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Abstract. We consider a systems biology problem of reconstructing
gene regulatory network from time-course gene expression microarray
data, a special blind source separation problem for which conventional
methods cannot be applied. Network component analysis (NCA), which
makes use of the structural information of the mixing matrix, is a tailored
method for this specific blind source separation problem. In this paper,
a new NCA method called nonnegative NCA (nnNCA) is proposed to
take into account of the non-negativity constraint on the mixing matrix
that is based on a reasonable biological assumption. The nnNCA prob-
lem is formulated as a linear programming problem which can be solved
effectively. Simulation results on spectroscopy data and experimental re-
sults on time-course microarray data of yeast cell cycle demonstrate the
effectiveness and anti-noise robustness of the proposed nnNCA method.

1 Introduction

Gene regulatory network reconstruction is an important research problem in
systems biology where structure and dynamics of cellular functions are of inter-
est. Since gene regulatory network reveals the underlying inter-dependency and
cause-and-effect relationship between various cellular functions, it has become
one of the key areas of interest in systems biology.

Gaining a quantitative understanding of gene regulation is of vital impor-
tance in modern biology. In general, the problem relates to how and where a
particular gene is expressed, often under combinatorial control of regulatory
proteins known as transcription factors (TF). The dynamics of gene expression
levels, i.e. the mRNA concentrations, in a cell can be measured simultaneously
by microarray technology for all genes in the genome in a form of multi-channel
time-course signal. However, the dynamics of the regulatory signal, i.e., the tran-
scription factor activities (TFA), cannot be measured by the current technology.
In addition, the control strength of a regulatory transcription factor to a gene is



another important aspect in the gene regulatory network, which is unfortunately
also unknown. In order to understand the entire gene regulatory network, we
need to reconstruct the transcription factor activities and the matrix of control
strengths from the gene expression measurements. This is a highly challenging
inverse problem, especially because microarray data are always extremely noisy.

TF1 TF2 TF3
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Fig. 1. Gene regulatory network

A conceptual gene regulatory network with 7 genes (g1 . . . g7) and 3 tran-
scription factors (TF1, TF2, TF3) is illustrated by Fig 1. In general, gene regu-
lation processes are dynamic and nonlinear. It is assumed that the time scale of
change of transcription factor activities (TFA) is much greater than that of gene
expression. Therefore, mRNA levels at most time are in a quasi-steady state,
and thus at this quasi-steady state the dynamic model becomes approximately
instantaneous. In addition, the nonlinear dependence of gene expression on the
TFAs is approximately log-linear [1]. Therefore, when the gene expressions are
expressed as log-ratios, the model becomes X = AS + Γ, where X,A,S, and Γ

are gene expression, connectivity matrix, TFAs, and noise, respectively.

Under the above instantaneous linear model, gene regulatory network re-
construction is a blind source separation problem, and independent component
analysis (ICA) [2, 3] had been applied to solve the problem. However, in this spe-
cial blind source separation problem, the source signals are dependent in general.
Therefore, the networks inferred from ICA are not accurate and do not conform
to the realistic network structure which is of known sparse structure. There are
some other approaches that work on dependent sources [4, 5], but the underlying
assumptions do not readily apply to gene regulatory network.

It was noted in the pioneering work of [6] that if the sparse network structure
is known and satisfies some conditions, then the network can be uniquely recon-
structed if there is no noise, and a method called network component analysis
(NCA) was proposed to find a connectivity matrix (conformable to the known
structure) and a set of transcription factor activities that best fit the model by
using alternating least squares (ALS). The original ALS approach to NCA suf-
fers from drawbacks of instability, inefficiency, and local convergence. Tikhonov
regularization has been proposed to overcome the problem of instability [7], but
on the other hand it is computationally even more inefficient. Then in [8, 9]
we proposed a more efficient and more effective method called FastNCA that
successfully overcomes all the three drawbacks. FastNCA provides a closed-form
solution to estimate the connectivity matrix and TFAs through fitting the model
by a series of subspace projections.



