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Generalised framework of limit equilibrium methods for slope stability
analysis

D. Y. ZHU,� C. F. LEE† and H. D. J IANG{

A generalised framework is proposed in this paper in-
corporating almost all of the existing limit equilibrium
methods of slices for slope stability analysis with general
slip surfaces. The force and moment equilibrium equa-
tions are derived in terms of the factor of safety and the
initially assumed normal stress distribution over the slip
surface, multiplied by a modification function involving
two auxiliary unknowns. These equations are then analy-
tically solved to yield explicit expressions for the factor of
safety. Various assumptions regarding the interslice forces
can be transformed into a unified form of expression for
the normal stress distribution along the slip surface. An
iterative procedure is developed to expedite the conver-
gence of the solution for the factor of safety. Experience
to date indicates that the process generally converges
within a few iterations. Computation schemes are sug-
gested to avoid numerical difficulty, especially in comput-
ing the factor of safety associated with the rigorous
Janbu method. The present framework can be readily
implemented in a computer program, giving solutions of
slope stability associated with a number of conventional
methods of slices.

KEYWORDS: failure; landslides; limit equilibrium methods;
numerical modelling and analysis; slopes

Dans cet exposé nous proposons un cadre de travail
généralisé incorporant presque toutes les méthodes d’équi-
libre limite existantes pour les tranches servant à analyser
la stabilité de talus avec des surfaces de glissement génér-
ales. Nous avons dérivé les équations d’équilibre de forces
et de moment en terme de facteur de sécurité et de la
distribution de contrainte normale supposée initialement
sur la surface de glissement, multipliée par une fonction
de modification faisant intervenir deux inconnues aux-
iliaires. Nous avons alors résolu ces équations de manière
analytique pour obtenir des expressions explicites du fac-
teur de sécurité. Diverses suppositions au sujet des forces
entre tranches peuvent être transformées en une forme
d’expression unifiée pour la distribution de contrainte
normale le long de la surface de glissement. Nous avons
développé un procédé itératif pour accélérer la conver-
gence de la solution pour le facteur de sécurité. Les
expériences réalisées à ce jour indiquent que le processus
converge généralement après quelques itérations. Nous
suggérons des plans de calcul pour éviter les difficultés
numériques, surtout pour le calcul du facteur de sécurité
associé à la rigoureuse méthode de Janbu. Ce cadre de
travail peut être mis en uvre facilement dans un pro-
gramme informatique, donnant des solutions de stabilité
de pente associées à un certain nombre de méthodes de
tranches conventionnelles.

INTRODUCTION
Limit equilibrium methods of slices have been widely

used for assessing the stability of natural or man-made
slopes. During the last century, more than 10 methods of
slices based on limit equilibrium were developed dealing
with circular or arbitrarily shaped slip surfaces (Duncan,
1996). The common features of limit equilibrium methods
are as follows:

(a) The sliding body over the failure surface is divided into
a finite number of slices (generally vertical).

(b) The strength of the slip surface is mobilised to the
same degree to bring the sliding body into a limiting
state.

(c) Assumptions regarding interslice forces are employed to
render the problem determinate.

(d ) The factor of safety is computed from force or/and
moment equilibrium equations.

The existing methods of slices involve various assumptions
regarding the interslice force along with various combina-
tions of equilibrium conditions (force or/and moment) con-

sidered, thus giving different values of factor of safety for
the same slip surface. For both practical and theoretical
purposes, a generalised framework incorporating the existing
methods commonly used in practice is desired in order to
examine them against a consistent background, to identify
the sources of differences in the computed values of factors
of safety, and to justify the margin of reasonable solutions.

Several authors have made an attempt to incorporate the
commonly used methods of slices into a generalised frame-
work (Fredlund & Krahn, 1977; Espinoza et al., 1994). With
these approaches, the equations of factor of safety with
respect to force and moment equilibrium are derived sepa-
rately. For non-rigorous methods that do not satisfy the
complete equilibrium conditions, only one equation in terms
of one unknown (the factor of safety) is to be solved in an
iterative manner, and the converged value of factor of safety
can generally be obtained within a few iterations. In con-
trast, for rigorous methods, two equations in terms of factor
of safety and an auxiliary unknown are to be solved
simultaneously. Owing to the highly non-linear nature of the
two equations, relatively complex iterative procedures could
be involved, and numerical difficulties may be encountered
in some special cases (Ching & Fredlund, 1983). Note that
the term ‘rigorous’ is used in this paper in a limit equili-
brium context, which means that the whole sliding body as
well as the vertical slices are in complete equilibrium (Yu et
al., 1998; Kim et al., 1999). The term ‘non-rigorous’ implies
incomplete equilibrium for the sliding body or slices.

