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Rational Inattention and Aggregate
Fluctuations∗

Yulei Luo and Eric R. Young

Abstract

This paper introduces the rational inattention hypothesis (RI) – that agents process information
subject to finite channel constraints – into a stochastic growth model with permanent technology
shocks. We find that RI raises consumption volatility relative to output by introducing an endoge-
nous demand shock. Furthermore, it is shown that incorporating RI can provide an additional
internal propagation mechanism (measured by the impulse response function and the autocorrela-
tion function of output growth) and generate higher variance of forecastable movements in output.
However, we find that RI cannot resolve these puzzles in the RBC literature – weak internal propa-
gation and low variance of forecastable movements in output, even with what appears to be a very
low capacity channel.
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1 Introduction

It is well-known that the standard RBC models display a weak internal prop-
agation mechanism: impulse responses for aggregate output and labor supply
almost perfectly trace out the exogenous stochastic process of aggregate tech-
nology. That is, the model generates realistic output and employment dynam-
ics only to the extent that it assumes them in the exogenous driving processes.
For example, Cogley and Nason (1993) find that in a typical RBC model
output dynamics are determined primarily by impulse dynamics and that the
endogenous propagation mechanism is very weak. In the data, US GDP has an
obvious trend-reverting component which is characterized by hump-shaped re-
sponses to transitory shocks – as noted by Blanchard and Quah (1989) – while
the standard RBC models can only generate monotonic responses of output
and labor supply to transitory shocks. A related observation that standard
models cannot replicate is that output growth displays positive autocorrela-
tion at short horizons.1 In fact, the models generate zero persistence in output
growth if the technology shock is assumed to follow a random walk. Rotem-
berg and Woodford (1996) highlight a third related anomaly: standard RBC
models can produce only about 1 percent of the actual variance of forecastable
movements in output; since all the dynamics are driven by exogenous shocks,
with random walk technology there is no forecastable component.

In this paper, we explore whether introducing the Rational Inattention Hy-
pothesis into a simple stochastic growth model can help overcome some of the
deficiencies discussed above. This departure from the standard models is mo-
tivated by Sims (2003). Rational expectation models assume implicitly that
agents can process information costlessly and respond immediately to market
signals or shocks to the economic system. This assumption is too strong to
be consistent with the inborn ability of human beings: it requires unlimited
information processing capacity. As discussed in Sims (1998, 2003), if people
have limited information processing capacity their decisions can depend on ob-
servations only through their own communication channels. In other words,
they cannot digest aggregate or individual information and market signals im-
mediately. As a result, their responses to shocks may be delayed by the need
to slowly absorb just how the state of the world has changed. Specifically, in
this paper we study a simple stochastic growth model with permanent shocks
to technology and information processing constraints to explore whether this
friction can resolve some existing puzzles in the RBC literature. We suppose

1As documented in Cogley and Nason (1995), at lags of 1 and 2 quarters the sample au-
tocorrelations are positive and statistically significant. For higher lags, the autocorrelations
are mostly negative and statistically insignificant.
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that the social planner devotes the limited information capacity to observing
the univariate state of the economy, but since that capacity is limited the
state is not perfectly observed.2 As a result, the consumption-savings and
labor-leisure decisions are made relative to a noisy signal of the true state,
and information about changes in the true state is not entirely incorporated
into forecasts. In other words, the planner is forced to take some time to digest
new information about the state. The result of this processing problem is that
the planner faces a signal extraction problem in which the distribution of the
noise is endogenous, a generalization of the problem studied in Kasa (1995).

The particular puzzles that we explore are the ones mentioned above. We
first ask whether RI can improve the strength of the internal propagation
mechanism in the basic model; we find the improvement to be very small,
even for very low channel capacities, because the estimated and actual states
evolve in a very similar manner. As a result, the autocorrelation function for
output growth has positive values at one and two lead/lags, but the coefficients
are too small relative to the data. Second, we explore whether RI implies a
hump-shaped response of output to a permanent technology shock; we find
that RI does imply a delayed response of output to a technology shock, but
the hump shape is too small. Third, we explore whether RI can increase
the variance of the forecastable movements in output; here we find almost
no improvement relative to the benchmark model studied in Rotemberg and
Woodford (1996). Finally, we examine the effects of idiosyncratic shocks on
the propagation mechanism of an RI version of a linear–quadratic (LQ) RBC
model and show that the presence of the idiosyncratic shock plays a role in
strengthening the inertial responses to the aggregate productivity shock if
individuals cannot distinguish the aggregate and idiosyncratic components in
the aggregate productivity process.

Rational inattention does greatly increase the relative volatility of con-
sumption in the model, however. Since the planner cannot accurately observe
the true capital stock, consumption must depend on a noisy signal instead.
In effect, RI introduces a second shock into the model which tends to impact
consumption volatility more than other aggregates (in our model, it has no ef-
fect on labor volatility and consequently only minor effects on output). When
we use consumption volatility as a moment condition to estimate the channel
capacity, we find that our model requires that individuals only process 0.6059
bits of macroeconomic information every quarter; that is, they only remove

2We assume the shock to technology is permanent, so there is only one state variable (the
ratio of capital to this permanent shock) in the model economy. This assumption simplifies
computation greatly, but may limit the generality of our results.
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57% of the uncertainty after observing the new signals. While this number
might seem very low, it is difficult to measure the amount of attention indi-
viduals allocate to monitoring the aggregate economy; it is much more likely
that the majority of their limited attention is dedicated to observing the more
volatile idiosyncratic variables.3

We then alter the basic model to incorporate both aggregate and idiosyn-
cratic shocks. With rationally-inattentive agents, idiosyncratic shocks are
likely to dominate limited attention due to their relatively large variance. Here,
we assume an explicit linear-quadratic environment for two reasons: it is easier
to aggregate and prices become exogenous, leading the competitive and social
planning problems to coincide. We assume that aggregate shocks are random
walks while idiosyncratic shocks are white noise (as in Pischke 1995); further-
more, aggregate and idiosyncratic shocks cannot be separately observed. As
the size of the idiosyncratic shocks gets big relative to the aggregate shocks,
impulse responses of output to technology become more persistent and larger.
Thus, that economy looks quite similar to an RI economy – when we combine
the two effects together, we can get significant persistence in output growth.
Unfortunately, the implication that prices are exogenous means that the gen-
eral equilibrium effects that weaken persistence – falling returns – are absent.

Many propagation mechanisms have been introduced in business cycle
models to improve their performance. Cogley and Nason (1995) and Burn-
side, Eichenbaum, and Rebelo (1996) consider the effects of various forms of
adjustment costs in allocating labor, Perli and Sakellaris (1998) examines the
propagation mechanism in a model with human capital, Schmitt-Grohé (2000)
considers the impact of indeterminacy, Lettau and Uhlig (2000) and Boldrin,
Christiano, and Fisher (2001) investigate the impact of habit formation, and
Kasa (1995) and Saito (2005) explore the propagation power of signal extrac-
tion problems.

Recently, there have been several papers examining imperfect informa-
tion processing in alternative frameworks. For example, Woodford (2001)
and Adam (2005) analyze optimal monetary policy and inflation and output
dynamics with imperfect common knowledge, finding that the imperfect in-
formation models can generate highly persistent effects on real activity. Luo
(2008) examines consumption dynamics under information process constraints
in the permanent income hypothesis model, while Maćkowiak and Wiederholt
(2008) explore the implications for optimal sticky prices. Sims (2005, 2006)

3Maćkowiak and Wiederholt (2008) formally examine how attention allocation affects
firms’ pricing decisions and show that firms allocate less attention in processing aggregate
information.
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investigates consumption and saving decision under more realistic preferences,
but he is only able to explore a two-period model.4 Van Nieuwerburgh and
Veldkamp (2008) examine the effects of information processing constraints on
diversification. This paper contributes to both literatures.

The remainder of the paper is organized as follows. Section 2 presents
a stochastic growth model with rational inattention. Section 3 compare the
model’s predictions with the empirical evidence. Section 4 examines the effects
of idiosyncratic shocks on the responses to the aggregate shock in a linear-
quadratic version of the stochastic growth model. Section 5 concludes.