Although NCA is by far one of the most effective approaches to gene regu-
latory network reconstruction, existing algorithms, however, lack accuracy and
consistency. This motivates us to improve NCA and develop more accurate and
robust network reconstruction methods by incorporating some prior informa-
tion; thereby greatly enhance our ability to accurately reconstruct the networks.
Specifically, in this paper we will assume that the entries of the connectivity ma-
trix A are all nonnegative, and develop a linear programming method to solve
the NCA problem with non-negativity constraints on the connectivity matrix.

2 Nonnegative Network Component Analysis

Recall the instantaneous linear gene regulation model mentioned in Section 1.

X = AS + Γ. (1)

Our aim is to estimate the connectivity matrix A and the TFAs S from the
time-course microarray data X.

Assume that in the network we have N genes and M transcription factors,
and the length of time series is K. Then the dimension of X and Γ is N × K,
the dimension of A is N × M , and the dimension of S is M × K.

As proved in [6, 9], this inverse problem has a unique solution (up to scaling
ambiguity of the TFAs) in the noise-less case if the following NCA criteria are
satisfied:

(i) A has full column rank;
(ii) when any one column of A is removed together with the rows correspond-

ing to the nonzero entries of this column, the resulting sub-matrix has full
column rank;

(iii) S has full row rank.

The blind source separation problem or inverse problem of estimating A

and S from X based on Eq. (1) and the three NCA criteria is called network
component analysis (NCA).

Though the three NCA criteria are enough to estimate the connectivity ma-
trix when there is no noise in the model, additional constraints, if can be used
in the algorithm, will certainly yield a more robust estimate in practice when
noise is inevitable.

According to [10], we have the biological knowledge that most likely a tran-
scription factor will have the same effect (either positive or negative) on all its
regulated genes. This knowledge means that the entries within the same column
of A should have the same sign, and by moving the sign to the corresponding
row of S we can assume that all non-zero entries of A are positive, i.e., all entries
of A are nonnegative. In other words, if a transcription factor regulates the genes
negatively, then we can simply multiply its transcription factor activity (TFA)
by −1 and this sign-inversed TFA will regulate the genes positively.

We call the network component analysis problem under the additional non-
negativity constraint on the connectivity matrix A nonnegative network com-
ponent analysis (nnNCA).



3 A Linear Programming Approach to nnNCA

If there is no noise in the NCA model Eq. (1), i.e., X = AS, then the range of
X is equal to the range of A since A is of full column rank and S is of full row
rank. Because X is known to us, we can get the orthonormal basis matrix of the
range space of X, denoted by X̄ = orth{X}, and we have

X̄ = orth{X} = orth{A} . (2)

With X̄ known, we can get further its orthogonal complement

C = X̄⊥ (3)

such that

CT X̄ = 0 . (4)

From Eq. (2) and (4), we have

CT A = 0 . (5)

Since C can be estimated from the known time-course microarray data X, the
connectivity matrix A can be obtained by solving the systems of equation con-
sisting of Eq. (5) and the NCA criterion (ii) described in Section 2.

In general, if there is noise in the model Eq. (1), singular value decomposition
(SVD) [11] will be applied to X to obtain a robust estimation of C. We write X

in the standard SVD form as follows

X = UΣVT . (6)

Partition U, the matrix of left singular vectors of X, as

U = [US UN ] , (7)

where US contains the first M columns of U and UN contains the remaining
N − M columns of U. Here we state again that N is the number of genes and
M is the number of transcription factors. The matrices US and UN are called
the signal subspace and noise subspace of X, respectively. Then we get a robust
estimate of C as

C = UN . (8)

Note that in the noisy case with C estimated by Eq. (8), Eq. 5 does not hold
in general. To estimate A in such case, instead of solving a system of equations
as in the noiseless case, we minimize all entries of CT A with the constraints
imposed by the NCA criteria and non-negativity of A by solving the following
constrained optimization problem via linear programming.