In this paper, a new framework is formulated to accom-
modate most of the existing methods of slices, and a more
efficient numerical procedure is developed to calculate the
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factor of safety while avoiding the potential numerical
difficulties. With this framework, expressions of factor of
safety are analytically derived by adjusting the distribution
of normal stresses along the slip surface that resulted from
the various assumptions about the interslice forces, taking
into account all combinations of equilibrium conditions. The
computed value of factor of safety is converged within a
few iterations, even for the rigorous Janbu method, with
which non-convergence is often encountered in solution by
conventional procedures.

GENERALISED FORMULATION
Basic equations of equilibrium

A typical slope profile with a general-shaped slip surface
is presented in Fig. 1(a). Note that circular slip surfaces are
also taken as general surfaces in this framework, for general
purposes. The two-dimensional problem is analysed herein.
Thus the cross-section of the slope is visualised as having a
unit length. The sliding body is bounded by the ground
surface y ¼ g(x) and the slip surface y ¼ s(x). By assigning
a constant factor of safety, Fs, to the whole failure surface,

the sliding body is brought into a limiting state under the
combined action of self-weight w(x) (that is, the weight of a
slice of unit width), horizontal seismic force kcw(x) (where
kc is the horizontal seismic coefficient), pore water pressure
u(x) at the base, horizontal and vertical surcharges or
reinforced pressures qx(x) and q y(x) (where qx(x) and q y(x)
are defined respectively as the vertical and horizontal loads
acting on the ground per unit width of the sliding body),
and horizontal and vertical end forces Ea, Ta, Eb and Tb,
acting on the left and right ends of the slip surface respec-
tively. The end forces may be the resultant of water pressure
on the tension crack at the upper end of the slope, or lateral
forces supported by any retaining structure at the toe of the
slope. Line loads acting on the slope are not included but
can be transformed into distributed pressures of some appro-
priate intensity. The horizontal and vertical internal forces
acting on the interface cutting the sliding body vertically are
E(x) and T (x) respectively, and the point of action of E(x)
lies along the line of thrust yt(x). The normal and tangential
stresses on the slip surface are � (x) and �(x) respectively.
The Mohr–Coulomb failure criterion, in terms of effective
stresses, is given by

�(x) ¼ 1

Fs

f[� (x) � u(x)]tan�(x) þ c(x)g

where �(x) and c(x) are the effective internal friction angle
and cohesion on the slip surface respectively. Note that if a
total stress analysis is used where u(x) is set equal to zero,
�(x) and c(x) would refer to the strength parameters in
terms of total stress. Moreover, tan�(x) will be labelled as
ł(x) hereafter. For simplicity, the symbol ‘(x)’ associated
with the various quantities (taken as functions of x) in this
paper will be omitted in the following presentations. Thus
the above equation is reduced to

� ¼ 1

Fs

(� . ł� u . łþ c) (1)

At this stage the normal stress distribution � (x) is assumed
to be prescribed, as shown in Fig. 1(a) and (b). For the
sliding body, there are three equations of equilibrium: the
horizontal force equilibrium equation, the vertical force
equilibrium equation and the moment equilibrium equation.
With reference to Fig. 1(c), which shows the forces acting
on a typical slice, and selecting a reference point (xc, yc) as
the centre of moment, one can derive the equilibrium equa-
tions asðb

a

(�� . s9þ �� kcw þ qx)dx ¼ Eb � Ea

ðb

a

(� þ � . s9� w � q y)dx ¼ Tb � Ta

ðb

a

[(�� . s9þ �) . (yc � s) þ (� þ � . s9� w � q y) . (x � xc)

� kcw(yc � 0:5s � 0:5g) þ qx(yc � g)]dx

¼ Tb(b � xc) þ Eb(yc � ytb) � Ta(a � xc) � Ea(yc � yta)

where s9(x) ¼ ds(x)=dx ¼ tanÆ(x), Æ(x) is the inclination of
the slip surface at x, and yta and ytb are ordinates of the
points of action of Ea and Eb respectively.