2 A Stochastic Growth Model with Rational

Inattention

This section lays out the optimizing problem of a social planner facing in-
formation processing constraints. In the standard model without distortions,
Pareto-optima can be decentralized as competitive equilibria. Although real
economies are decentralized, the allocation is one that would be chosen by a
central authority. Information processing constraints seem likely to break this
equivalence, although we are not certain.5 As argued in Sims (2003), although
the information processing randomness is idiosyncratic, it is still reasonable to
assume that a considerable part of the responses from information constraints
is common across agents. Hence, we can imagine here that some properties of
aggregate fluctuations generated from our social planning economy may still
hold in a corresponding decentralized economy. We examine a linear-quadratic
setting with explicit idiosyncratic shocks in a later section of this paper.

Following King, Plosser, and Rebelo (1988) and Rotemberg and Woodford
(1996), we assume that aggregate technology shocks are permanent so that
the model generates a stochastic growth path. One of the advantages of this
assumption in our framework is that it is easy to derive the properties of the
endogenous noise since there is an unique state variable (the ratio of capital
stock to aggregate technology). Before setting up and solving the stochastic
growth model with RI hypothesis, it is helpful to present the standard model
without RI first. The problem can be stated as

4Further extensions of the nonlinear model can be found in Lewis (2006), Tutino (2007),
and Batchuluun, Luo, and Young (2007).

5We discuss the problems associated with the competitive equilibrium relative to the
planning solution in Appendix A.1.
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max
{Ct,Lt}

E0

∞∑
t=0

[
βt
C1−γ
t

1 − γ
V (1 − Lt)

]
(1)

subject to

Ct + It ≤ Yt (2)

Yt ≤ Kα
t (ZtLt)

1−α (3)

Kt+1 ≤ It + (1 − δ)Kt (4)

logZt+1 = μz + logZt + ωεt+1 (5)

where Ct is consumption, Lt is total labor supply, It is gross investment, Kt is
the capital stock, Yt is total output, and Zt is a random walk technology process
with drift μz and white noise errors with unit variance. This time-separable
power utility function with γ = 1 becomes the logarithmic form log (Ct) +
V (1 − Lt), where the function V is suitably redefined. The parameters satisfy
α, β ∈ (0, 1), δ ∈ [0, 1], and μz, ω, γ > 0. Combining equations (2), (3), and
(4) yields the law of motion for capital,

Kt+1 = Kα
t (ZtLt)

1−α − Ct + (1 − δ)Kt, (6)

Note that the unit root assumption of Zt here is roughly consistent with US
time series data, as the model implies a unit root in output and consumption
as well.

Following Hansen (1985), we also assume indivisible labor:

V (1 − Lt) = η (1 − Lt) .

Although the output process is nonstationary, the following ratios are sta-
tionary:

K̃t =
Kt

Zt
, Ỹt =

Yt
Zt
, C̃t =

Ct
Zt
, Ĩt =

It
Zt

;

under the restrictions for preferences given above Lt is already stationary. Now
we can normalize the evolution equation of capital (6) to obtain

K̃t+1 = exp (−μz − ωεt+1)
(
K̃α
t Lt

1−α − C̃t + (1 − δ)K̃t

)
(7)

Similarly, the objective function can also be normalized in terms of C̃t and
the effective discount factor becomes β exp(−μz−ωεt+1) (1 − γ). The optimal
decision rules take the form

ct = ψkt (8)

lt = φkt (9)
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for some coefficients (ψ, φ).6 We use lowercase letters to denote deviations
from the steady state of any stationary variable.

Our model with RI follows Sims (2003). We assume that the social planner
maximizes the representative agent’s utility function subject to both the usual
flow budget constraint and the information processing constraints that will be
specified later. The sequential problem for the planner is

v̂
(
k̂t

)
= max

{ct,lt,Dt}∞0
E0

[ ∞∑
t=0

βtu (ct, lt)

]
(10)

subject to

kt+1 =
K̃αL1−α

K̃ exp (μz)
(αkt + (1 − α) lt) − C̃

K̃ exp (μz)
ct +

(1 − δ) K̃

K̃ exp (μz)
kt − ωεt+1

(11)

kt+1|It+1 ∼ Dt+1 (12)

kt|It ∼ Dt, (13)

given k0| I0 ∼ N
(
k̂0,Σ0

)
, and the requirement that the rate of information

flow at t + 1 implicit in the specification of the distributions, Dt and Dt+1,
be less than channel capacity. Here Dt is the posterior distribution of the
underlying state variable (kt), k̂t = E (kt| It) is the perceived state, and It
is the information available at time t. (12) means that in the presence of
RI, the social planner in the economy cannot observe the underlying state
perfectly. As shown in Sims (2003, 2005), given the linear constraint and
the (approximate) quadratic utility, Dt is normal, that is, Gaussian posterior
uncertainty is optimal. (See the next paragraph for a detailed explanation.)
The expectation is formed under the assumption that {ct, lt}∞0 are chosen
under the information processing constraints. It is important to note that the
sequence of capital is not chosen by the planner; rather, it is determined as
a residual once consumption and labor effort have been chosen. The planner
cannot choose next period’s capital directly because then it would be perfectly
observed.

Because observing the state under rational inattention involves information
transfer at a limited channel capacity, the observations are contaminated by
error; the social planner gets to choose the distribution of the endogenous
error optimally, however. In this case the actual state variable is not the
traditional one (e.g., the normalized capital stock level k̃t in this model), but

6See Appendix A.2 for detailed derivations.
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the so-called information state: the distribution of the underlying state kt
conditional on It. In other words, it expands the state space to the space of
distributions on kt, creating a “curse of dimensionality” problem. Fortunately,
given the restriction that the coefficient of relative risk aversion is close to 1,
the original power utility can be approximated by a quadratic utility (see Luo
2008); in other words, the above problem can be approximated by a Linear-
Quadratic-Gaussian (LQG) framework in which the conditional distributions

are Gaussian, so that the first two moments, the conditional mean k̂t and
the conditional covariance matrix Σt = var (kt|It), are therefore sufficient to

characterize the information state. Hence, v̂
(
k̂t

)
is the value function under

information processing constraints and v (kt) is the value function derived from
the standard model where the social planner is assumed to have unlimited
channel capacity and thus can observe the state perfectly. Finally, we define
the loss function at t due to imperfect information as the difference between

these two value functions: Δv = v (kt) − v̂
(
k̂t

)
.

We use the concept of entropy from information theory to characterize the
uncertainty of a random variable and then use the reduction in entropy as
a measure of information gain. Formally, entropy is defined as the expecta-
tion of the negative of the log of the density function, −E [log (f (X))] (see
Shannon 1948 and Cover and Thomas 1991 for details). For example, the
entropy of a discrete distribution with equal weight on two points is simply
E [log (f (X))] = −0.5 log2 (0.5) − 0.5 log2 (0.5) = 1, and the unit of informa-
tion transmitted is called one “bit”. In this case, an agent can remove all
uncertainty about X if the capacity devoted to monitoring X is κ = 1 bit.
With finite capacity κ, the social planner will choose a signal that reduces
the uncertainty of the state. Formally, this idea can be described by the
information constraint

H (kt+1|It) −H (kt+1|It+1)≤ κ, (14)

where κ is the consumer’s information channel capacity, H (kt+1| I t) denotes
the entropy of the state prior to observing the new signal at t + 1, and
H (kt+1| It+1) the entropy after observing the new signal. κ imposes an upper

bound on the amount of information flow – that is, the change in the entropy
– that can be transmitted in any given period.7 The greater the value of κ,
the higher the degree of attention.

7Note if we use the natural logarithm e the unit is called a ‘nat’. Hence, 1 nat is equal
to log2 (e) = 1.4427 bits. After solving the calibrated model, we will discuss what rates of
information transmission would be considered reasonable.
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The information constraint restricts information flow in the following man-
ner. Consider the planner’s prior estimate of the mean of the information state
tomorrow, kt+1| I t; note that this object is an expectation conditional on in-
formation up to time t, and thus represents the expected value of tomorrow’s
wealth based on today’s signals. The resulting posterior estimate of the state,
kt+1| It+1, incorporates any new information gathered at time t + 1 (such as
a new signal) and is a control variable for the planner. The information pro-
cessing constraint restricts the planner’s ability to choose an updated state
by limiting the reduction in entropy – roughly, the increase in the precision
of the estimate – to be smaller than κ. We show below that the value of κ
determines how much uncertainty can be removed after observing new signals
(or equivalently, the fraction of relevant information processed every period by
an agent).

