banach space of bounded

continuous functions from (-=, 0] to R, with norm



given by [wi = sup ]w(t)’ for all we C.
te ("'“’: 0]
The symbol T denotes any real interval of the
form [a, =), (@, =), or (~=, =), and ty is an ele-

ment of T. For each t € T, and each bounded cont-

inuous function w from (~=, t] to Rn, LA denotes
the element of C defined by wt(s) = w{t+s) for
s < 0.

Throughout SectionnII, f in (1) denotes a
mapping of T X C into R, We say that f is con-
tinuous in t if f(t, wt) is a continuous function

of t for t > tO whenever t0 € T and w is a bounded

continuous mapping of (~w=, =) into Rn, and we say
that £ is locally Lipschitz if for each to e T,

each vy € {to, ®), and each compact set B in R°,
there is a constant p(to, Y, B) such that ]f(t, u)
- £(t, v)} < p(to, Y, B) ]u - v‘ for each

t € [t,, vy] and each u and v in C such that the
range of u, and also of v, is contained in B.
By a solution of (1) through a given (to, $)

€ T x C is meant a continuous R'~valued function
x that is defined on (-, «), is differentiable on
[to, »), and is such that (1) is satisfied (with the

understanding that at t = to, % denotes the right-

hand derivative).* As in the case of ordinary
differential equations, if f is continuous in t
and satisfies a uniform Lipschitz condition in the
sense that f satisfies a local Lipschitz condition
with p(to, Y, B) independent of B, for each

(to, $) € T x € there is a unique solution of (1)
through (tO, 9) (see P. 409 of [51).

In the next section, we refer to the follow-
ing hypothesis.
H.1: There is a solution x of (1) through each
(to, $) ¢ T x C, and £ is locally Lipschitz as well
as continvous in t. (In particular, each solution
of (1) is unique).

2.2 Our Principal Result

Under the assumption that H.l holds, consider
the following properties and condition.

Property 1 (Invariance of Positivity, Version
1): For each (to, ¢) ¢ T x C such that ¢(0) > @

and ¢(s) ¢ Ri for s < 0, we have x(t) > © for
t>t,..
-~ 0
Property 2 {Invariance of Positivity, Versiom
2): TFor each (to, ¢) £ T x C such that ¢(s) > @«

for s < 0, we have x(t) > 6 for t > to.

P ——
%

It will become clear that our development can be
extended at once to cover the case in which a
solution need be defined on only an interval of
the form (~=, B) with B > tO'

Property 3 (Invariance of Nonnegativity): Ve
have x(t) > © for t > ty whenever (to, $) eTx ¢

with ¢(s) ¢ R: for 5 < 0.
Condition 1: For each i, fi(tg, ¢) > 0 when~

ever (t,, ¢) € T X C with $(s) €.RY for s <0 and
450 =%, ¥ -

Theorem 1: Let H.l be satisfied. Then the
following four statements are equivalent: Property
1 holds, Property 2 holds, Property 3 holds, and
Condition 1 is met.

The proof of Theorem 1 is omitted in this ver—
sion of the paper.

2.3 Notes

The Condition l-implies-Property 3 assertion
of the theorem becomes false if the hypothesis that
f is locally Lipschitz is dropped and Property 3 is
modified in the natural way so that it concerns all
solutions that correspond to the indicated type of
initial condition [2].

The following example shows that the theorem
becomes false if the Lipschitz hypothesis is re-
placed with the assumption that (1) has at most one
solution for each (to, $) € T x C. Let n=l, and

let f be defined for all t by £(t, xt) = -(x(t))1/2
for x(t) > 0, and £(t, Xt> = 0 for x(t) < 0. Ob-

serve that f is continuous, and that a solution (in
the usual sense of % = £(t, xt) for t >0, x(0) =

xo, is given by x(t) = xo for t > 0 if xo <0, and
x(1) = (Y2 - 1726)% for ¢ € [0, 2602 with

x(t) = 0 for t > 2(:’(0)]‘/2 if xo > 0. It can be
verified that there are no other solutions, even
though f is not locally Lipschitz. While here x(t)

is nomnegative for t > 0 whenever xo >0, it is
obviously not true that x(t) is positive for all

0. s
t > 0 whenever x  is positive,

Essentially, the fact that Condition 1 and
Property 3 are equivalent for ordinary differential
equations is proved in [2]}, and in [3] (and in the
setting provided by the results in [5]) that result
is extended to cover the more general case. At the
time 2] was written this writer was unaware of [1]
which contains a theorem (proved in a very differ~
ent way) from which the result in {2] can be ob~-
tained. Our proof of the equivalence of Condition
1 and Property 3 (which is omitted in this version
of the paper) is basically the same as the proof in
[2] for the ordinary differential equations case.
A modification of our proof is used to prove the
theorem described in the next section. Also, for
thé case in which (1) takes into account only fin-
ite delays (i.e., for equations of ''retarded”
type), a direct variation of the proof, using the
continuous dependence result in, for example, [6],
shows that Condition 1 and Property 3 are equiva-
lent without the Lipschitz hypothesis, provided
that (1) has exactly one solution for each
(to, %) € T x C.