Let

Fx ¼
ðb

a

(kcw � qx)dx þ Eb � Ea (2a)

Fy ¼
ðb

a

(w þ q y)dx þ Tb � Ta (2b)
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Fig. 1. Geometry of slope and notations: (a) sliding mass; (b)
normal stresses over the slip surface; (c) typical slice
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Mc ¼
ðb

a

[kcw(yc � 0:5s � 0:5g) � qx(yc � g)

þ (w þ q y)(x � xc)]dx

þ Tb(b � xc) þ Eb(yc � ytb) � Ta(a � xc)

� Eb(yc � yta) (2c)

and

r� (x) ¼ �s9 . (yc � s) þ x � xc (3a)

r�(x) ¼ yc � s þ s9(x � xc) (3b)

The previous equations of equilibrium can be reduced to

�
ðb

a

� . s9 dx þ
ðb

a

� dx ¼ Fx (4a)

ðb

a

� dx þ
ðb

a

� . s9 dx ¼ Fy (4b)

ðb

a

� . r� dx þ
ðb

a

� . r� dx ¼ Mc (4c)

Substituting equation (1) into the above equations, the equa-
tions of equilibrium becomeðb

a

� . �s9þ ł
1

Fs

� �
dx ¼ Fx þ

1

Fs

ðb

a

(uł� c)dx (5a)

ðb

a

� . 1 þ s9ł
1

Fs

� �
dx ¼ Fy þ

1

Fs

ðb

a

s9(uł� c)dx) (5b)

Fs ¼

ðb

a

�łr� dx þ
ðb

a

(�ułþ c)r� dx

Mc �
ðb

a

� r� dx

(5c)

Function modifying normal stresses on the slip surface
All methods of slices feature more than one equilibrium

condition, except the Ordinary method (Fellenius, 1936). In
other words, two or three equations of equilibrium are used
to determine the factor of safety. Therefore auxiliary un-
knowns should be introduced to render the number of
unknowns compatible with the number of equations. On the
other hand, the normal stress distribution � (x) still remains
unknown. This, however, provides a way of introducing the
auxiliary unknowns. At first, we can initially assume a
normal stress distribution �0(x), the methodology for which
will be discussed later in the paper. This assumed �0(x),
together with any assumed value of Fs, would not satisfy the
required equations of equilibrium. Then �0(x) is multiplied
by a modifying function �(x) to meet this requirement:

� (x) ¼ �(x)�0(x) (6)

For rigorous limit equilibrium methods that satisfy all equili-
brium conditions, the modifying function should involve two
auxiliary unknowns to make the problem determinate. The
form of �(x) is suggested as

�(x) ¼ �1�1(x) þ �2�2(x) (7)

For simplicity, �(x) is taken as a linear function: that is,

�(x) ¼ �1

x � b

a � b
þ �2

x � a

b � a
(8)

where �1 and �2 represent the magnitude of the modifying
function at the left and right ends of the slip surface
respectively.

Comparing equations (7) and (8), we have

�1(x) ¼ x � b

a � b
(9a)

�2(x) ¼ x � a

b � a
(9b)

For most non-rigorous methods where two equilibrium con-
ditions are considered, only one auxiliary unknown should
be involved. The normal stress distribution � (x) can be also
described by equations (6) and (8) except that

�1 ¼ �2 (10)

For the Ordinary method in which only moment equilibrium
condition is considered, no auxiliary unknown is required.
This is identical to assuming

�1 ¼ 1 (11)

�2 ¼ 1 (12)

with the normal stress distribution � (x) being described by
equations (6) and (8) as well.

Solutions for factor of safety
Substituting equations (6) and (7) into equations (5a), (5b)

and (5c), one obtains

�1

ðb

a

�0�1
. �s9þ ł

1

Fs

� �
dx þ �2

ðb

a

�0�2
. �s9þ ł

1

Fs

� �

dx ¼ Fx þ
1

Fs

ðb

a

(uł� c)dx (13a)

�1

ðb

a

�0�1
. 1 þ s9ł

1

Fs

� �
dx þ �2

ðb

a

�0�2
. 1 þ s9ł

1

Fs

� �

dx ¼ Fy þ
1

Fs

ðb

a

s9(uł� c)dx (13b)

