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ABSTRACT

Three improvements in the ray tracing algorithm for progressive radiosity are presented.
Firstly, a modified hemicube method is used to perform a visibility pre-test before the rays
are cast. As a result, the number of rays traced is reduced substantially. Secondly, the ray
tracing step is speeded up by using a binary space partitioning tree to determine the order
of patches in finding the closest intersection. Thirdly, the Wallace's form-factor formula is
replaced by an analytical formula for accuracy. Experiments show that our method runs
much faster than the original one without sacrificing the quality of the pictures produced.
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1. Introduction

Nowadays most computer graphics workstations support illumination calculation for point light
sources and parallel light sources. These illumination models produce attractive and useful pictures
with little computation. Generating more realistic pictures, however, requires more accurate model-
ling of the physical behavior of visible light. The radiosity method [10,11] is proved to be useful in
the synthesis of realistic images for in-door scenes by considering the inter-reflection of light
between all surfaces.

The most critical step in the radiosity method is the computaton of form-factors. The form-
factor from small surface (called patch) i to patch j, denoted as F,,, is defined as the fraction of
energy leaving patch { that arrives at paich j. The illumination of a receiving patch due to a source
patch depends on the radiosity of the source and the form-factor from the source to the patch. The
computation of form-factors is the most time consuming step in the radiosity method because it
involves visibility determination. In addition, a matrix of form-factors must be computed and stored
even though most of them have little effect on the quality of the final image. To solve this problem,
a progressive radiosity algorithm [6] has been proposed. The algorithm proceeds in iterations. In



each iteration, a patch is chosen to shoot its energy out. The form-factors from this patch to all the
other patches are calculated and the radiosities of these patches are updated. Experiments showed
that satisfactory images can be obtained after the bright patches are processed.

The hemicube method [5] is widely used for computing the form-factors between patches. In
the progressive radiosity algorithm, when a patch is chosen to shoot its light out, other patches are
projected onto a hemicube placed above the center of the source. The cube is discretized into small
elements called pixels. The form-factor from the source to a receiving patch is equal to the sum of
the weight associated with the pixels covered by the projected image of the patch. Visibility of
patches are determined using the depth-buffer technique for hidden surface removal. Although the
hemicube algorithm is efficient and simple, it suffers from two major limitations. Firstly, aliasing
appears in the projected images due to the discrete nature of the hemicube pixels. As a result, the
form-factors computed are inaccurate. Secondly, Gouraud shading is commonly used to render the
images in most graphics workstations. This shading algorithm makes use of the vertex intensities of
the polygon being rendered. However, the hemicube algorithm computes only the patch radiosities.
The vertex intensities are obtained by interpolating the patch radiosities. This interpolation may
introduce another level of errors.

Wallace et al. [13] have suggested a new progressive radiosity algorithm which overcomes the
above problems of the hemicube method. To shoot the light of a source patch, their method approxi-
mates the source by several circular subsources. Visibility between a subsource and a vertex is
determined by ray tracing. A ray is cast from the center of the subsource to the vertex. If the ray
reaches the vertex without being blocked, the form-factor from the subsource to the vertex is com-
puted using an approximate formula, and the intensity of the vertex is updated. One of the major
advantages of Wallace’s method is that it computes the vertex intensities instead of the patch radiosi-
ties.

We appreciate the framework of the ray tracing radiosity algorithm. In this paper, we suggest
three ways for enhancing the algorithm. Firstly, we observed that ray tracing is not necessary for
most vertices. A modified hemicube method can be used to perform a visibility pre-test before the
rays are cast. As a result, the number of rays traced is reduced substantially. Secondly, when ray
tracing is performed, we use a binary space partitioning (BSP) tree [8] to sort the patches in a front-
to-back order according to the orientation of the ray being traced. This order helps us to reduce the
number of object-ray intersection calculations. Thirdly, there is an aliasing problem appeared in
Wallace’s algorithm due to the inaccuracy in their form-factor formula. This problem is solved by
replacing the Wallace’s form-factor formula with an analytical formula.

The three improvements in the ray tracing radiosity algorithm are presented in detail in Sections
2, 3 and 4 respectively. Experiments and results are presented in Section 5. We give our conclusion
in the last section.