Following Sims (2003, 2005) and Luo (2008), we know that kt| It ∼ N
(
k̂t,Σt

)
.

Therefore, (14) can be rewritten as

log |Ψt| − log |Σt+1| ≤ 2κ (15)

where Σt+1 = vart+1 (kt+1) and Ψt = vart (kt+1) are the posterior and the prior
variance-covariance matrices of the state vector and |·| is the determinant
operator. Note that here we use the fact that the entropy of a Gaussian
random variable is equal to half of its logarithm variance plus some constant
term. In the univariate state case this information constraint completes the
characterization of the optimization problem; for the multivariate state case,
we need another information constraint:

Ψt � Σt+1, (16)

(where � means the difference between the two matrices is a positive semi-
definite matrix). This constraint embodies the restriction that precision in
the estimates of the state cannot be improved by forgetting some components
(making the change in their entropy negative) and using that extra capacity
to reduce other components by more than κ.

Given that certainty equivalence holds in for our system of linear equations,
introducing RI implies that

ct = ψk̂t (17)

lt = φk̂t (18)

where k̂t = E (kt|It) is the information state; the conditional distribution of

8
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kt given information at t is N
(
k̂t, σ

2
k,t

)
.8 The linearized dynamic resource

constraint can be rewritten as

kt+1 =
1

β
kt − C̃

K̃ exp(μz)
ct +

K̃αL1−α

K̃ exp(μz)
(1 − α)lt − ωεt+1; (19)

taking the conditional variance implies vart (kt+1) = ω2 + 1
β2σ2

k,t.

In Appendix A.3 we derive the out-of-steady state filtering equations ex-
plicitly. The conditional variance of the noise, vart

[
ξk,t+1

]
, is time-varying:

vart
[
ξk,t+1

]
=
β−2σ2

k,t + ω2

exp (2κ) − 1
. (20)

However, in the LQG setup the conditional variance σ2
k,t+1 turns out to be

deterministic and policy-independent; consequently, only the behavior of the
conditional mean k̂t matters for aggregate dynamics. We assume that the

initial state of the model economy is k0| I0 ∼ N
(
k̂0, σ

2
k,0

)
. Given σ2

k,0 and

σ2
k = ω2

exp(2κ)−β−2 , (69) can be written as

σ2
k,t+1 = σ2

k + λt
(
σ2
k,0 − σ2

k

)
,

which shows how quickly the conditional variance approaches its steady state
value. For example, if we set β = 0.99 and κ = 0.2 nats (which is close to our
quarterly calibration), λ = 0.684 and σ2

k,t+1 takes less than 2 quarters to get
halfway to its steady state value σ2

k. Therefore, in this paper we focus on the
steady state conditional variance case.

Using the information processing constraint it is straightforward to show
that the steady state of the filtering process yields σ2

k = ω2

exp(2κ)−β−2 where

κ ≥ − log (β) is assumed to guarantee convergence. The agent behaves as if
observing a noisy measurement k∗t+1 = kt+1 + ξk,t+1 with error variance

var
(
ξk,t+1

)
=

(
ω2 + β−2σ2

k

)
σ2
k

ω2 +
(
β−2 − 1

)
σ2
k

. (21)

The planner is solving a signal extraction problem in which the variance of
the noise is chosen optimally, subject to the entropy constraint. Agents with
more channel capacity generally observe a less noisy signal about the state of

8Since we only study a univariate case, to avoid confusion we use σ2
k,t to denote the

conditional variance of the state variable.
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the world:
∂var(ξk,t+1)

∂κ
< 0 as long as κ > −1

2
log (β). For a typical quarterly

business cycle calibration (say, β = 0.99) this would require κ > 0.005 nats,
which seems sufficiently low that it can be safely ignored; note also that this
lower bound is satisfied automatically whenever the filter converges to a steady
state.

Next, the Kalman filter equation that describes the evolution of the infor-
mation state can be written more simply as

k̂t+1 = (1 − θ)Gk̂t + θ
(
kt+1 + ξk,t+1

)
, (22)

where θ =
σ2

k

var(ξk,t+1)
is the optimal weight on the observation and

G =
1

β
− C̃

K̃ exp(μz)
ψ +

K̃αL1−α

K̃ exp(μz)
(1 − α)φ.

Note that θ = exp(2κ)−1
exp(2κ)

and thus limκ→∞ θ = 1; furthermore, var
(
ξk,t+1

) →
0 as κ → ∞. In other words, the weight of the new signal is increasing
with channel capacity and increases to 1 as κ gets infinitely-large, so that the
standard model is a special case of our model where κ = ∞. The weight is
independent of the patience of the agent and the variance of the shocks hitting
the economy.

The evolution of the economy can be described by two equations, one
each for the evolution of the underlying state kt and for the evolution of the
information state k̂t (see Appendix A.4 for derivations):

kt+1 =
1

β
kt +

(
G− 1

β

)
k̂t − ωεt+1 (23)

k̂t+1 = (1 − θ)Gk̂t + θ
(
kt+1 + ξk,t+1

)
. (24)

We can now derive the expression of Δk̂t+1, the change in the information
state, as

Δk̂t+1 = (G− 1) k̂t − θ

β

(1 − θ)ωεt + θξk,t

1 − (1 − θ)β−1L
− θεt+1 + θξk,t+1, (25)

where L is the lag operator and we use the formula kt − k̂t = − (1−θ)ωεt+θξk,t

1−(1−θ)β−1L
.

We now have the expression of changes in log transformed consumption

10
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and labor,

Δct+1 = ψΔk̂t+1 = ψ

(
(G− 1) k̂t − θ

β

(1 − θ)ωεt + θξk,t

1 − (1 − θ)β−1L
− θωεt+1 + θξk,t+1

)
(26)

ΔLt+1 = φΔk̂t+1 = φ

(
(G− 1) k̂t − θ

β

(1 − θ)ωεt + θξk,t

1 − (1 − θ)β−1L
− θωεt+1 + θξk,t+1

)
,

(27)

and we can recover all aggregate variables as follows

Δ logXt+1 = Δxt+1 + μz + ωεt+1;

where X = C,K, I, or Y and x = c, k, i, or y. For the calibration reported
in Table 1 we obtain the values ψ = 0.5439 and φ = −0.5109, implying that
G = 0.9459. The fact G is close to 1 will have implications for the internal
propagation in the model.

Table 1
Calibrated Parameter Values

δ α μz η β ω
0.018 0.36 0.004 2.84 0.99 0.00732

3 Main Findings

3.1 Business Cycle Statistics

A standard tool for evaluating the empirical success of a business cycle model
is to compare the predictions of a calibrated version of the model for a small
set of unconditional second moments to their empirical counterparts. Using
the above expressions we simulate 1000 artificial samples of length 225, HP-
filter the data, and compute these moments. In Table 2 we present statistics
from the standard model without RI (κ = ∞) and the model with RI (κ = 0.2
nats). κ = 0.2 nats implies θ = 0.33, so that about one-third of the new
information is transmitted each period.
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Table 2
Business Cycle Statistics (κ = ∞, κ = 0.2 nats)

Variable Std Dev. Cross-Correlations
yt (0.90, 0.81) (0.46, 0.52) (0.71, 0.75) (1.00, 1.00) (0.71, 0.75) (0.46, 0.52)
ct (0.44, 0.75) (0.55, 0.15) (0.75, 0.34) (0.98, 0.62) (0.65, 0.53) (0.38, 0.42)
it (2.32, 2.56) (0.40, 0.53) (0.66, 0.66) (0.99, 0.72) (0.72, 0.49) (0.50, 0.30)
lt (0.48, 0.49) (0.35, 0.52) (0.63, 0.68) (0.98, 0.81) (0.73, 0.58) (0.52, 0.39)

Business Cycle Statistics (κ = 0.2, ξk,t = 0 ∀t)
yt 0.78 0.55 0.77 1.00 0.77 0.55
ct 0.64 0.20 0.48 0.91 0.73 0.55
it 1.56 0.85 0.94 0.86 0.62 0.41
lt 0.33 0.75 0.91 0.93 0.71 0.50

Note: we use the expressions for main variables to simulate 1000 artificial samples of length
225, HP-filter data, and then compute the statistics from the standard RE model κ = ∞
and the RI model κ = 0.2 nats.