Fs ¼

�1

ðb

a

�0�1łr� dx þ �2

ðb

a

�0�2łr� dx

þ
ðb

a

(�ułþ c)r� dx

Mc � �1

ðb

a

�0�1 r� dx � �2

ðb

a

�0�2 r� dx

(13c)

These equations are rearranged as

�1
. A1 þ

1

Fs

A91

� �
þ �2

. A2 þ
1

Fs

A92

� �
¼ A3 þ

1

Fs

A93

(14a)

�1
. B1 þ

1

Fs

B91

� �
þ �2

. B2 þ
1

Fs

B92

� �
¼ B3 þ

1

Fs

B93

(14b)

Fs ¼
D1�1 þ D2�2 þ D3

E1�1 þ E2�2 þ E3

(14c)

where the relevant parameters included in these equations
are given in Appendix 1.

Four cases of combination of equilibrium conditions are
considered in the existing methods of slices. These are:

(a) both vertical and horizontal force and moment
equilibrium conditions

(b) vertical force and moment (about a specified centre)
equilibrium conditions

(c) vertical and horizontal force equilibrium conditions
(d ) moment equilibrium (about a specified centre) condi-

tion.
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These four cases are considered separately in the following:

Case (a). The factor of safety Fs along with the two
auxiliary unknowns �1 and �2 are determined by solving
equations (14a), (14b) and (14c) simultaneously.

Solving equations (14a) and (14b) for �1 and �2, one
obtains

�1 ¼

(A3 B2 � A2 B3) þ 1

Fs

(A3 B92 þ A93 B2 � A2 B93 � A92 B3)

þ 1

F2
s

(A93 B92 � A92 B93)

(A1 B2 � A2 B1) þ 1

Fs

(A1 B92 þ A91 B2 � A2 B91 � A92 B1)

þ 1

F2
s

(A91 B92 � A92 B91)

(15a)

�2 ¼

(A1 B3 � A3 B1) þ 1

Fs

(A1 B93 þ A91 B3 � A3 B91 � A93 B1)

þ 1

F2
s

(A91 B93 � A93 B91)

(A1 B2 � A2 B1) þ 1

Fs

(A1 B92 þ A91 B2 � A2 B91 � A92 B1)

þ 1

F2
s

(A91 B92 � A92 B91)

(15b)

The two equations can be rewritten as

�1 ¼
T0 þ

1

Fs

T1 þ
1

F2
s

T2

G0 þ
1

Fs

G1 þ
1

F2
s

G2

(16a)

�2 ¼
S0 þ

1

Fs

S1 þ
1

F2
s

S2

G0 þ
1

Fs

G1 þ
1

F2
s

G2

(16b)

where the relevant parameters are given in Appendix 1.
Substituting equations (16a) and (16b) into equation (14c)

results in

Fs ¼

(D1T0 þ D2S0 þ D3G0) þ 1

Fs

(D1T1 þ D2S1 þ D3G1)

þ 1

F2
s

(D1T2 þ D2S2 þ D3G2)

(E1T0 þ E2S0 þ E3G0) þ 1

Fs

(E1T1 þ E2S1 þ E3G1)

þ 1

F2
s

(E1T2 þ E2S2 þ E3G2)

(17)

which reduces to a cubic equation in terms of Fs:

F3
s þ t2 F2

s þ t1 Fs þ t0 ¼ 0 (18)

where parameters t0, t1 and t2 are given in Appendix 1.
Equation (18) is rewritten as

Fs �
t2

3

� �3

þ p Fs �
t2

3

� �
þ q ¼ 0 (19)

where parameters p and q are given in Appendix 1.
Equation (19) has three analytical roots. The real root of

significance is

F(hvm)
s ¼ t2

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2

� �2

þ p

3

� �3
s

3

vuut

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2

� �2

þ p

3

� �3
s

3

vuut
(20)

The superscript (hvm) means that the solution for factor of
safety satisfies horizontal and vertical force equilibrium as
well as moment equilibrium conditions.