2. Hemicube Visibility Test

In Wallace’s algorithm, the visibility between a subsource and a vertex is determined by ray
tracing. Rays are cast from the center of the subsource to each vertex. Although this method accu-
rately determine the visibility between the center of a subsource and a veriex, the ray tracing step is
a slow process.

We suggest to perform a hemicube visibility pre-test for each subsource. Before rays are cast
from a subsource, a hemicube is placed above the subsource and all the other patches are projected
onto the hemicube. Each hemicube pixel covered by a patch’s projected image stores the id of the
patch. When two projected images occupy the same pixel, the id of the one which is closer to the
subsource.

To determine the visibility of a vertex, we locate the hemicube pixel where this vertex is pro-
jected onto. The value (the patch id) stored in that pixel is checked against the id of the patch con-
taining the vertex. If they are equal, we conclude that the vertex is visible from the subsource. If
they are not equal, the eight neighbouring pixels are checked. When none of them has stored the id
of the patch containing the vertex, we conclude that the vertex is invisible from the subsource. Oth-
erwise, the visibility of this vertex is determined by ray tracing.

The eight neighbouring pixels have to be checked because we want to avoid the aliasing errors.
If one of the eight neighbouring pixels has stored the id of the patch containing the vertex, the vertex
is marginally visible or invisible from the subsource. In this case ray tracing is needed to determine
the visibility.

In most of the radiosity metheds, in order to obtain a graduate change of intensities on a large
surface, we usually divide the surface into smaller surfaces, even though the whole surface is totally
visible from a light source. These newly created surfaces can still share the same surface id. There-
fore, the visibility of the vertices created can be easily determined by the hemicube mechanism.

Experiments showed that in most of the cases, the visibility of a vertex can be determined by
the hemicube pre-test without ray tracing. In addition, the hemicube can be implemented by the
graphics hardware. We have implemented our method on a Silicon Graphics IRIS Indigo/XS24
workstation (all statistics quoted in this paper are based on this machine). Two simple scenes were
tried, and the time used to shoot the light of one subsource is recorded and shown in Figure 2.1.
These data confirm that the hemicube pre-test does speed up the visibility determination process.
However, the set-up overhead in the software implementation of the pre-test is not justified when the
number of vertices is small.



Number of vertices in the scene 796 4311

pure ray tracing visibility test 1.2 21.6
with hardware hemicube pre-test 1.2 6.8
with software hemicube pre-test 5.3 12.0

Figure 2.1. Time (in sec) used to shoot the light of one subsource.

3. Ray Tracing Using a BSP Tree

There are many speed-up methods for ray tracing suggested in the literature [2,7]. Since in the
radiosity algorithm all the objects are represented with polygonal faces, we propose a new speed-up
method which uses a BSP tree.

A BSP twree is a binary tree which represents a partitioning of space by planes. The planes are
induced by a set polygons in the scene. The root of the tree is a polygon selected from the scene.
This polygon’s plane divides the space into two half-spaces. Each subtree of the root node
represents a half-space. All the polygons lying in front of the root’s plane are assigned to the left
subtree of the root. Similarly, all the polygons lying behind the root’s plane are assigned to the right
subtree of the root. A polygon that lies on both sides of the root’s plane is split by the plane and
each piece is assigned to the appropriate half-space. Both the left subtree and the right subtree of the
oot are constructed recursively in the same fashion. Figure 3.1(a) shows a 2D example of a scene
and Figure 3.1(b) shows one possible BSP tree of the scene. Given an arbitrary viewpoint, a
moditied inorder traversal of the BSP tree provides a front-to-back ordering of the polygons with
respect to this viewpoint [4]. Figure 3.1(c) shows the front-to-back order of the polygons obtained
by an inorder traversal of the BSP tree guided by the view point S. Further details of BSP tree can
be found in [4,8].
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Figure 3.1. (a) A two dimensional scene; (b) a BSP wee for the scene;
(¢) a front-to-back ordering obtained with respect to S.



In our algorithm, a BSP twree is built for the inpur scene at the beginning. In each shootng pro-
cess, when a ray is cast from a subsource to a vertex. we use the ray’s starting position to guide the
BSP wee waversal and obtain a front-to-back order of the parches. The object-ray intersection calcu-
lations are performed according to the order obmined untl the first intersecton is found. If the first
intersection occurs at the vertex, the vertex is visible from the subsource. Otherwise, it is invisible.
Following the order obtained from the BSP tree traversal ensures that the first intersection found is
the closest intersection along the ray.