2.4 The Comparison Theorem

The proof of Theorem 1 can be modified to
establish a corresponding theorem concerning a
comparison of the solutions of two initial value
problems. To describe that result, let g be a
function from T X C into R, and consider to~-
gether with (1) the equation

¥ = glt, Yt): t 2> to’ )'to =y (2)

as well as the following hypothesis, properties,
and condition.
H.2: For each (to, $) € T x C, (1) has a sol-

ution x, and similarly, for each (to, e T xC,

(2) has a solution y. The mappings f and g are
continuous in t, and at least one of the mappings
f or g is locally Lipschitz.

Property 4: For each (to, $, V) e T x C xC

such that ¢(0) > ¥(0) and ¢(s) > ¢¥(s) for s < O,
we have x(t) > y(t) for t > to(i.e., we have

x(t) > y(t) for t > t, for any solution x of (1)

through (to, $) and any solution y of (2) through
(tos ).
Property 5: For each (to, ¢, ¥) e T xCxC

such that ¢(s) > ¥(s) for s < 0, we have x(t)
> y(t) for t > tye

Property 6: We have x(t) > y(t) for t > to
whenever (to, ¢, ¥) € T x C x C such that $(s)

3_¢(s) for s < 0.
Condition 2: For each i, fi(to, $) >

gi(to, Y) whenever (to, ¢, ¥) € T x C x C with

¢i(0) = wi(O) and ¢(s) > ¥(s) for s < 0.

Qur TYesult is the following:

Theorem 2: If H.2 is met, then Property 4,
Property 5, Property 6, and Condition 2 are
equivalent to one another.

The proof is omitted in this version of the
paper.

2.5 Comments

Since Property 6 does not hold when f = g and
(1) has more than one solution through some (to, $)
€ T x C, we,see that the Condition 2-implies~Prop-
erty 6 part of Theorem 2 becomes false if the
hypothesis that at least one of the functions f or
g is locally Lipschitz is omitted. The example
given in Section 2.3 shows that the theorem becomes
false even if the hypothesis is replaced with the
assumption that {1) and (2) have at most one solu-
tion for each (to, $) € T x C and each (to, P) €

T x C, respectively. On the other hand, the equiv-
alence of Condition 2 and Property 6 holds for
equations of retarded type when the Lipschitz hy-
pothesis is replaced with the assumption of unique-
ness of solutions for at least one of the equations
(1) and (2)t.

* For ordinary differential equations with f = g,
this part of Theorem 2 is along the lines of a
well-known result [7].

See the corresponding comment in Section 2.3.

The proof of Theorem 2 given in the complete
version of this paper can be used to verify that C
in Theorem 2 can be replaced with the set of cont—
inuous bounded functions from (~=, 0] to D, where
D is any open convex subset of Rn, provided that by
a solution of (1) or (2) is meant 2 solutiocn whose
values are contained in D for t > tye

-

2.6 Applicatioms

There are many applications of Theorems 1 and
2. As a simple example for the purpose of illus-
tration, consider the delay-differential equations

n
ki (0) = jZl hij(t)[xj(t~1ij) - % ()], £ >0
I#i
i=1, 2,..., n 3
which arise [8] in the study of models of systems
for synchronizing geographically separated oscil-
lators. 1In (3), each Tij is a nonnegative con-

stant, each hi. is nonnegative, continuous, and
bounded on [0, «), xi(t) denotes the frequency of

the ith oscillator, and the h can depend on x as

i3
well as on certain fixed nonlinear functions.
Under certain reasonable hypotheses concerning the

hij (see [8]), given a continuous x(t) for t ¢ T,

where T = [-max Tij’ 0], there is a constant p
j#d

such that for each i, xi(t) +~p as t +w, Assume

here that there is such a p for each initdal
condition.
Theorem 1 shows that each xi(t) in (3) is

*
positive for t > 0 whenever x(t) > 8 for t e 7.
(The nature of the dependence of the hi} on x is

not of consequence at this point. If it were not
true that x(t) > @ for t > 0 whenever x(t) >0
for t £ 1, we would have a contradiction to the
theorem). Assuming now that the hij are independ-

ent of x, it follows from Theorem 2 that, for ex-
ample, p is either increased or unchanged when
x(t) for t € T is replaced with any continuous
%(t) for which %x(t) > x(t) for t & t.
Two related observations concern the equations

n

%, (t) = ——bioixi(t)]+jzlbij [x; (=7, ) Hug (0), £ 2 0
i

i=1,2,..., n )

of a model of a compartmental system with delays
{91,'in which the bo and the bij for if#j are lo-

cally Lipschitz monotone-nondecreasing functions
such that bio(O} = bij(o) = 0, each vy is continu-

ous and satisfies ui(t)‘3 0 for t > 0, and, as in

* This proposition is a special case of Lemma 1
of [8] whose proof is very different.