Output becomes less volatile, consumption and investment become more
volatile (especially consumption, whose volatility nearly doubles), and hours
remains the same. Consumption doubles in volatility because imperfectly ob-
serving the state of the world leads to a reduced ability to smooth consump-
tion, similar to the results in Luo (2008). The comovements of the variables
and output are basically unchanged, however, although the introduction of a
second shock (the endogenous noise due to RI) orthogonal to the technology
shock does tend to reduce the excessively high correlations in the model (see
Christiano and Eichenbaum 1992). The increase in consumption volatility
may be misleading for this reason, so we conduct the following experiment.
We assume that ξk,t = 0 ∀t; the random shock to the observations is always
zero, but the planner uses the decision rules of an individual with RI. Relative
to the case without RI, we observe an increase in consumption volatility and a
large drop in investment volatility. The planner cannot smooth consumption
as effectively even without the random changes in the observed state.

The reason that the changes in the implied comovements are not very
large is that kt and k̂t are highly correlated and have very similar volatilities,
even when κ is small. For example, when κ = 0.2 nats the contemporaneous
correlation between these variables is 0.88 and their volatilities are 0.23 and
0.21 percent, respectively.9 Thus, even with very low channel capacities the
resulting time series will be very similar in terms of their correlation patterns.
Formally, we can compare the two time series using their coherence in the

9These are the moments of the unfiltered, normalized series.
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frequency domain, which examines their similarity across all frequencies. In
Figure 1 we plot the coherence between kt and k̂t across the frequency band ν ∈
[0, π] (see Appendix A.5 for derivations of the coherence); the two series display
strong positive coherence at almost every frequency, indicating that they are
driven by movements at the same frequencies.10 The coherence remains strong
even for very low values of θ.

Figure 1: Coherence between k and k̂
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Note: The coherence is calculated across the frequency band [0, π] when κ = 0.2 nats.

We can use the consumption volatility number, which seems to be the most
sensitive to κ, to obtain an estimate of the channel capacity. We choose κ to
match a consumption/output volatility ratio of 0.67, obtained from NIPA data
over the period 1948-2005 using logged and HP-filtered data. Using this pro-
cedure we find an estimate of κ = 0.42 nats; then θ = 0.568, implying that
approximately 57% of the uncertainty is removed upon the receipt of a new

10There are two poles in the joint process for
(
kt, k̂t

)
, one located between frequencies

[0.2199, 0.2827] and one between frequencies [1.5394, 1.6022]. These poles account for the
apparent discontinuities in the plot; it is conventional to set the coherence at such points to
0.
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signal. Our estimate is in the ballpark of some others found in the literature,
although on the high side. Luo and Zhang (2008) obtain an estimate equiva-
lent to θ = 0.14 or κ = 0.075 using G-7 data on consumption and productivity.
Adam (2005) finds θ = 0.4 or κ = 0.255 based on the response of aggregate
output to monetary policy shocks. To determine whether these estimates are
plausible, we note that Landauer (1986) estimated individuals process about
2 bits per second in the laboratory. Given that this information flow is the
upper limit, it is reasonable to think that agents devote only a small fraction
of their capacity to aggregate conditions, both because idiosyncratic shocks
are typically much larger and because the welfare costs of limited informa-
tion appear to be tiny (see Luo 2008 and Luo and Young 2008). We discuss
idiosyncratic shocks and their effects below.

Figure 2: Impulse Response to Technology Shock
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Note: The time unit of all figures (period) is one quarter and κ = 0.2.
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3.2 Impulse Responses

In this section we focus on the implications of RI for the shape of the impulse
response functions for the model. We first examine the impulse responses
of labor supply, output, capital stock, and consumption with response to a
permanent technology shock in the presence of RI. We then examine the impact
of a technology shock on output growth.

Figure 3: Impulse Response to Technology Shock
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Note: Solid, dashed, dashed-dotted lines depict the impulse responses to the technology
shock when κ = 0.05, κ = 0.2, and κ = ∞ nats, respectively.

Before we examine the impulses of main macroeconomic variables, it is
useful to examine the impulses of the true state kt and the information state
k̂t, since they determine the dynamics of the main variables in the model. As
Figure 2 shows, in the presence of RI (κ = 0.2 nats) k̂t reacts to the shocks
gradually and with delay (it displays an “inverse” hump shape), while kt jumps
down initially and then transits back to its steady state level monotonically.
The intuition is quite simple. Since the agent only has limited information
processing ability when analyzing the state, the information state takes more
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periods to start moving back to the steady state; the early periods are spent
’processing’ the fact that the technology state has changed.

Figure 4: Impulse Responses to Technology and Noise Shocks
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Note: ε and ξ are the technology shock and the endogenous noise, respectively.

We then plot the responses of capital, labor, output, and consumption
with respect to the permanent technology shock for different degree of RI in
Figure 3. Figure 3a shows that capital takes more periods to converge to the
steady state level for higher degrees of RI (lower values for κ). The solid and
dashed lines in Figure 3b show that labor supply reacts to the innovations
gradually and with delay under RI. In the absence of RI, the dashed-dotted
line shows that labor supply jumps up initially with respect to the innovations
and then goes back to the steady state immediately, clearly labor lacks a
strong propagation mechanism in the standard full-information model. As
a consequence, output also displays stronger persistence with RI since it is
determined by both labor supply and capital stock. Figure 3d shows that
output also reacts to the innovations gradually under RI. Note that without
RI, the figure also makes clear that output converges rapidly to its new steady
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state level. Its dynamics are not fundamentally different from the dynamics
of productivity, in other words, the standard full-information case fails to
display strong internal propagation mechanism. Figure 3c shows that since
the reaction of normalized consumption (ct) is smooth and delayed under RI,
the recovered consumption (log(Ct)) is more responsive and also displays an
“inverse” hump shape.

Figure 4 illustrates the impulse responses of employment and output to
both the exogenous technology shock (ε) and the endogenous noise (ξk). From
the two-equation dynamic system, (23) and (24), it is clear that since the

exogenous technology shock εt appears in the dynamic system of
(
kt, k̂t

)
with

a negative sign, the endogenous noise ξk,t due to finite capacity serves as a
negative demand shock. Figure 4 clearly shows that ξk,t has the main features
of an negative aggregate demand shock: it reduces employment and output
temporarily but has no effect in the long-run. Our ”noise” shock is therefore
quite similar to the “news” shock in Lorenzoni (2008), providing an alternative
theoretical foundation for demand shocks.

We now examine the response of output growth with respect to the tech-
nology shock. Δ log Yt+1, the change in the log of aggregate output, is given
by

Δ log Yt+1 =μz + (αG + (1 − α)φ (G − 1)) k̂t − αkt + ω (1 − α) (1 + φθ) εt+1+

(1 − α)φθξk,t+1 −
(1 − θ) ω

β

(
α + (1 − α)φθ

1 −(1 −θ)β−1L

)
εt + θ

(
α + (1 − α)φ

1 −(1 −θ)β−1L

)
ξk,t.