We can use the direction of the ray to modify the BSP mee traversal such that the number of
intersection calculations is further reduced. For example, as shown in Figure 3.2(a), a ray starting
from point 5 is being traced. At a certain step the BSP wee traversal will reach the node containing
the plane P. Let N, be the node. Since S lies on the back of the plane P, the ordinary BSP mee
traversal will visit the right subtree of N, first, and then process N, (i.e. test the patches lying on P
for intersection), and finally visit the left subtree of ¥,. However, as the ray is going away from P,
the receiving vertex will not locate on the plane P or in the left subtree of ¥,. Moreover, the
patches on plane P or in the left subwee of N, will never block the ray. Therefore, those patches can
be ignored. After the right subtree of N, is visited, the BSP tree traversal can back-track two levels
to the parent of ¥,. This reduces the number of parhes to be tested. Figure 3.2(b) and (c) show the
other possible orientation between a plane and a ray. and state the corresponding actions. Empirical
results show that this BSP tee speed-up method reduces nearly half of the time needed by the
straightforward ray tracing process.
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Figure 3.2. Different cases which will be encountered and the corresponding ac-
tions should be done when doing ray tracing visibility test with a
BSP wee.

Note that this BSP tree speed-up method is 2 special case of the object space subdivision
method suggested in the literarure [9]. In that method, the object space is equally divided into
enough subspaces until each subspace contains only a few number of objects. When a ray being
traced enters a subspace, only the objects inside the subspace are tested for intersection. [If the ray
does not hit any objects, the algorithm should find the next subspace into which the ray moves. The
process of finding the next subspace is difficult and dme consuming. Moreover, using octree to
divide the object space usually results in too many subdivisions. In our BSP tree speed-up method,
the space subdivision is determined by the geomeuy of the polygonal faces. Paterson and Yao [12]
showed that an O(n®-sized BSP tree can be buili using the randomized method, where r is the
number of planar facets.



It should be pointed out that this BSP tree speed-up method is suitable for a scene which con-
tans only polygonal faces. If an object (such as a sphere or a cylinder) is not represented with
polygons, the algorithm should use other ray tracing speed-up methods. In a scene which contains
only polygonal faces, this BSP tree speed-up method is simple and efficient. Another advantage of
this method is that the BSP tree built can be used for other purposes, such as the adaptive mesh gen-
eration method proposed in [3].

4. Analytical Form-Factor Formula

In Wallace’s paper, the form-factor between circular subsource k and vertex j (treated as a dif-
ferential area) is approximated as (Figure 4.1a):
_ dA,cosb, cosd,

F,
g nr? + Ay M

J

where

A, = area of disk &
dA, = differential area located at vertex j

The form-factor between source patch i and vertex j (Figure 4.1b) is:

cos8 ;, cos6,
F” =d.A_, * %251.”_]"“’;'&‘
ol b
Y
where

N = number of sample disks used on the source patch
8, = 1 if the ray can reach j from the center of disk &; 0 otherwise

(@) ®)
Figure 4.1. (a) Geometry for form-factor between an arbitrarily oriented disk and
a differential area.

(b) Geometry for form-factor between a source patch (approximated
by multiple disks) and a differential area.



When a receiving vertex is far away from a source, the errors introduced by this approximate
formula are negligible. However, when a receiving vertex is close to the surface of a source patch,
this method introduced relatively large errors. The errors are caused by two levels of approximation.
The first level is the approximate formula from a circular disk to a vertex (Formula 1). Figure 4.2
shows the errors of the form-factors obtained using Formula 1.