the preceeding example, the T are nonnegative

i3
constants. In (4}, xi(t) denotes the amount of

material in the ith compartment. 2
From Theorem 2, we see thact if x is a solu-
tion of (4) corresponding to (ul, uz,...,un) =y

and x(t) = x°(t) for t ¢ 1, where again T = [-max
b 33
Tij’ 0], and similarly with regard to x and v,
then we have xa(t).z (>) xb(t) for t > 0 when ua(t)
> ub(t) for t > 0 and x2(t) > ) xb(t) for t £ T.
The "> part” of this proposition was given in [9].
From Theorem 1, it is clear that we have x(t) > ©
for t > 0 whenever x(t) > 0 for t £ v, which does
not seem to have been proved earlier, even for the
case in which g4 = 0 for 211 1 ¢ j.*

Consider now the case in which £ in (1) is
given by fi(t, xt) = hi(xt) for each i, where each

hi is a functional on C with the property that
hi(u).g h.(v) for all u and v in C such that ui(s)
= vi(s) and u(s) > v(s) for s < 0. Functions f of

this form are generalizations of time-invariant
quasimonotone (or Wazewski type) functions [10]
which are of interest in several areas, including
economics. In economics applications, the xi(t)

often denote prices (see, for example,[11]). Ob-
serve that (4) is of the form considered here when

the u; are independent of t.

Assuning that H.1l is met, Theorem 1 provides
the following simple necessary and sufficient
condition for the invariance of positivity in the
sense of Property 1 or Property 2: For each 1,
hi(w)_z 0 for each w in C such that wi(O) =0,

wi(s) >0 for s <0, and wj(s) =0 for s <0 and

3 # i

The monotonicity of the biO and bij is not

needed for this result. It suffices that
“bij(“)42 0 for ¢ > 0 and 1 ¥ 3.

9.

10.

1.
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LINEAR AMPLIFICATION TECHNIQUES IN 2 GHz MICROWAVE RADIOS

Chi-Chia Hsieh
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San Carlos, California

Abstract

This paper describes four linear amplification
techniques in the 2 GHz band which can provide high
R.F. output power with low third-order intermodula-
tion distortion, namely; The Brute-Force technique,
the Negative Feed-Back technique, the Feed-Forward
technique, and the I.F. Pre-distortion technique.
The basic operation, the advantages, and the dis-
advantages of each technique will be described, a
comparison of these techniques will be given.

Introduction

In the design of some microwave radios in the
2 GHz band, a linear high power amplifier is needed
to provide high output power with low intermodula-
tion distortion products. The third-order inter-
modulation products at the output of the amplifier
may fall within the carrier frequency band of
interest, and therefore cannot be eliminated by R.F.
filtering techniques. Therefore, vhe difference in
R.F. levels between the carrier and the third-order
intermodulation distortion products (in dB) can be
used as a meaningful measure of the linearity of
the power amplifier at a given output power.

The common way of indicating the linearity of
an R.F. power amplifier is to specify the output
power at the 1-dB gain compression point or the
third-order intercept point. Because of the "non
well-behaved” characteristic (that is, the third-
order intermodulation distortion curve does not
follow the 3:1 slope) of many R.F. power transistors
manufactured today, these two numbers no longer
provide a meaningful indication of the linearity of
power amplifiers. Hence, the best indication of the
linearity of the R.F. power amplifier will be the
completed plot of tha saturation and the third-
order intermodulation distortion curves with respect
to input and output powers (Figure 1).

The main difficulty in designing a high power
linear amplifier is trying to maintain high D.C.
efficiency and providing high linear output power
simultaneously. There are four different ways of
achieving high linear amplification which will be
described in the following sections.

1. Brute-Force Technique: This is also known as
the "Back-0ff * technique which is the most common
way of achieving linear amplification [1]. In this

technique one would operate the amplification at
an output level which is far below 31ts output
capability. As shown in Figure 1, if the ampli-
fier is "well-behaved", the third-order intermodu-
lation distortion products will be reduced at a
2:1 ratio with respect to the output power level.
If the amplifier is not "well-behaved" (Figure 2),
then one should carefully examine the third-order
intermodulation distortion curve with respect to
the output power to be certain that at high out-
put level (such as in an AM system) the system can
withstand the amount of third-order intermodulation
distortion products.