Let A = [a1, . . . ,aM ] and C = [c1, . . . , cN−M ], where ai is the ith column
of A and ci is the ith column of C. In addition, we denote I as the indices
where the entries of A are zeros, and J as the indices where the entries of A are



nonzero (positive). Then, we can estimate the connectivity matrix A by solving
the following linear programming problem

min t s.t. − t < cT
i aj < t, A(I) = 0, A(J) > 0,

N∑

n=1

an,j = Lj , (9)

for i = 1, . . . , N − M and j = 1, . . . ,M , where Lj is the number of nonzero
entries of aj , A(I) = 0 means the entries of A indexed by I are zero, and
A(J) > 0 means that the entries of A indexed by J are positive. The last

constraint
∑N

n=1
an,j = Lj is imposed to avoid the trivial solution t = 0 with

A = 0, and the right-hand-side Lj is chosen to make the solution conformable
to the normalization strategy adopted in [6, 9].

For real biological systems, the connectivity matrix A may be very sparse.
Problem (9) can be simplified by considering only the non-zero (positive) entries
of A. Denote ãj as the vector of nonzero entries of the jth column of A, and
c̃i,j as the vector of entries of the ith column of C corresponding to the nonzero
entries of the jth column of A. Then problem (9) can be simplified as

min t s.t. − t < c̃T
i,j ãj < t, ãj > 0,

Lj∑

n=1

ãn,j = Lj . (10)

Problem (10) is a linear programming problem [12, 13], and can be solved
by standard algorithms implemented in many mature linear programming soft-
ware packages. In this paper we use the GLPK package [14] to solve the linear
programming problem.

4 Results

4.1 Simulation results

To test the proposed linear programming based nnNCA algorithm, we use the
simulation data described in [6]. In this simulation data, the conceptual gene
regulatory network shown in Fig 1 is simulated by the mixing of spectroscopy
signals. Three transcription factors are simulated by three kinds of hemoglobins,
and the expression of seven genes are simulated by the spectroscopy of the mixed
hemoglobins with different mixing ratios that are conformable to the structure of
the network in Fig 1. The length of each measured spectroscopy signal is 321. It
has been shown in [6, 8] that conventional blind source separation methods, based
on either higher-order statistics or second-order statistics, cannot recover the
true pure spectroscopy signal of the three hemoglobins, while the NCA methods,
either by ALS algorithm or FastNCA, can extract the source signals perfectly.

To demonstrate the effectiveness of the nnNCA method, we apply it to the
spectroscopy mixtures, and the estimated source signals are shown in the middle
column of Fig 2. It is found that the results of nnNCA in this case is almost
exactly the same as that of FastNCA [9], with negligible difference of the order of



numerical calculation error. Then independent white Gaussian noises are added
to the mixing mixture to the level of SNR=5dB (signal to noise ratio). Both
FastNCA and nnNCA are applied to the noisy data, and a great number of
Monte Carlo runs are performed. Though nnNCA is not guaranteed to always
perform better than FastNCA, the overall performance of nnNCA is superior
to FastNCA. The estimated source signals by nnNCA and FastNCA from a
typical Monte Carlo run are compared in Fig 2. The results demonstrate that
the inclusion of the constraints on the positivity of the entries of the connectivity
matrix A makes the NCA method more robust to measurement noise.
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Fig. 2. Simulation results, SNR=5 dB

4.2 Experimental results

To test the improved robustness to noise of the proposed nnNCA over conven-
tional NCA methods for the analysis of real biological networks, we apply it to
analyze the time-course microarray data of yeast cell cycle in [15], and compare
the results with that of FastNCA. In this study, there are three experiments with
different synchronization methods represented by alpha, cdc15, and elutriation.
The time-course microarray data contains 6178 genes and 56 time points. In this
analysis, we are interested in the 11 transcription factors that are known to reg-
ulate the expression of genes that are involved in the cell cycle process. In order
to apply NCA to recover the TFAs of these 11 transcription factors, we need to
work on a sub-network that contains the 11 TFs. For this purpose we construct
a network that contains only these 11 TFs and those genes that are regulated by
only these 11 TFs, based on the network topology information inferred from the
ChIP-chip experiment in [16]. Both nnNCA and FastNCA are then applied to
this network and the estimated TFAs are displayed in Fig 3 shoulder to shoulder
for the ease of comparison, where the curves in black are for FastNCA and the
curves in blue are for nnNCA.