Distance from source to receiving area (r) IR SR 10R
Average relative errors

of Wallace’s formula (Formula 1) 55.38% 5.55% 1.44%
Max. relative errors 99.97% 11.38% | 2.96%

Figure 4.2. Statistics of errors introduced by Wallace’s formula over the range
0<6, <89, 0<6, <45. R is radius of the source. (6, ; are defined in
Figure 4.1)

The second level of approximation occurs when Wallace’s algorithm treats a polygonal sub-
source as a circular disk. The shape the source patch is not equal to the union of the circular disks.
Some regions of the source are not covered and some regions are covered more than once. As a
result, aliasing effect is introduced. In order to visualize the errors, we computed the form-factors
from a unit square source to a differential area at different locations of a cross section of space right
above the source. The magnitude of the form-factors were rendered using a color scale. The cross
section above the source is shown in Figure 4.3. The left picture in the figure shows the correct
values. It is obtained by using the original form-factor formula [10]. The right picture in the figure
shows the values computed by Wallace’s formula, using 3 by 3 circular disks approximating the
source. The darken areas on the surface of the source are caused by the aliasing errors. Wallace et
al. have mentioned this kind of errors in their paper [13]. They suggested to subdivide the source
adaptively for each receiving vertex such that more sample disks are placed near the vertex if it is
too close from the source.

Figure 4.3. Aliasing effect of Wallace’s approximate form-factor calculation.



Baum et al. [1] suggested an analytical form-factor formula from source i to differential area j
(Figure 4.4) :

dA .
F = Y JAA KGZG N, T, @)

where

~

7, is the set of edges in patch i;

N, is the surface normal for differential area j;

I, is a vector with magnitude equal to the angle v (in radians)
and direction equal to the cross product of the vectors

R, and R, as illustrated in Figure 4.4.

edge 0
Figure 4.4. Geometry for evaluating analytical form-factor.

In our algorithm, the Baum’s analytical formula is used to replace the Wallace’s formula when
computing the form-factor between a subsource and a vertex. In this case, the actual shape of the
subsource is accurately taken into account The cross section shown in Figure 4.3 was rendered again
using Baum’s formula. The result is shown in Figure 4.5. This picture was obtained by dividing the
unit square source patch into 9 square subsources. The form-factor from the source to each receiving
differential area was computed by summing the form-factors from each subsource to the receiving
area. No aliasing occurs near the surface of the source. This picture is basically the same as the
correct one on the left hand side of Figure 4.3,



Figure 4.5. Form-factors computed by the analytical formula.

To investigate the execution overhead of using Baum’s formula, we computed the form-factors
from a square source patch to a differential area in 4140 different orientations and positions. The
computation took 0.9 second when Baum’s formula was used. When the source was assumed to be a
circular disk and Wallace’s formula was used, the computation took 0.1 second. Although the
Baum’s formula is 9 times slower than Wallace’s one, this part of computation is only a small por-
tion in the entire process of the radiosity algorithm.

We have derived another approximate formula for estimate the form-factor from a disk to an
differential area. The computation of form-factors using this formula runs as fast as Wallace’s one,
but more accurate. This formula will be useful when execution time is a major concern:

dA;cosB; cosBy \ r* + R? - 2rR sin6;

Py = x 3

T wr? + Ay - 2R sinG, [72+ R* + 2R sinb,

A detailed derivation is included in the appendix. The errors of this formula is shown in Figure
4.6.

Distance from source to receiving area (r) IR SR 10R

Average relative errors

of Formula 3 32.71% | 1.13% | 0.28%
Max. relative errors 98.25% 4.0% 1.0%

Figure 4.6. Error analysis of our approximate form-factor formula.



5. Experiments and Results

We have umplemented both the original Wallace’s algorithm and our improved version. In Fig-
ure 5.1 a room is rendered using these two algorithms. It contains 181 patches before subdivision
and contains 5562 subpatches after subdivision. Totally 7167 vertices are rendered (because most
subpatches share vertices). Estimated ambient radiosity is added when displaying the pictures. Pic-
tures on the right column are produced by Wallace’s algorithm. Visibility is determined by ray trac-
ing, and the form-factors are calculated by their approximate formula. Pictures on the left column
are produced by our algorithm. All the three improvements mentioned in this paper are imple-
mented. There is no obvious difference between these two set of pictures. Figure 5.2 shows the
execution time used for producing these picture. Our algorithm runs much faster than the original
one.

Number of subsources shot 9 48 72
Time (sec) used by Wallace’s algonthm | 116.8 | 554.7 | 826.0
Time (sec) used by our algorithm 55.1 ] 2430 | 363.5

Figure 5.2, Time used for producing Figure 5.1.