The main advantages of this technique are; 1)
it does not require any linearization process, 2)
the only band limiting element §s the amplifier,
therefore it is relatively easy to obtain broad-
band amplification. Two major disadvantages of
this approach are; 1) it requires high-power linear
transistors which are hard to obtain at the present
time. The highest rate commercially available
linear pover transistor can provide an output power
of 2-watts at 2 GHzwith third-order intermodulation
products down 30 dB from the carrier level. This
performance is obtained using a two-tone signal
with Tow intermodulation distortion {-50 dB8).
Therefore, to obtain a 2-watt linear output power,
the amplifier would require several high level
stages and a large number of power transistors.
2) Due to the low efficiency of the Class-A ampli-
fier, the unit necessarily dissipates a large
amount of DC power, hence making the approach
impractical.

2. Negative Feed-Back Technique: It is well-
known that negative feedback is a way of reducing
distortion in linear amplifiers. However, appli-
cation of negative feedback to a microwave ampli-
fier requires special treatment of the time delay
and‘bandwidth involved [2] [3]. Since a typical
amplifier will have several cycles delay from in-
put to output, a simple means of applying feedback
is to include a single-tuned, band-1limiting cavity
in the feedback loop. Such a configuration is
shown in Figure 3. The amplifier A, feedback loss
B, and cavity C are chosen so that the loop trans~
mission is greater than one only between two fre-
quencies of 180° phase shift. Consider the
response of each block:



- ae-?taAm (1)

B = be JTH (2)

c=_¢ (3)
1+ jawT

Where a, b, and c are the midband gains of each
block, 15 and tp are the time delays through the
amplifier and feedback path, T is the cavity time
constant T = 1/7BW, and aw is the frequency dif-
ference from the center frequency. (Where B in-
cludes the input and output couplers.) Then:

. AC 1
& = T3 A8C & ¥ TF ABC ®im (4)

Where &im is the intermodulation products introduced

by the amplifier. Thus the intermodulation products
are reduced by 1/{1 4 ABC) and the amplifier gain is
reduced by C/{1 + ABC).

The factor (1 + ABC) determines the trade-offs
which must be made between loop gain, bandwidth, and
phase margin. For a given set of loop gain and
phase margin the maximum bandwidth can be easily
determined. The total time delay from input to out-
put ports of a practical 2 GHz high power linear
amplifier is approximately 11 ns, assuming a reduc-
tion of 10-dB in the intermodulation products is
needed, the maximum bandwidth of this amplifier is
less than 5 MHz. This clearly shows the main draw-
back of negative feed-back technique. However, for
a narrow band application this technique could be
the most practical way to achieve linearity at
microwave frequencies,

3. Feed-Forward Technique: The feed-forward error-
control technique was first proposed by H. S. Black
[4}. By applying the MIC technolegy it is possible
for one to produce a practical feedforward amplifier
system, which will deliver high linear output power
at a considerable reduction of the applied DC power
ag compared to the Brute-Force approach [5] [6] {7]
{e1.

The basic operation of a feedforward error-
control system can be described by means of a block
diagram as shown in Figure 4. An input signal
Aiej“t enters the system through an input coupler

C1 and is split into two isolated ports: one
s

(AleJ“t) driving the main amplifier (with gain K

and delay t) into saturation, and the other enter-
ing a reference path. The reference signal is

delayed by an amount of time which is equal to the
transit time through the main amplifier, This dis-

tortion-free signal Aler(t°T) is then subtracted

from the output of the main amplifier which con-
tains all the IM distortion products, (A1K+B)
eJm(t'T), by means of a sampling Coupler C, an

»
attenuator {with attenuation 1/K), and an error-
determination coupler C3.

The result of this subtraction - (B/K)

39 (tT) psch contains a1l the distortion products
must then be brought to the compatible level with
that of the main amplifier output signal so that
error cancellation can be achieved. This requires
an auxiliary amplifier (with gain K and delay ')
and a corresponding delay (x'} for the main ampli-
fier signal so as to maintain time-frame compati-

bility. Finally, the error signal _gede(t-t-1")
and the delayed main amplifier signal (AlK + B)

Ju(t-t-1') .
e are brought together for cancellation
in the error-injection coupler C, and the dis-

tortion-free amplified signal Alkeiw(t-T-T')
emerges at the oulput port.

To achieve temperature stability in a practical
feedforward system, the degree of linearity improve-
ment should be kept at a reasonably low level.
Experiments show that a 20-dB of linearity improve-
ment would correspond to a phase imbalance of 5°
and a gain imbalance of 1.0 dB, which means that
the system can withstand circuit parameter varia-
tions due to temperature change without any
adaptive control system.

The band limiting elements in a feedforward
amplifier system are the amplifiers. The couplers,
the attenuators, and the phase shifters. Broad-
band amplifiers, and passive circuit elements are
readily available, therefore a feedforward ampli-
fier with bandwidth of 30 MHz at 2 GHz can be
achieyved.