(28)

For output growth to be stationary it must be the case that 1− θ < β, which
requires an adequately large capacity channel (this point is also noted in Sims
2003). For the calibrated β = 0.9908, the cutoff value is κ = −1

2
log (β) =

0.0047 nats, the same value that ensures convergence of the filter.11

We plot the calibrated impulse response function for the growth rate of the
log of output to a one-standard-deviation increase in εt in Figure 5 for κ = 0.2
and κ = ∞. With κ = 0.2 nats the growth rate of output follows the process

Δ log Yt+1 = 0.004 + 0.3582k̂t − 0.36kt + 0.0039εt+1 − 0.1078ξk,t+1−

0.0012
∞∑
j=0

(
0.6767jεt−j

)
+ 0.0109

∞∑
j=0

(
0.6767jξk,t−j

)
. (29)

11As noted in Sims (2005), it is also the case that smaller values for κ make the linear
approximation less valid. We do not explore values too close to the bound because we
encountered many periods in which aggregate investment became negative, rendering the
approximation invalid.
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The effect of technology shocks on the growth rate of output dies off quite
slowly, even in the absence of a strong capital accumulation mechanism, due
to the significant effects of the lagged εt terms; it is also important to note that
the persistence increase is not caused by the misperception of capital directly,
as the coefficients on kt and k̂t nearly cancel each other, but rather by the
learning process. In contrast, when κ = ∞ the output growth is given by

Δ log Yt+1 = 0.004 − 0.0018kt + 0.0023εt+1.

Clearly, this process will not display much persistence. Figure 5 contrasts
the two cases, where we plot the impulse response function of output growth
to a one-standard-deviation shock to technology. In the case κ = ∞ there is
essentially no effect, but introducing RI (reducing the value of κ) generates a
small amount of persistence into the output growth function. As noted above,
the effect is quantitatively small.

Figure 5: Impulse Response of Output Growth
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3.3 Autocorrelation Functions

Cogley and Nason (1995) show that output growth in US data has significant
positive serial correlation for the first two periods after a permanent shock.
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Standard models cannot reproduce this observation when hit by a technology
that follows a random walk, such as the one we explored above – they predict
output growth is essentially white noise. Modifications to permit the elastic
response of capital utilization – following Greenwood, Hercowitz, and Huffman
(1988) – do not alter this prediction, while introducing home production tends
to make output growth negatively serially correlated. As discussed in Cogley
and Nason (1995), the main discrepancy between the sample and model ACFs
is the absence of positive dependence at lags 1 and 2.12 We use this section to
explore the consequences of RI for the autocorrelation of output growth.

We restate the expression for the change in output derived earlier for con-
venience:

Δ log Yt+1 =μz + (αG + (1 − α)φ (G − 1)) k̂t − αkt + ω (1 − α) (1 + φθ) εt+1+ (30)

(1 − α)φθξk,t+1 −
(1 − θ) ω

β

(
α + (1 − α)φθ

1 − (1 − θ)β−1L

)
εt + θ

(
α + (1 − α)φ

1 − (1 − θ)β−1L

)
ξk,t.

Note that in the case without RI (κ = ∞ which implies θ = 1 and ξk,t = 0
∀t), the above expression implies that

covar (Δ log Yt+j,Δ log Yt) (31)

= (α (G− 1) + (1 − α)φ (G− 1))2 covar (kt+j−1, kt−1) +

(α (G− 1) + (1 − α)φ (G− 1))ω (1 − α) (1 + φ) covar (kt+j−1, εt) .

The persistence in output growth depends directly on the strength of the
capital accumulation channel. For the calibration we consider this expression
becomes

covar (Δ log Yt+j ,Δ log Yt) =
(
3.2 × 10−6

)
covar (kt+j−1, kt−1)−(

4.1 × 10−6
)
covar (kt+j−1, εt) ;

thus, output growth will be white noise in the absence of rational inattention
unless capital accumulation is very strong, and previous results have shown
the weakness of this mechanism.

In the model with RI, the model-generated autocorrelation function is more
complicated due to the presence of the distributed lags of past shocks. Of
course, these distributed lags are what induce additional persistence in output
growth – any innovation to ε will contribute for many periods – in addition
to the capital accumulation channel. Figure 6 presents the autocorrelation
functions for the two cases, based on the ensemble average of the same 1000

12These two values are around 0.4 and 0.2 in the US data, both of which are statistically
distinguishable from 0; see Figure 6.
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simulations used to compute the business cycle statistics, and compares them
to the data. It is clear that RI does increase the autocorrelation of output
growth, but the effect is small even for a relatively low value of κ – we cannot
reproduce the observed values of 0.4 and 0.2 for the first two lags. Our chosen
value of κ = 0.2 nats is the one that appears to produce the maximum amount
of autocorrelation, as lower values reduce rather than increase the persistence
of output growth.

Figure 6: Autocorrelation of Output Growth
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Our results for the autocorrelation of output growth are robust to alterna-
tive calibration targets. For example, we chose a relatively-conservative target
for K

Y
. Cooley and Prescott (1995), using a careful allocation of the data rel-

ative to the model, suggest a value of 13.2. When we use this value, we obtain
only minor increases in the autocorrelation function. To get any significant
improvement we would need a very high target value, much higher than any
reasonable calibration could obtain.13 Changes in C

Y
are nonmonotone, and

our chosen calibration target (which is very close to the value advocated by

13An alternative approach is to calibrate the model to match interest rates rather than

20

The B.E. Journal of Macroeconomics, Vol. 9 [2009], Iss. 1 (Contributions), Art. 14

http://www.bepress.com/bejm/vol9/iss1/art14



Cooley and Prescott 1995) leads to a relatively high autocorrelation. Choosing
alternative values for steady-state hours (such as 0.2, which would be the value
if sleeping and personal care were included in leisure) or the share of capital
income α have little effect.

3.4 Forecastable Movements

We follow the procedure in Rotemberg and Woodford (1996) by examining
forecastable movements in output. For j ≥ 1, let Δyjt denote the difference
between yt+j and yt:

Δyjt = log (Yt+j) − log (Yt) =

j∑
i=1

Δ log (Yt+i) (32)

The forecastable change in output between t and t + j is then given by
Et
(
Δyjt

)
. In the model with RI these expectations must be consistent with

the information state k̂t. Expected output at time t, conditional on k̂t, is given
by

Et (yt) = (α + (1 − α)φ) k̂t;

since in general k̂t 
= kt, expected output will not equal realized output. k̂t is
expected to evolve according to

Et

(
k̂t+j

)
=

[
1 − δ

exp (μz)
+ exp (i)

α + (1 − α)φ− ψ

exp (μz + k)

]j
k̂t,

where i is the steady state value of the log of gross investment. Thus, we have

Et (yt+j) = (α + (1 − α)φ)Bjk̂t,

where B = 1−δ
exp(μ)

+ exp (i) α+(1−α)φ−ψ
exp(μ+k)

. We can therefore obtain the standard
deviation of the forecastable part of output growth

σ
(
EtΔy

j
t

)
= (α + (1 − α)φ)

(
Bj −B

)
σ
(
k̂t

)
, (33)

where EtΔy
j
t = (α+ (1 − α)φ) (Bj − B) k̂t. Table 3 shows that RI tends to

raise the volatility of the forecastable component of output growth, but not

capital/output ratios. If we calibrate the model to produce a quarterly return on capital
of R = 0.016 (an annual return of 6.5 percent) then our implied capital/output ratio would
be only 8.5, moving us in the wrong direction.
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by very much. Even when κ = 0.01 nats we cannot produce a quantitatively
significant increase over the κ = ∞ case.

The expression above shows clearly why there is little improvement – the
only difference is that (32) depends on the standard deviation of k̂t rather than
kt, as the coefficients do not depend on θ. We have previously noted that these
two variables are very similar in their dynamic behavior even for small values
of κ.

Table 3
Predicted Standard Deviations of Δyj

t

Variable j = 1 j = 2 j = 4 j = 32
κ = 0.01 nats 0.0003 0.0006 0.0011 0.0047
κ = 0.2 nats 0.0003 0.0005 0.0010 0.0045

Note: we report the volatility of the forecastable component of output growth
when κ = 0.01 nats and κ = 0.2 nats, respectively.

4 Idiosyncratic and Aggregate Shocks

In the previous section, we solved a linear approximation to a stochastic growth
model with RI and permanent technology shocks numerically and discussed
the implications of RI for the dynamics of employment, consumption, capital
stock, and output; critical for our discussion was the assumption that the social
planner has the same constraints on information processing as the individual
agents do, meaning that idiosyncratic shocks are unimportant. In this section
we show that if individuals cannot distinguish an idiosyncratic shock from the
aggregate shock in their productivity process (an assumption we refer to as
incomplete information), the responses of main macroeconomic variables to the
aggregate productivity shock under RI display more inertia than that found
in the case in which individuals can separate the two components. For the
purposes of this section we use an explicitly linear-quadratic setting because,
with prices exogenous, the competitive and social planning allocations are
identical.