Case (b). In this case, vertical force equilibrium equation
(14b) and moment equilibrium equation (14c) along with
equation (10) are combined to determine Fs and �1 (¼ �2).
From these equations, one readily obtains

�1 ¼ Fs B3 þ B93

Fs(B1 þ B2) þ B91 þ B92
(21a)

�1 ¼ �Fs E3 þ D3

Fs(E1 þ E2) � D1 � D2

(21b)

Combination of the two equations results in a quadratic
equation in terms of Fs:

F2
s þ p1 Fs þ q1 ¼ 0 (22)

where p1 and q1 are given in Appendix 1.
Equation (22) has two roots. For slope stability problems,

no two distinct factors of safety exist to bring the potential
sliding mass into a limiting state. Therefore equation (22)
has one positive root and one negative root, or double
positive roots. The root of physical significance is

F(vm)
s ¼ � p1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1

2

� �2

�q1

s
(23)

The superscript (vm) means that the solution for factor of
safety has taken into account the vertical force and moment
(about a specified centre) equilibrium conditions. It must be
pointed out that, strictly speaking, moment equilibrium could
not be satisfied in the event of incomplete satisfaction of
force equilibrium. Hence in this paper we note that this
method considers (but not satisfies) moment equilibrium.

Case (c). Horizontal and vertical force equilibrium equations
(14a) and (14b) along with equation (10) are combined to
determine Fs and �1 (¼ �2). From these equations, one obtains

�1 ¼ Fs A3 þ A93

Fs(A1 þ A2) þ A91 þ A92
(24a)

�1 ¼ Fs B3 þ B93

Fs(B1 þ B2) þ B91 þ B92
(24b)

Combination of the two equations results in a quadratic
equation in terms of Fs:

F2
s þ p2 Fs þ q2 ¼ 0 (25)

where p2 and q2 are given in Appendix 1.
The significant root of equation (25) is

F(hv)
s ¼ � p2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2

� �2

�q2

s
(26)

The superscript (hv) means that the solution for factor of
safety satisfies both horizontal and vertical force equilibrium
conditions.

Case (d). In this case, only moment equilibrium is
considered. Thus equation (14c) along with the relation
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�1 ¼ �2 ¼ 1 is used to determine the factor of safety as
follows:

F(m)
s ¼ D1 þ D2 þ D3

E1 þ E2 þ E3

(27)

The superscript (m) means that the solution for factor of
safety considers moment equilibrium condition about a
specified centre.

INITIALLY ASSUMED NORMAL STRESS �0(x)
Referring to Fig. 1(c) again, one can assume that the

normal and shear stresses on the base of the slice are �0(x)
and �0(x) respectively, and the factor of safety is assumed to
be equal to Fs0. Combining the force equilibrium for the
slice with its width approaching infinitesimal, we have

��0s9þ �0 � kcw þ qx ¼
dE

dx

�0 þ �0s9� w � q y ¼
dT

dx

and the Mohr–Coulomb failure criterion

�0 ¼ 1

Fs0

[ł(� � u) þ c]

Thus

�0(s9� ł0) þ kcw � qx þ uł0 � c0 ¼ � dE

dx
(28a)

�0(1 þ ł0s9) � w � q y � (uł0 � c0)s9 ¼ dT

dx
(28b)

where ł0 ¼ tan�=Fs0, c0 ¼ c=Fs0.
As will be indicated later, the conventional assumptions

regarding the interslice force employed by the existing meth-
ods of slices can be expressed in a general form:

T (x) ¼ 1̂(x)E(x) þ 2̂(x) (29)

where 1̂(x) and 2̂(x) are dependent upon the assumption
used.

From equation (29), we have

dT

dx
¼ 1̂(x)

dE

dx
þ E . ˆ91(x) þ ˆ92(x) (30)

Combining of equations (28a) and (28b) with equation
(30) yields

�0 ¼

w þ q y þ (uł0 � c0)s9þ 1̂(qx � kcw � uł0 þ c0)

þE . ˆ91 þ ˆ92
1 þ ł0s9þ 1̂(s9� ł0)

(31)

In this paper, a total of 12 methods of slices commonly used
in practice are examined. These methods are summarised in
Table 1 and briefly reviewed in the following, with special
regard to the determination of 1̂(x) and 2̂(x) and their
derivatives in equation (31).