The main disadvantage of feedforward amplifier
system is its circuit complexity. However, using
MIC technology with a high level of circuit inte-
gration will greatly simplify the system.

4, 1.F. Predistortion Technique: Recent reports
[9] [10] show that by applying predistortion tech-
nique at the IF frequency stage, a reduction of
intermodulation distortion products at the output
of the RF power amplifier can be achieved. The
technique provides both broad frequency bandwidth
and wide dynamic range.

The basic operation of an IF predistortion
system can be shown in Figure 5. The input coupler

C1 splits up the incoming signal and distributes

it among the two arms of the bridge which have an
equal electrical length. The 180° phase shift re-
quired for the subtraction is achieved by the two
couplers Cl and CZ' An ampiifier located in one

of the arms generates nearly the same intermodula-
tion distortion as the main RF power amplifier. A
time delay equalizer t in the second arm serves
for setting the same electrical length. By means
of coupler Cz both arms of bridge are coupled to-

gether with an amplitude ratio of 2:1, the signal
from the passive arm having the higher level. The
signal-to-noise ratio at the output of the bridge,
i.e., at b, is the same as that of the predistor-
tion amplifier; except, the distortion products
are in opposite phase. This predistorted signal
is then up converted to the RF frequency and fed

2



into the main power amplifier. Hence, the inter-
modulation distortion products generated by the main
power amplifier will be reduced.

Experiment shows that a 15-dB of linearity im-
provement can easily be achieved by carefully select-
ing the predistortion amplifier. To achieve a wide
dynamic range one must carefully select a predis-
tortion amplifier which has the same third-order
intermodulation distortion characteristic as the
main power amplifier.

Conclusion

Four linear amplification techniques in the 2
GHz band has been described. Each technique has its
advantages and disadvantages; therefore, inselecting
a suitable linear amplifier for 2 GHz microwave radio
one must carefully examine the specific linearity
requirement. If efficiency is not a major concern,
or the output power required is relatively low, then
the "Brute-force" technique will be the most prac-
tical one. For narrow band applications, to achieve
10-15 dB linearity improvement the Feedback tech-
nique will be the best candidate. Feedforward
technique can provide high level of Tlinearity im-
provement (20-25 dB) at low DC power consumption.
The IF predistortion technique provides a 10-15 dB
linearity improvement at very low cost. Broadband
operation and wide dynamic range make the pre-
distortion technique a practical solution in many
microwave radios.
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COMPLETE STABILITY OF NON~RECIPROCAL NONLINEAR NETWORKS

L. 0. Chua and S.

Suwannuokul

University of California, Berkeley

ABSTRACT

This paper reports a recent breakthrough in
research on deriving complete stability criteria for
non-reciprocal network having multiple equilibrium
points. Although the proof is quite mathematical
in nature, the method itself is circuit-theoretic
and is applicable to a large class of non-reciprocal
network.

INTRODUCTION

An autonomous system kX = £(x), x € R™ is said
to be "completely stable" if all solutions converge
to some equilibrium points in the state space. This
property is extremely important in practice because
it excludes mnot only oscillations, but also other
more exotic modes, such as almost-periodic
oscillations. In the special case where the system
has only one equilibrium point, the concept of com-
plete stability [1,2] reduces to that of "global
asymptotic stability." Much research has been
directed at deriving conditions for identifying
completely stable nonlinear network {3-7]. The
results obtained so far, however, have been
restricted to either "reciprocal® networks [3,5,6]
(or “eventually reciprocal [4] networks), or
networks which have only one equilibrium point [7].
Unfortunately, these results are not applicable
to many non-reciprocal networks of practical
interest, such as switching networks which
invariably have multiple equilibrium points.

This "non-reciprocity” barrier has not been over-
come inspite of much research efforts over the
past decade because of the formidable problem of
constructing global Lyapunov functions for such
networks. In this paper, we report a break-~
through in this non-reciprocity barrier which we
believe would have far reaching significance for
research in this area.

DEFINITIONS AND BASIC PROPERTIES [8]

Consider the system described by an ordimary
differential equation

x = £(x), xEXE]Rn, I is open (1)
where f: £ + R® is assumed to be con-
tinuously differentiable (vnless otherwise
specified). A particular point x is called an
equilibrium point of the system if £(x) = 0. We
will be dealing only with systems having isclated
and a finite number of equilibrium points.

A function x: l{+ + I is called a solution of

.. 4
the system if e x{t) = £{x(t)) for all t € I{+

(where Il+ = set of all nonnegative real numbers).
A solution is bounded if its range is bounded. A
point p is called an u~limit point of a solution
x{+) if there is an unbounded increasing sequence
{tk} such that lim x(tk) = p. The set of all

ke
w-limit points of a solution is the p-limit set of
that solution. A subset M T I is called positively
invariant if every solution x(.) with x{0) € M
satisfies x(t) € M for all t > 0.