4.1 LQ Business Cycle Model

Following the same procedure in Section 2, we first derive the optimal decisions
under RE and then obtain the decisions under RI using the separation princi-
ple. Individuals are infinitely-lived; household i maximizes expected lifetime
utility
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max
{ct,lt}

E0

∞∑
t=0

βt
[
cit −

1

2

(
cit
)2 − η

(
lit −

1

2
ϑ
(
lit
)2
)]

(34)

subject to
kit+1 = (1 + A1) k

i
t − cit + A2l

i
t + zit, (35)

where the time-separable utility is quadratic in terms of consumption and
labor supply and output is linear in capital kit and labor lit.

14 There is an ad-
ditive technology, zit, that is the sum of aggregate permanent and idiosyncratic
transitory components:

zt+1 = zat+1 + zit+1, (36)

where the superscripts a and i denote aggregate and idiosyncratic, respectively.
Each of these components follows its own stochastic process; zat+1 follows a
random walk

zat+1 = zat + εat+1, (37)

and zit+1 follows an iid process

zit+1 = z + εit+1, (38)

where εat+1 and εit+1 are white noises with mean 0 and variance ω2
ε and ω2

ε ,
respectively. To explore the effects of the idiosyncratic risk on aggregate dy-
namics under RI, following Pischke (1995) we suppose that households can
only observe the sum of the aggregate shock and the idiosyncratic shock, not
the realizations separately.15 Specifically, given that the change in the total
productivity is

Δzit+1 = εat+1 + εit+1 − εit, (39)

individuals only observe an MA(∞) process for Δzit+1:

Δzit+1 = νit+1 − μνit, (40)

where the innovation, νit, with mean 0 and variance ω2
ν , is not a fundamental

driving process – it contains information on current and lagged aggregate and
idiosyncratic productivity shocks. Equating the variances and autocorrelation

14For simplicity we subsume depreciation into A1. The coefficients satisfy η > 0, ϑ > 0,
A1 > 0, and A2 > 0.

15Similar assumptions in standard business cycle models – such as Kydland and Prescott
(1982) – have little effect on aggregate dynamics.
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coefficients of the original and derived processes (38) and (39), we have

μ = −1 −
√

1 − 4�2

2�
where � = − ω2

ε

ω2
ε + 2ω2

ε

(41)

ω2
ν =

ω2
ε

μ
; (42)

μ ∈ [0, 1] will be large if the variance of the idiosyncratic shock ω2
ε is large

relative to the variance of the aggregate shock ω2
ε and will converge to 0 as ω2

ε

approaches to 0. Since studies of individual income data show that aggregate
shocks account for very little of the variation in individual incomes, μ will be
close to 1.16

To obtain a well-behaved stochastic steady state in this LQ model, we
assume that β (1 + A1) = 1. Given this assumption, solving the LQ model
gives the optimal consumption and labor supply under RE:

cit =
ϑηA1

ϑη − A2
2

(
kit +

1

A1
zit −

μ

A1
νit

)
+

A2 (η −A2)

ϑη − A2
2

, (43)

lit =
A1A2

ϑη − A2
2

(
kit +

1

A1

zit −
μ

A1

νit

)
+

ϑη (η − A2)

ϑη −A2
2

. (44)

For completeness, GDP is given by yt = A1kt + A2lt + zt.

4.2 Information Processing Constraints

To solve for the optimal decisions under RI, we reduce the original multivariate
model to a univariate model by defining a new unique state variable:

ait = kit +
1

A1
zit −

μ

A1
νit. (45)

The original budget constraint can then be rewritten as

ait+1 = (1 + A1) a
i
t − cit + A2l

i
t +

1 + A1 − μ

A1
νit+1. (46)

The optimal distribution of the state ait follows a normal distribution: ait ∼
N (âit, σ

2
t ), where âit is the conditional expectation of the true state and σ2

t =

16Consistent with the market structure assumed in most of this literature, we assume
that the idiosyncratic shocks to income are uninsurable through contingent claims markets.
Given that idiosyncratic shocks are not observable even without RI, this assumption is not
restrictive.
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vart (at) is the conditional variance of the state. The information processing
constraint,

log
(
vart

(
ait+1

))− log
(
vart+1

(
ait+1

))
= 2κ,

implies that the steady state for the conditional variance σ2
t is σ2 =

(
1+A1−μ

A1
ων

)2

exp(2κ)−β−2 .

The optimal choice of information structure leads the agent to act as if she
observes a Gaussian noisy signal ai,∗t+1 = ait+1 + ξit+1, where ait+1 is the true
signal and ξit+1 is the endogenous noise due to RI. Hence, the evolution of the
information state âit follows a recursive Kalman filter equation

âit+1 = (1 − θ) âit + θ
(
ait+1 + ξit+1

)
, (47)

where θ = 1 − 1/ exp (2κ) is the optimal weight on a new observation and
ω2
ξ = var (ξt) = σ2

θ
. Since the separation principle holds in this case, we can

just replace the true state in the decision rules with the information state and
obtain the optimal consumption and labor supply functions under RI:

cit =
ϑηA1

ϑη − A2
2

âit +
A2 (η −A2)

ϑη −A2
2

, (48)

lit =
A1A2

ϑη − A2
2

âit +
ϑη (η − A2)

ϑη − A2
2

. (49)

Combining (45) and (46) with (47) and (48) gives the expression for the change
in individual households’ information state:

Δâi
t+1 =

θ

A1

1 + A1 − μ

1 + A1

(
εa

t+1 + εi
t+1 − εi

t

1 − (1 − θ) (1 + A1)L

)
+ θ

(
ξi

t+1 −
θ (1 + A1) ξi

t

1 − (1 − θ) (1 + A1)L

)
.

After aggregating over all households, we obtain the aggregate change in the
information state:

Δât+1 =
θ

A1

1 + A1 − μ

1 + A1

(
εa

t+1

(1 − (1 − θ) (1 + A1)L) (1 − μL)

)
+

θ

(
ξt+1 −

θ (1 + A1) ξt

1 − (1 − θ) (1 + A1)L

)
,

(50)

where ξt = Ei
(
ξit
)

is the common noise and Ei (·) is the population average.
As argued in Sims (2003), although the randomness in an individual’s re-

sponse to the aggregate shock should also be idiosyncratic because it arises
from his own internal information processing constraint, a considerable part
of the idiosyncratic error might be common across individuals. The intu-
ition is that agents with finite capacity might make common mistakes because
they process macroeconomic information from some common sources such as

25

Luo and Young: Rational Inattention and Aggregate Fluctuations

Published by The Berkeley Electronic Press, 2009



newspapers, TV, or other media. However, the ‘pure’ RI theory says nothing
about this common component, and to the best of our knowledge, no other
existing theory can help us pin down the relative importance of the common
error. Here we therefore assume that the common term of the idiosyncratic
error, ξt, is somewhere between 0 and the part of the idiosyncratic error ξt
caused by the non-fundamental shock νt; the variance of ξt is

ω2
ξ =

1 − θ

θ
(
1 − (1 − θ)β−2

) (1 + A1 − μ

A1

)2

ω2
ν , (51)

which depends on both aggregate and idiosyncratic components. Formally,
we assume that ξt consists of two independent noises, ξt = ξt + ξit, where
ξt = Ei (ξt) and ξit are the common and idiosyncratic components of the error
generated by νt, respectively. A single parameter,

λ =
var

(
ξt
)

var (ξt)
∈ [0, 1] ,

can be used to measure the common source of coded information on the aggre-
gate component (or the relative importance of ξt to ξt). Therefore, RI affects
the impact of the exogenous shocks on consumption, labor supply, and output
through the factor 1

(1−(1−θ)(1+A1)L)(1−μL)
.