1. Ordinary method (Fellenius, 1936)
This method is the simplest of all, involving the coarsest

assumption regarding the interslice forces. With this method,
the interslice forces are neglected when deriving the normal
stress on the slip surface:

E ¼ 0, T ¼ 0 (32)

By using this assumption, we can directly derive the expres-
sion for �0(x) based on force equilibrium in the direction
normal to the base of the slice:

�0 ¼ w þ qy þ (qx � kcw)s9

1 þ (s9)2

For generalisation purposes, �0(x) is still described by equa-
tion (31) with related parameters as follows:

1̂(x) ¼ s9(x), 2̂(x) ¼ 0 (33a)

ˆ91(x) ¼ 0, ˆ92(x) ¼ 0 (33b)

The Ordinary method conventionally applies to circular slip
surfaces and considers moment equilibrium about the centre
of the circle. For a non-circular slip surface, the factor of
safety can also be computed using the Ordinary method with
the centre of moment being taken as the centre of a circle
enveloping the slip surface, but the value is for reference
purposes only.

2. Simplified Bishop method (Bishop, 1955)
This method assumes the interslice forces are horizontal:

that is,

T (x) ¼ 0 (34)

Hence

1̂(x) ¼ 0, 2̂(x) ¼ 0 (35a)

ˆ91(x) ¼ 0, ˆ92(x) ¼ 0 (35b)

This method was originally developed to analyse the stability
of circular slip surfaces with vertical force equilibrium and
moment equilibrium about the centre taken into considera-
tion. The simplified Bishop method can also be extended to
slip surfaces of general shape, with the centre of moment
chosen as the centre of a circle nearly approximating the slip
surface (Nonveiller, 1965).

3. Simplified Janbu method (Janbu et al., 1956)
With this method, the shear interslice force is also

assumed to be zero. Therefore equations (34) and (35) apply
as well. The simplified Janbu method meets the requirement
of vertical and horizontal force equilibrium for the potential
sliding mass.

4. Corps of Engineers Method (US Army Corps of
Engineers, 1967)

This method assumes that the inclination of the interslice
force is parallel to that of the ground surface and considers
vertical and horizontal force equilibrium conditions; that is,

T (x) ¼ g9(x) . E(x) (36)

1̂(x) and 2̂(x) are given as follows:

1̂(x) ¼ g9(x), 2̂(x) ¼ 0 (37a)

where g9(x) is the average slope of the ground surface.
Their derivatives are, respectively,

ˆ91(x) ¼ ˜ 1̂(x)

˜x
, ˆ92(x) ¼ 0 (37b)

In practical computations, the derivative of 1̂(x) or 2̂(x) is
numerically computed using the finite difference method.

5. Lowe–Karafiath method (Lowe & Karafiath, 1960)
This method also considers horizontal and vertical force

equilibrium, and assumes that the inclination of interslice
force is equal to the mean of the slopes of the ground
surface and the slip surface: that is,
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T (x) ¼ 1
2
[g9(x) þ s9(x)] . E(x) (38)

1̂(x) ¼ 1
2
[g9(x) þ s9(x)], 2̂(x) ¼ 0 (39a)

ˆ91(x) ¼ ˜ 1̂(x)

˜x
, ˆ92(x) ¼ 0 (39b)

6. Sarma method I (Sarma, 1979)
This method assumes that the shear strength on the inter-

face between adjacent slices is mobilised to the same degree
as the failure surface. Vertical and horizontal force equili-
brium is taken into account. The relationship between the
shear and normal forces is thus given as follows:

T (x) ¼ [E(x) � Pw(x)]łv
0(x) þ cv

0(x)h(x) (40)

where łv
0 ¼ tan�v=Fs0, cv

0 ¼ cv=Fs0, tan�v and cv are the
weighted average internal friction coefficient and cohesion
for the vertical slice interface respectively, and Pw is the
resultant of hydrostatic pressure on the interface. From equa-
tion (40) we have

1̂(x) ¼ łv
0(x), 2̂(x) ¼ �Pw(x)łv

0(x) þ cv
0(x)h(x) (41a)

ˆ91(x) ¼ ˜ 1̂(x)

˜x
, ˆ92(x) ¼ ˜ 2̂(x)

˜x
(41b)

Note that the Sarma (1979) method can consider non-
vertical slices, which is beyond the scope of the present
framework.

7. Spencer method (Spencer, 1967, 1973)
This method assumes that the inclination of the interslice

force is a constant, its magnitude being modified to bring
the sliding mass into rigorous limiting equilibrium. With this
method, we have

T (x) ¼ ºE(x) (42)

1̂(x) ¼ º, 2̂(x) ¼ 0 (43a)

ˆ91(x) ¼ 0, ˆ92(x) ¼ 0 (43b)

where º is a constant (referred to as the scaling parameter)
to be determined in the process of computation.