Let w be 2 map from I to the collection of all
subsets of I which sends a point p to the w-limit
sets of all solutions x{-) with x(0) = p. Since £
is continuously differentiable, there is one and
only one solution with p as the initial point. A
fundamental result which will be invoked guite
often in the proofs is that if the solution start-—
ing at p is bounded, then w(p) is npnempty, compact
and ,connected. Also well known, 1s that w(p)
contains entire solutions, not necessarily x(+),
and w(p) is invariant in the sense that all solu-
tions originating in w(p) remain within w(p).

Also useful in this paper is the notion of a
general solution which is a function ¢ : R x I =+ E
with the property that (for our purpose) ¢(-,p) is
a solution for all p € L. A theorem about the
general solution states that if f is r times
continuously differentiable so is §.

GENERAL THEOREMS ON COMPLEIE STABILITY

A subset K of the space ¥ is called a complete
set of the system if X is positively invariant and
contains it w-limit sets i.e.

KOuw® 2 U wip)
PEK

The following theorem is a more general
version of an earlier result [6].

Thesrem 1. Let K C I be a complete set and
VYK <+ R be a continuously differentiable function

on K with
a) @Vt £(x) <0 for all x €K,
B (veE)T £(x) = 0 1if and only if £(x) = 0,

then all bounded solutions in K converge to
equilibrium points in K.

Corellary 1. If in Theorem 1, K = I then, the

system is completely stable in the sense that all
of its solutions that are bounded converge to some

1



equilibrium points.

Our next theorem allows us to transform the
extremely difficult problem of global stability
analysis into several albeit much easier stability
analysis within appropriately subdivided complete
subsets of the state space I.

Theorem 2. System (1) is completely stable if:
D there is a finite collection {(X ,V )]a € J}
where each Ku is a complete set and ifs associated

Vv, satisfies on K, the hypotheses of Theorem 1, and

2) there is a continuously differentiable function
Vy:Z R such that for x € I ~ R, (K U K), we
have qeu a

8 (N £G) <0

B (W) £G) = 0 if £(x) = 0. =

Intuitively, we can interpret each Ka as a

“reduced" state space and V_ as a Lyapunov
function on it. These reduced systems are com-
pletely stable in view of Theorem 1. Now, the
existance of V. implies that each bounded solution
of the full system is attracted to some K and,
hence, eventually to some equilibrium point. We
can think of V, as a "global" Lyapunov function
outside of KJ. Since the behavior of V0 within
each K C KJ is irrelevant, it is usuvally much
easier to construct V, once a suitable set of K
has been identified. "The above interpretation
allows us to think of each "complete set” X as a
magnified "super" stable equilibrium point.
Roughly speaking, we can establish complete
stability of (1) in two steps: First, identify a
suitable set of "super" stable equilibrium points.
Second, show that each bounded solution tends to
one of these “super" equilibrium points. We
remark that sets with properties similar to Ka are

sometimes called "regions of attractions" in the
literature. Here, we are more precise since we
also specify the mechanism of attraction.

APPLICATIONS TO NONRECIPROCAL AUTONOMOUS
NONLINEAR NETWORKS

Consider now the very general class of autonom
autonomous nonlinear networks (see Fig. 1) whose
state equations are described in [9]. These state
equations are made up of the following 3
components: 1) Constitutive relation of the
"non-reciprocal” resistive n-ports: y = g(x).

2) Constitutive relations of the "reciprocal™
capacitors and inductors: x = h{(z) where h is an
injective continuously differentiable state
function and H is its potential function,
VH(z) = h{z). 3) Port interconnections:

The networks in this class are described by
systems of the form

) (2)

ZE

z = ~goh(z)

Associated with the network, x, will be called
an operating point if Xq = h(z ) where Zy is an
equilibrium point of the system (2).

classical definition of "passivity™

One or
more coupled [

- {ermino! -

IH‘
T
N

 +

copocalors Non-reciprocol
ond Xo resistive’
inductors + n-port
Y2
Fig. 1. A general autonomous network.

Fig. 2. A strictly passive one-port resistor

which is not relatively passive.

i 4

-2

N
TR

\......_._...“.._.._v_._...._,...l
AlXg)
Fig. 3. An active one-port resistor which is
strictly passive relative to % in
A(xo).
Definition. The resistive n-port is strictly

passive relative to an operating point in a set
A(xo) containing X, if

¥ (x-x4,8(x)) > 0 for all x € Axg) - x,

This definition is different from the
and "'local
passivity"™ as illustrated in Figs. 2 and 3,
respectively.

2. This definition would still be meaningful
even if x, € A(x.). However, such an extention is
not intvitively appealing as will be clear
later. It is also possible to relax the definition
where x, nned not be an operating point. However,
there doesn't seem to be any value in such a more

Remarks: 1.
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general setting elther.