In order to simplify expressions we consider the case where all noises are
idiosyncratic (so that individuals live on isolated islands and do not interact
with each other directly or indirectly via conversation, imitation, newspapers,
or other media), meaning that λ = 0; in this special case (which is consistent
with the pure RI theory developed by Sims 2003) the change in the perceived
state can be written as

Δât+1 =
θ

A1

1 + A1 − μ

1 + A1

(
εat+1

(1 − (1 − θ) (1 + A1)L) (1 − μL)

)
. (52)

This equation brings out two salient points in our aggregate RI model. First,
both RI and incomplete information provide endogenous propagation mech-
anisms of the LQ-RBC model – they are characterized by the two factors,

1
1−(1−θ)(1+A1)L

and 1
1−μL , respectively. Second, under incomplete information,

the presence of the idiosyncratic shock plays a role in strengthening the inertial
responses to the aggregate productivity shock because μ is a function of the
variance of the idiosyncratic shock. Furthermore, because we expect μ to be
close to 1, the impact is expected to be initially small but highly persistent.
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4.3 Results

We now show how μ and θ affect dynamics in the model. The relative volatil-
ity of the change in the information state relative to the innovation to the
aggregate productivity can be written as

rv =
sd [Δât]

sd [Δzat ]
, (53)

where the standard deviation of Δât – denoted sd [Δât] – can be written as

sd [Δât] =

√√√√√√
(

θ
A1

)2( 1+A1−μ
1+A1

)2
(1+μ(1−θ)(1+A1))

(1+μ(1−θ)(1+A1))[(1+μ(1−θ)(1+A1))
2−(μ+(1−θ)(1+A1))

2]ω
2
ε+

λ2θ2
[
1 + (θ(1+A1))

2

1−((1−θ)(1+A1))2

]
var [ξt]

.

Specializing to the case where λ = 0 (no common information) we get

Figure 7: The Relative Volatility of Main Variables to Aggregate Productivity
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This expression shows how the volatility of aggregate variables is determined
by (1) the degree of attention θ and (2) the relative importance of the id-
iosyncratic shock to the aggregate shock μ. Figure 7 illustrates how the com-
binations of (θ, μ) affect the relative volatility – rv is increasing with θ and
decreasing with μ. Thus, rational inattention – θ < 1 – does have implications
when agents cannot distinguish aggregate and idiosyncratic shocks. Specif-
ically, it increases the volatility of any aggregates that depend on ât (since
by the separation principle the coefficients don’t change) and it reinforces the
volatility effects of incomplete information.

Figure 8: Autocorrelation of Output Growth
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Turning to persistence, Figures 8 and 9 plot the dynamics of the state at (or
ât) in response to a technology shock under various different values for μ and
θ. Both figures show that slower (and ultimately larger) adjustment occurs as
μ increases (θ decreases). When agents cannot distinguish aggregate from id-
iosyncratic shocks, filtering assigns more weight to more volatile components.
In our case, households assign higher weight to the idiosyncratic component,
which is not persistent, because μ is close to one; thus, the total impact of the
productivity shock is only discovered over time, leading to persistent responses.
Figures 10 and 11 show that the persistence shows up in output growth the
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autocorrelation function displays nonzero values at higher leads/lags than does
the model we presented above without idiosyncratic shocks. In fact, we over-
predict the persistence of output growth relative to the data, particularly for
high values of μ and low values of θ (the ones that are reasonable given em-
pirical evidence). That we overpredict the autocorrelation of output growth
here is not surprising, given that we have eliminated a key mechanism – the
decreasing marginal product of capital – that limits the power of shocks to
generate persistent movements in output.

Figure 9: Autocorrelation of Output Growth
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5 Conclusion

In this paper we have reconsidered some puzzles in the RBC literature by
via the introduction of Rational Inattention. It is reasonable to interpret our
results in the following way: RI could be a component of a macroeconomic
model that fits the data, but it cannot be the only modification. While it is
difficult to calibrate the parameter which controls the capacity of the Shannon
channel because the model is not very sensitive to this parameter, one should
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certainly agree that processing only 0.2866 bits of macroeconomic information
every quarter would have to be closer to a lower bound than an upper one
(this value corresponds to κ = 0.2 nats, the parametrization which produced
the maximum autocorrelation in output growth in the business cycle model).
And our estimate using consumption volatility is not much larger (κ = 0.42
nats, corresponding to 0.6059 bits). Thus, RI seems to play only a minor role
in resolving the extant puzzles. However, when we conduct experiments in a
model in which aggregate and idiosyncratic shocks cannot be distinguished,
the RI model displays stronger propagation, too strong in fact, particularly
when idiosyncratic shocks are the dominant source of fluctuations in individ-
ual productivity (as they are in the data). Given that the LQ model with
idiosyncratic shocks we use above ignores general equilibrium effects through
the interest rate that would tend to weaken output growth persistence, we
think that RI can have a significant effect.

Figure 10: Autocorrelation of Output Growth
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Lead/lags are in quarters.
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There are some caveats to our results that we feel suggest even a larger role
for RI. First, we have derived our results under the assumption of certainty
equivalence. This assumption is difficult to justify, as it rules out the pre-
cautionary behavior that seems pervasive in the microeconomic consumption
literature; furthermore, without precautionary savings one important channel
through which RI would affect the economy is shut off. Sims (2005, 2006),
Lewis (2006), Batchuluun, Luo, and Young (2007), and Tutino (2007) make
some progress toward solving the fully-nonlinear problem but are restricted
to fairly simple models for the following two reasons. The first obstacle has
already been mentioned above – the infinite-dimensional state space. A sec-
ond problem is the unknown form of the posterior distribution. We speculate
that if we parameterize this object flexibly enough we can apply a projection
algorithm to compute the laws of motion, although the discreteness apparent
in such distributions is a troubling feature. Furthermore, given the unknown

Figure 11: Autocorrelation of Output Growth
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form something similar to an MCMC approach will be needed to construct
the posterior, making computation extremely slow. Luo and Young (2008)
extend the basic RI linear-quadratic model to include risk-sensitivity, a feature
which breaks certainty equivalence without losing the tractability of the linear-
quadratic-Gaussian environment.

Second, we have assumed only one state variable. Lindé (2005) shows that
the growth model performs better in the presence of growth-rate shocks with
small autocorrelation, a modification that would increase the size of the state
space to two variables. As we noted in the main body of the paper and given
previous results on the poor behavior of the fully-nonlinear model, solving RI
models with multiple state variables seems difficult but worthwhile.

A Appendix

A.1 Decentralizing the Planning Problem

In this appendix we make some comments on the problem of decentralizing
an economy with rational inattention. The competitive equilibrium version
of our model features households who solve the sequential problem

max
{ct,lt}∞t=0

E0

∞∑
t=0

βtu (ct, lt)

subject to

ct + it ≤ rtkt + wtlt

kt+1 ≤ (1 − δ) kt + it

log (Ψe
t ) − log

(
Σe
t+1

) ≤ 2κ

Ψe
t � Σe

t+1.

The superscript ’e’ denotes the equilibrium problem. The firm’s problem
supplies expressions for the prices:

rt = α exp (zt)K
α−1
t L1−α

t

wt = (1 − α) exp (zt)K
α
t L

−α
t .

Assuming that zt follows a random walk with drift, the two state variables for
the household problem are kt

exp(zt)
and Kt

exp(zt)
. The household faces the prob-

lem of allocating attention between observing individual wealth and observing
the aggregate capital stock; the planner apparently needs only to observe the
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aggregate capital stock. However, both the planner and the individual house-
holds actually need to observe the entire distribution of individual capital
stocks {kit}, where

∑
i k

i
t = Kt defines the aggregate; in this model it may

not be innocuous to assume that the distribution is completely summarized
by the aggregate. If we assume that these are the state variables for the
economy, the problems of the households and the planner become symmetric,
implying that a decentralization must exist by the Second Welfare Theorem
(all RI does is put constraints on expectations, which can be subsumed into
the utility function) provided the objective function remains a concave pro-
gramming problem. However, deriving the outcomes of a model with RI and
multiple state variables is difficult, as we note in the main body of the paper,
so actually computing the decentralization is nontrivial.