6. Conclusion

We have suggested three ways for enhancing the ray tracing radiosity algorithm. Firstly, a
hemicube visibility pre-test is performed to reduce the number of rays cast. Secondly, the ray trac-
ing step is speeded up by using a BSP tree. Thirdly, an analytical form-factor formula is used to
increase the accuracy. The major advantages of Wallace’s algorithm: approximating an area source
with several subsources, and computing the vertex intensities instead of the patch radiosities are
preserved. Experiments show that our algorithm runs 4 times faster than the original one without
sacrificing the quality of the pictures produced.
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Figure 5.1. A room after the light of
(a) 1 source (totally 9 subsources) is shot;

(b) 16 sources (totally 48 subsources) are shot;
(¢) 29 sources (totally 72 subsources) are shot.
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Appendix

Derivation of the form-factor formula from a disk to a differential area (Formula 3) :

[ ey
y Y
d, = rsing,, rcos8, 0] 4,
T, /' d
T,
/o
[
\!f
X X
z z
Figure A.1 Figure A2

WLOG, assume center of disk k is locgted at the origin and k lies on the x-z plane. Furthermore,
assume differential area j is located at dj = [ rsin8,, rcos8, 0] (Figure A.1).

Refer to Figure A.2:

1= Rcosy, 0, Rsiny ]
[ Rcos(y+d ), 0, Rsin(y+dy) 1

- - =
T, = ty=dj = [ Rcosy-rsing,, -rcosB,, Rsiny ]
- - -
Ty = ty—dj = [Rcos(y+dy)rsinb,, —r cosBy, Rsin(y+d ) |
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Let r:w is a vector with magnitude equal to the angle 4§ (in radians) and direction equal to the cross
product of the vector T, and T

- -

e T1XT3

e S % dE
[T\ 1T sin 2§

-

>
_ Ty xT,
El———

T\ 1T

when d&->0

-Rr cos8y [sin{y+d y)-siny]

PR ?-2rR sin8; cosy N r R 3-2rR sind cos(y+d y)
Rrsind, [sin(y-+d y)-siny] - R *sindy

2R ?-2rR 5inB, oSy R *-2rR sinB, cos(y+d )
RrcosBy [cos(y+d y)-cosy]

L \r2+R>=2rR 5in0, cosy r*+R>-2rR sinb, cos(y+dy) |

Using the definitions above, we can write down the form-factor formula from disk £ to differential
area j by rewriting the Baum’s form-factor formula [1] as:

—dA,
Fo=g [N
A4

—dAI bl -
= 21'(,4‘ XNJ (‘{ T“,)

- >
Before we evaluate [ T, , we have made an assumption that when projecting | T, onto the coordi-

¥ R R . - — - ¥ ud
nate system defined by [e,,e,,e; ] as shown in Figure A.l, the ¢, and ¢; component of j T4y are
\4

negligible.

e?=[ sinBy, cosBy, 0]
£, = [ —cos8, sind, 0]
=l o o 1]



Project the vector I, onto the coordinate system [ ¢,, ¢, ¢, ], We get:

T
~R*cos6, sind y

PA+RI2rR 518, cosy \[r*+R 2R s1n8, cos(y+d )

ry {Rrcosy — R%sn8, )d v
T 4\F[ I

\r*+R*-2rR 518, cosy \r*+R*-2rR snB,cos(y+d )
—Rr cos8y [cos(y+d y)cosy]
PR %-2rR 5108, cosy \r+R>—2rR snBcos(y+d )

Therefore, based on our assumption,

J- —R%c0s8, snd y

, 0, 0]

I T, d\v[d =1
v v \[r2+R%2rR 5108, cosy \r>+R >-27R sy cos(y+dy)
~21R %0058, VPR 2-2rR 5106,
X
NS - :
rRSURSIG, [T T R e,

0. 0]

and the form-factor from disk & to differential area ; can be wntten as:

-dAl 4 N
Fiy =g XN, (] Tay)
¥

- - - ->
21:AJ ) [N, x| § Ty ll x cos(angle between N, and | Ty )
* v v

~dA, ~2mR %cos8; VPHR2rR 516
X ey X X cos6,
zmk re“+R*2rR Slnek - ’r2+R 2+2,.R Slneg

dA, cosB,c0s8, AP +R2-2rR 5108,
e+ A, - 2nrR siny r+R™+2/R s,

based on our assumption
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