3. Classical thinking would tend ro take
.A(xy) to be a sphere around Xx,. That is all right
excépt that our dynamics occurs in z-space {charges
and fluxes) rather than x-space (voltages and
currents). Note that a sphere around an equi-
l1ibrium point in z-space when mapped into the
x-space is not necessarily a sphere around the
corresponding operating point.

4. In this paper, it is convenient to think
of "energy" and "potential” as concepts pertaining
to*the dynamical variables in the z-space, and to
think of "power" and "dissipation" as concepts
pertaining to the network variables in the x-space.
These two independent comcepts can be represented
graphically as an "energy profile" and a "power
profile,” respectively. To each operating point,
we can draw a corresponding power profile. The
port interconnection "matches” the energy profile
with each of the "power profile.” We will now
show in our next theorem, (the main result of this
paper) that if the matching is right, there can be
no oscillation. ’

Theorem 3. The network described by (2) is com~-
pletely stable if:

1. there is a set 8 of operating points such that
for each x, € §, g is strictly passive relative
to x, with

Alxy) = {x = h(z) | [E(z-H(zp)]

- (xo,z—zo) < a(xo)}
for some a(xo) and zq such that Xq = h(zo).
2. ae) 2 U aGxp
xdES
O {x[{x,g(x)? < 0 and glx) # 0}.

This theorem gives a criteria for matching the
“energy" to the "power" profiles so that the net-
work is completely stable. To give an inter-
pretation of condition 1, cousider the following

Taylor expansion:

H(z) = H(zy) + (VH(zo),z—zo)

2
+ %-(z-zo, 3;% (zo)(z~zo))

+ O(Ez—zoﬂ3).

] 8, .o
Since vH(zo) = h(zy) = x4, and a2 (zo) 3z (zo),
we can write

{H(z)—H(zO)] - (xo,z—zo) = %— (z-zo, %—:— (zo) (z-—zo))

+ O(Iz—zol3)

and interpret this quantity as an approximation of
the incremental potential function around the
equilibrium point Zg-

V. AN ILLUSTRATIVE EXAMPLE

Consider a non-reciprocal autonomous nonlineax
network described by the following component
equations:

x(x2~l) +-%~xy2

1 gl(x.y)

g (%) =y + y o+ % Py

2) (x,y) = h(zl,ZZ) = (zl,zz)

#

3) él ‘81(137)

z, = g, (x,)

The associated state equations are given by

X = —{x(xz—l) + %-xyz]

. 3 1

y=-Iy+y +-2—x2y]
and the operating points are (~1,0), (0,0}, (1,0).
Let § = {(~1,0),(1,0)}.

Relative to (1,0): (x~1) x(x2~1) +-% (x—l)xyz

+ y2 + y4 + % x2y2

= x(x-1)2 (x+1) + y2(2x2—-%x+1)
+ ya.

>0 for x>0

Suppose we choose
a((1,0)) = %— , then

[H(2)-H(zy)] - (xo,z~zo) =~% (z~z0,z—z0>

= %— [(x-l)2+y2] < %—

implies that (x--l)2 + y2 < 1. Consequently,

A((1,0))is an open disc of radius 1 centered at
(1,0).

Relative to (~1,0): Cx+1)x(x2-1) + %~(x+1)xy2
NI
> 0 for x < 0.

-
Cﬁbosing again a((-1,0)) = %-, we obtain

1
{R(z)-ﬁ(zo)l - <xo,z—zo) E-(z—zo,z—zo)
' 1 2,2 1
3 [+ 4y7] < 3
and (x+l)2 + y2 < 1. Consequently, A((-~1,0)) is
an open disc of radius 1 centered at (-1,0).
Now to check condition 2, we calculate



{(x,9),8(x,¥)? =% (x%-1) +% x2y? + v + yl'+ %—xzyz

2
+ (x2+y2) _ (x2_y2)

Observe that this expression is negative inside the
shaded area shown in Fig. 4, which in turn is a
subset of A(S). Since all hypotheses of Theorem 3
are satisfied, it follows that the network is
completely stable.

PROOFS OF THEOREMS
1. Proof of Theorem 1. Let x(t) be a bounded

solution in K. Then w(x(0)) is compact and there-
fore V(w(x(0))) is bounded. Moreover,

lim x(t) € w(x(0))

e

= 1im V{x(t)) = V(lim x(t)) € V{u(x(0)))

t-ro £

Hence, for any unbounded increasing sequence {t. },
tx € [0,=), {V(x(tk))} is a bounded sequence

with a finite limit. It remains for us to showthat
this sequence actually converges. Since x(tk) €K
Vtk € [0,«),

Tx(t)) = {vVix(t)),£(x(t))> < 0 ¥t € [0,=)

Therefore, {V(x(t))} is a decreasing sequence of
real numbers. Hence it converges to a unique limit
V..