Sims (2005) makes a related point regarding the nature of competitive
equilibria with rational inattention. He is concerned with trying to under-
stand just how an economy would allocate goods in the presence of agents
with limited capacity, noting that it would involve theorizing at the market
microstructure level and incorporating details regarding inventories, retailers,
and bargaining. Similar concerns arise in the sticky information literature,
such as Mankiw and Reis (2006), where price-setting firms would want to ex-
ploit agents whose information has gone stale. That literature has typically
proceeded by restricting the information problem to one variable per decision-
maker, and is thus inconsistent with limited Shannon channel capacity.

A.2 Deriving Optimal Decisions

In this appendix, we follow Campbell (1994) and use a log-linearization ap-
proach to solve the standard welfare maximization problem proposed in Section
2. First, the efficiency conditions for the planning problem are

η = C̃−γ
t (1 − α)

Ỹt
Lt

(54)

C̃−γ
t = βEt

[
exp (−μz − ωεt+1)

(
C̃−γ
t+1

)(
1 + α

Ỹt+1

K̃t+1

− δ

)]
(55)

exp (μz + ωεt+1) K̃t+1 = K̃α
t L

1−α
t + (1 − δ) K̃t − C̃t (56)

lim
t→∞

βtK̃t+1C̃
−γ
t = 0. (57)
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Second, the balanced-growth path is defined by the three-equation system

η = (1 − α)
K̃αL−α

C̃γ
(58)

1 = exp (−μz)
(
K̃α−1L1−α − C̃

K̃
+ 1 − δ

)
(59)

1 = β exp (−μz)
(
1 − δ + αK̃α−1L1−α

)
. (60)

We log-linearize the above system around the unique interior steady state
and then derive optimal linear decision rules; this procedure lets us derive
some approximate analytical results. The resulting linear system is

ct = αkt − αlt (61)

kt+1 = −ωεt+1 +
K̃αL1−α

K̃ exp(μz)
(αkt + (1 − α)lt) − C̃

K̃ exp(μz)
ct +

(1 − δ)K̃

K̃ exp(μz)
kt

(62)

− γct = Et

[
−γct+1 +

αK̃α−1L1−α

1 − δ + αK̃α−1L1−α ((α− 1)kt+1 + (1 − α)lt+1)

]
;

(63)

here we use lowercase letters to denote deviations from the steady state of any
stationary variable. The optimal decision rules take the form

ct = ψkt (64)

lt = φkt (65)

for some coefficients (ψ, φ). We solve for these coefficients using the method of
undetermined coefficients from Campbell (1994), where we insert these guesses
into the decision rules and solve the resulting undetermined coefficients sys-
tem. Since the above system defines a quadratic equation we choose the root
that implies stationarity in the law of motion for k. Hence, the original non-
stationary stochastic growth model can be regarded as a simple stationary
optimal control problem, in which kt is the unique state variable and ct and lt
are control variables.

A.3 Out-of-Steady-State Filtering

As shown Section 2, in the steady state σ2
k = vart [kt] and vart [kt+1] = β−2σ2

k+
ω2. Given the updating equation for the conditional variance,

vart+1 [kt+1] = vart [kt+1]
(
vart [kt+1] + vart

[
ξk,t+1

])−1
vart

[
ξk,t+1

]
, (66)
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we obtain that in the steady state

vart
[
ξk,t+1

]
= var

[
ξk,t+1

]
=

(
ω2 + β−2σ2

k

)
σ2
k

ω2 + (β−2 − 1)σ2
k

.

If the economy is not in the steady state of the filter, the information processing
constraint

κ =
1

2

(
log

(
ω2 + β−2σ2

k,t

)− log
(
σ2
k,t+1

))
,

implies that
σ2
k,t+1 =

(
ω2 + β−2σ2

k,t

)
exp (−2κ) (67)

and (65) can be rewritten as

σ2
k,t+1 =

(
β−2σ2

k,t + ω2
) (
β−2σ2

k,t + ω2 + vart
[
ξk,t+1

])−1
vart

[
ξk,t+1

]
.

Therefore, the conditional variance of the noise in this case, vart
[
ξk,t+1

]
, would

be time-varying:

vart
[
ξk,t+1

]
=
β−2σ2

k,t + ω2

exp (2κ) − 1
. (68)

However, in the LQG setup the conditional variance σ2
k,t+1 turns out to be

deterministic and policy-independent; consequently, only the behavior of the
conditional mean k̂t matters for aggregate dynamics.

In this non-steady state case, we assume that the initial state of the model

economy is k0| I0 ∼ N
(
k̂0, σ

2
k,0

)
. The social planner’s optimization problem

can be written as

v̂
(
k̂t

)
= max

{ct,lt}
Et

[
u (ct, lt) + v̂

(
k̂t+1

)]
(69)

subject to (1) the resource constraint (19), (2) the Kalman filter equation gov-

erning the conditional mean k̂t, (22), and (3) the transition equation governing
the conditional variance σ2

k,t

σ2
k,t+1 = λσ2

k,t + exp (−2κ)ω2, (70)

where λ = β−2 exp (−2κ) < 1.
Note that given that given σ2

k,0 and σ2
k = ω2

exp(2κ)−β−2 , (69) can be written
as

σ2
k,t+1 = σ2

k + λt
(
σ2
k,0 − σ2

k

)
,

which shows how quickly the conditional variance approaches its steady state
value. For example, if we set β = 0.99 and κ = 0.2 nats quarterly, λ = 0.684
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and σ2
k,t+1 takes less than 2 quarters to get halfway to its steady state value

σ2
k. Therefore, in this paper we focus on the steady state conditional variance

case.

A.4 Deriving the aV riance-covariance Matrix of
(
k,̂ k

)
Taking unconditional variances on both sides of (23) and (24), we find that

[
1 0
−θ 1

]
Σk

[
1 −θ
0 1

]
=

[ 1
β

G− 1
β

0 (1 − θ)G

]
Σk

[
1
β

0

G− 1
β

(1 − θ)G

]
+

[
ω2 0
0 θ2var (ξk)

]

where

Σk =

⎡⎣ var (k) covar
(
k, k̂

)
covar

(
k, k̂

)
var

(
k̂
) ⎤⎦ .

This expression is a standard discrete Lyapounov equation. For the case with
κ = ∞ we use the fact that kt = k̂t ∀t, ξk,t = 0 ∀t, and θ = 1 to obtain

var (k) =
ω2

1 −G2
. (71)

The solution to this equation when κ <∞ is given by

⎡⎢⎢⎣
var (k)

covar
(
k, k̂

)
var

(
k̂
)

⎤⎥⎥⎦ =

⎡⎣ 1 − β−2 −2β−1
(
G− β−1

) −β−2 (Gβ − 1)2

−θ −Gβ−1 1 − (1 − θ)G
(
G− β−1

)
0

θ2 − (1 − θ)2G2 −2θ 1

⎤⎦−1 ⎡⎣ ω2

0
θ2var (ξk)

⎤⎦ .

we can derive the solutions in closed-form, although they are not particularly
intuitive.

A.5 Deriving the VCoherence of
(
k, k̂

)
The system that determines the evolution of the states,

(
k, k̂

)
, can be written

as
Xt = (1 − ΨL) ζt,

where

Ψ =

[
1
β

G− 1
β

θ
β

θ
(
G− 1

β

)
+ (1 − θ)G

]

ζ t =

[ −εt+1

θξk,t+1 − θεt+1

]
.

V
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The covariance matrix Et [ζtζ
′
t] is then given by

Ω =

[
ω2 θω2

θω2 θ2ω2 + θ2var (ξk)

]
.

Writing out the autocovariance of the vector MA(∞) process yields

Γs =

∞∑
h=0

Ψs+hΩΨ′
h

for each s, with typical element γij (s).17 Then the spectral density at fre-
quency ν is

S (ν) =
1

2π

∞∑
s=−∞

Γs exp (−sνi) =

[
s11 (ν) s12 (ν)
s21 (ν) s22 (ν)

]
with cross spectrum

s12 (ν) =
1

2π

∞∑
s=−∞

γ12 (s) exp (−sνi) .

The coherence of two series at frequency ν is defined as

K (ν) =
|s12 (ν)|√

s11 (ν) s22 (ν)
∈ [0, 1] ;

coherence measures the linear comovement between X and Y at a given fre-
quency.
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