The experiment “alpha” contains 2 cell cycles, “cdc15” contains 3 cycles, and
“elutriation” contains 1 cycle. The names of the TFs are shown on the right-



hand side of the figure. Since these 11 TFs regulate the cell cycle process, it is
expected that the TFA of them should be cyclic, and we know that the gene
expression signal of many of them are not cyclic at all [6, 9]. We observe that the
results of these two method are similar in general, and there is no case that the
estimated TFA by nnNCA is less cyclic than that by FastNCA, while in some
cases, such as FKH1 for all 3 experiments and MCM1 for “alpha”, the results of
nnNCA are significantly more cyclic than that by FastNCA. These demonstrate
the superior robustness of nnNCA for the analysis of real biological networks.
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Fig. 3. Analysis of the yeast cell cycle data

5 Discussion and Conclusion

Gene regulatory network reconstruction is an inverse problem similar to blind
source separation, but conventional blind source separation methods cannot be
applied because the source signals are dependent in general. Network component
analysis (NCA) is a suitable source separation method for this specific problem.
In this paper a new NCA method, nnNCA, is developed that incorporates a
reasonable biological knowledge. It is demonstrated by both simulation and ex-
perimental results that nnNCA is more robust. The linear programming based
algorithm is also very fast, slightly slower than but comparable to FastNCA, and
much faster than the original ALS based NCA. The developed method may also
find its applications in some other similar signal processing problems.



Acknowledgements

This work is supported by the University of Hong Kong Seed Funding for Basic
Research.

References

1. Savageau, M.A.: Biochemical Systems Analysis: A Study of Function and Design
in Molecular Biology. Addison-Wesley, Reading, MA (1976)

2. Liebermeister, W.: Linear modes of gene expression determined by independent
component analysis. Bioinformatics 18(1) (2002) 51–60

3. Lee, S.I., Batzoglou, S.: Application of independent component analysis to mi-
croarrays. Genome Biology 4(11) (2003) R76

4. Abrard, F., Deville, Y.: Blind separation of dependent sources using the “time-
frequency ratio of mixtures” approach. Proceedings of Seventh International Sym-
posium on Signal Processing and Its Applications (July 2003) 81–84

5. Chang, C.Q., Ren, J., Fung, P., Hung, Y., Shen, J., Chan, F.: Novel sparse com-
ponent analysis approach to free radical EPR spectra decomposition. Journal of
Magnetic Resonance 175(2) (2005) 242–255

6. Liao, J.C., Boscolo, R., Yang, Y.L., Tran, L.M., Sabatti, C., Roychowdhury, V.P.:
Network component analysis: Reconstruction of regulatory signals in biological
systems. Proceedings of the National Academy of Sciences of the United States of
America 100(26) (2003) 15522–15527

7. Tran, L.M., Brynildsen, M.P., Kao, K.C., Suen, J.K., Liao, J.C.: gnca: A framework
for determining transcription factor activity based on transcriptome: identifiability
and numerical implementation. Metabolic Engineering 7(2) (2005) 128–141

8. Chang, C.Q., Ding, Z., Hung, Y.S., Fung, P.C.W.: Fast network component analysis
for gene regulation networks. In: Proc. 2007 IEEE International Workshop on
Machine Learning for Signal Processing, Thesaloniki, Greece (Aug 2007)

9. Chang, C.Q., Ding, Z., Hung, Y.S., Fung, P.C.W.: Fast network component anal-
ysis (FastNCA) for gene regulatory network reconstruction from microarray data.
Bioinformatics 24(11) (2008) 1349 – 1358

10. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman & Hall/CRC (2007)

11. Golub, G.H., van Loan, C.F.: Matrix Computation. 3rd edn. The Johns Hopkins
University Press (1996)

12. Dantzig, G.: Linear Programming and Extensions. Princeton Univ Pr (1963)
13. Luenberger, D.: Introduction to Linear and Nonlinear Programming. Addison-

Wesley Pub. Co. (1973)
14. GNU: GLPK (GNU Linear Programming Kit) [web page and software].

http://www.gnu.org/software/glpk/glpk.html. (November 2008)
15. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,

Brown, P.O., D., B., Futcher, B.: Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.
Molecular Biology of the Cell 9(12) (1998) 3273–3297

16. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K.,
Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jen-
nings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volk-
ert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional regulatory
networks in saccharomyces cerevisiae. Science 298(5594) (2002) 799–804