®  Next we show that V is constant on w(x(0)).
Let x € w(x(0)), then there is a sequence

{tk} + o such that {x(tk)} > x.
k- ko
then

V() = V(lim x(t,)) = lim V(x(£,)) = V_ .
x) kﬂx k) s th ©

Finally, because w(x(0)) is invariant, there
is a solution ¢(t,x) C w(x(0)) ¥t. So along this
solution,

§(¢(t,x)) = 0, in particular T(6(0,x)) = V(x) = 0
Consequently, V{w{x{(u))) = 0 and it follows

from the hypothesis that w(x(0)) consists of equi-
1ibrium points only.

2. Proof of Theorem 2. By Theorem 1, every solu-
tion that starts inm K,, converges to equilibrium
points in Ky, @ € J. Since the solution through
each point is unique, every solution whose path
intersects Ky must also converge to equilibrium
points.

Let X(t) be a bounded solution that is con-
tained in I-K. for all finite time. If w(x(0))

N K, ¥ ¢, theh either (x(0)) consists of equi-
1ibtium points and we are done, or it doesn't. In
the latter case, there is a solution that is non
constant which starts in w(x(0)) NK_ and is con-
tained in w(x(0)). But such solutioh converges to
equilibrium points in K..

Finally we are lefg with the case that
w(x(0)) C X-KJ. But then {x(t)} V o(x(0)) is a
complete set and Vg is defined on I-K; so it is
defined on {x(t)} U u(x(0)). It follows from
Theorem 1 that x(f) converges to an equilibrium
point in E-KJ.

Fig. 4. The two complete sets A((1,0)) and
A((-1,0)). The point (0,0) is not

in A(S).

3. Proof of Theorem 3. Let ﬁ(zo) 4 {z}h(z)eA(x )i,
We will show that A(zo) is a complete set for alg
z, such that h(zo) € s,

For z € K(zo) define
A
vzg(z) £ [H(2)-H(zp)] - {hlzy),z-25)
< a(xo).
Pick a point p € £<ZO) - zgs then Vz (p) < a(xo).
Since

Let (t) be a solution starting at p.
V, (2(e)), _, =V, (®) ={vw, (p),2(0)?
zq t=0 24 z, 4

= (h(z(O))—h(zD),i(0}>
= {n(p)-x;,-g (h(p)}.
and p € g(zo) means hip) € A(xo), therefore

Vzo(p) <0
in view of the "relative passivity"” hypothesis.
Hence for some small time e > O,

Vzo(z(t)) < Vzo(p) .

Let ty be the earliest time such that
Vz (z(tl)) = Vz (p). By the mean-value theorem,

thgre exists a 0 T € (O,tl) such that

Vo(z(t)) -V, () =V (2(0))-t, = 0.
ZO 1 z0 zo 1

i
Bu& this is impossible because by our choice of
t
l’

VzO(Z(T)) < VZO(P) < alx;) so that z(1) € A(zp)
and therefore 62 {z(1)) < O.
0
Consequently, for all t € (0,=),

Vzo(z(t)) < Vzo(p) < alxy), .e. z(t) € &(zo).



Hence, lim V (z(E)) < a(xo) and w(p) C A(zo).
tre 20
Then {A(zo)[h(zo) € 8} is a collection of com-
plete sets and {V, }h(zo) € S} satisfies the

hypotheses of Theo?em 2,
Finally, let Vy(z) = B(2),
then

{ro(z) = (VH(2),2} = <(h(z),g(h(=))?
= «.(x’g(x)), where x = h(z),

which by hypothesis is negative if x & A(S) and
g(x) # 0. Hence, Vo(z) < 0if z & U A(zo)

and goh(z) # 0. h(zo)Gs
Since all hypotheses of Theorem 2 are satisfied
the network is completely stable.

CONCLUSION

Although networks containing "locally active"
and "non-reciprocal” elements are quite susceptible
to oscillation, Theorem 3 provides us with an
invaluable tool for uncovering a subclass of such
networks where oscillation is impossible.
Intuitively spesking, if one measures power with
respect to ground, a network belonging to this
class may appear “active" in some regions of the
state space. Such regions may correspond to the
"charging' of capacitors, etc. Now if one searches
for a "target" point where the active charging net-
work is “aiming" for, then around that point, a
"non-oscillatory" network should appear passive.

In another words, the difference in energy levels
between the instantaneous value and that of the
target diminishes.

It might be conjectured that a substantial
subclass of all “switching circuits" operates in
this manner: they all have stable rargetsby design,

and the switching mechanism is active. However,
since each target is a stable state, these must
exist a region which is relatively passive with
respect to each target.
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