8. Morgenstern–Price method (Morgenstern & Price, 1965)
This rigorous method assumes that the relationship be-

tween the shear and normal interslice forces is as follows:

T (x) ¼ º f (x)E(x) (44)

where f (x) is a prescribed function (called the interslice
force function) and º is a scaling parameter. Therefore

1̂(x) ¼ º f (x), 2̂(x) ¼ 0 (45a)

ˆ91(x) ¼ ˜ 1̂(x)

˜x
, ˆ92(x) ¼ 0 (45b)

9. Sarma method II (Sarma, 1973)
The underlying concept of this method originates from

Sarma (1973). The relationship between the shear and
normal interslice force is similar to equation (40) in form,
except that a scaling parameter (º) is included to render the
method within a rigorous context:

T (x) ¼ ºf[E(x) � Pw(x)]łv
0(x) þ cv

0(x)h(x)g (46)

Then

1̂(x) ¼ ºłv
0(x), 2̂(x) ¼ º[�Pw(x)łv

0(x) þ cv
0(x)h(x)]

(47a)

ˆ91(x) ¼ ˜ 1̂(x)

˜x
, ˆ92(x) ¼ ˜ 2̂(x)

˜x
(47b)

Note that in the original method of Sarma (1973), the
normal interslice force E(x) in equation (46) is expressed as
0:5k9ªh2, which is conceptually identical to E(x), where k9
is a complex coefficient derived approximately on the basis
of plasticity theory and some ideal hypotheses.

10. Sarma method III (Sarma, 1973)
This approach is an extension of the above method, for

which

T (x) ¼ º f (x)f[E(x) � Pw(x)]łv
0(x) þ cv

0(x)h(x)g (48)

1̂(x) ¼ º f (x)łv
0(x), 2̂(x)

¼ º f (x)[�Pw(x)łv
0(x) þ cv

0(x)h(x)] (49a)

ˆ91(x) ¼ ˜ 1̂(x)

˜x
, ˆ92(x) ¼ ˜ 2̂(x)

˜x
(49b)

where f (x) is a dimensionless shape function.

11. Correia method (Correia, 1988)
This method assumes that the shear interslice force can be

described by a function as follows:

T (x) ¼ º f (x) (50)

where f (x) characterises the shape of the shear interslice
force across the sliding mass and º is a scaling parameter
with the dimension of force. This method is also developed
within the rigorous context. From equation (50), one obtains

1̂(x) ¼ 0; 2̂(x) ¼ º f (x) (51a)

ˆ91(x) ¼ 0; ˆ92(x) ¼ ˜ 2̂(x)

˜x
(51b)

12. Rigorous Janbu method (Janbu, 1954, 1973)
The rigorous Janbu method considers all the force and

moment equilibrium conditions by assuming the location of
the line of thrust. Taking moments of forces acting on a
typical slice of infinitesimal width at the midpoint of the
slice base, one obtains

T (x) ¼ E(x)y9t þ ht E9(x) � qx h(x) þ 0:5kcw(x)h(x) (52)

Thus

1̂(x) ¼ y9t, 2̂(x) ¼ ht E9(x) � qx h(x) þ 0:5kcw(x)h(x)

(53a)

ˆ91(x) ¼ y 0t, ˆ92(x) ¼ ˜ 2̂(x)

˜x
(53b)

As moment equilibrium has been satisfied through equation
(52), only vertical and horizontal force equilibrium equations
need to be used for calculating the factor of safety.

NUMERICAL PROCEDURE
The procedure for computing the factor of safety using

the present generalised framework consists of the following
steps.
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Step 1. Calculation of normal stress �0(x)
Calculate �0(x) using equation (31), in which parameters

1̂, 2̂, ˆ91 and ˆ92 are determined by equations as indicated
in Table 1 (assuming Fs0 ¼ 1 and º ¼ 0 in the first step).

Step 2. Calculation of relevant parameters
Calculate the following list of parameters as expressed in

Appendix 1:

A1, A91, A2, A92, A3, A93; B1, B91, B2, B92, B3, B93;

D1, D2, D3; E1, E2, E3; T0, T1, T2; S0, S1, S2;

G0, G1, G2; t0, t1, t2; p, q; p1, q1; p2, q2

Step 3. Calculation of Fs

Calculate Fs using equation (20) for methods 7–11, equa-
tion (23) for method 2, equation (26) for methods 3–6 and
method 12, and equation (27) for method 1 respectively.

Step 4. Calculation of internal forces
Calculate �1 and �2, using equations (16a) and (16b) for

methods 7–11, equation (21a) for method 2, and equation
(24a) for methods 3–6 and method 12. For method 1, we
have �1 ¼ 1 and �2 ¼ 1.

Calculate � (x) using equations (6) and (7).
Calculate �(x) using equation (1).
Then calculate the internal forces E(x) and T (x) as follows:

E(x) ¼ Ea þ
ðx

a

(�� . s9þ �� kcw þ qx)d� (54)

T (x) ¼ Ta þ
ðx

a

(� þ � . s9� w � q y)d� (55)

Step 5. Modification of scaling parameter º
For rigorous methods of slices, calculate º as follows:

º ¼ T (xm)

E(xm)
for method 7 (56a)

º ¼ T (xm)

E(xm) f (xm)
for method 8 (56b)

º ¼ T (xm)Fs

[E(xm) � Pw(xm)]łv(xm) þ cv(xm)h(xm)

for method 9 (56c)

º ¼ T (xm)Fs

f[E(xm) � Pw(xm)]łv(xm) þ cv(xm)h(xm)g f (xm)

for method 10 (56d)

º ¼ T (xm)

f (xm)
for method 11 (56e)

in which

xm ¼ a þ b

2

Step 6. Improvement of solution for factor of safety
Repeat steps 1–5 until Fs and/or º converge. On conver-

gence of Fs, the values of �1 and �2 automatically approach
unity, which implies that the assumed normal stress �0(x) at
the beginning of the last iteration approximates the final
normal stress � (x) well.

A flowchart of the above procedure is schematically
presented in Fig. 2.

Some caution is needed when computing these parameters
associated with the Corps of Engineers method, the Lowe–
Karafiath method and the rigorous Janbu method. For the
two former methods, when the ground surface g(x) or the
slip surface s(x) is not smooth, 1̂(x) could vary abruptly at
vertices, resulting in unreasonably large values of ˆ91(x)
(negative or positive) at these points when the width of slice
chosen is small (or the number of slices is large). From
equation (31), it can be seen that too large values of ˆ91(x)
(or ˆ92(x)) could lead to an unreasonable distribution of
initial normal stress �0(x), particularly negative values of
�0, which are statically invalid. To overcome this numerical
difficulty, a smoothing technique is employed to obtain a
smooth shape of distribution of g9(x) and s9(x). This tech-
nique is illustrated in Appendix 2. For the rigorous Janbu
method, a similar type of numerical difficulty could arise,
which often leads to non-convergence of the solution. To
solve this problem, a smooth line of thrust is suggested. For
example, a Lagrangian function of the order of 3 is adopted:

yt(x) ¼ yta
.

(x � a1)(x � a2)(x � b)

(a � a1)(a � a2)(a � b)

þ ytb
.

(x � a)(x � a1)(x � a2)

(b � a)(b � a1)(b � a2)

þ yt(a1) .
(x � a)(x � a2)(x � b)

(a1 � a)(a1 � a2)(a1 � b)

þ yt(a2) .
(x � a)(x � a1)(x � b)

(a2 � a)(a2 � a1)(a2 � b)
(57)

Start

Fs0, λ0

σ0(x)

A1, A ′1, A2, A ′2, A3, A ′3; B1, B′1, B2, B′2, B3, B′3;
D1, D2, D3; E1, E2, E3

T0, T1, T2; S0, S1, S2; G0, G1, G2

p1, q1

Fs
(vm)

|∆Fs|�ε?

End

p, q p2, q2

Fs
(hv) Fs

(m)

t0, t1, t2

E(x), T(x)

λ

Fs
(hvm)

No

Yes

Fig. 2. Flowchart of computation
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where a1 ¼ a þ 1=3(b � a), a2 ¼ a þ 2=3(b � a); yt(a1) and
yt(a2) may be taken near the lower-third points of the slice
boundaries at points a1 and a2 respectively. In addition, y9t
and y 0t can be analytically determined by differentiating
equation (57), and their values are continuous and smooth.
When calculating E9(x) the smoothing technique is also used
for achieving reasonable results.

For non-rigorous methods of slices, the final normal stress
� (x) over the slip surface does not bring the sliding mass
into complete equilibrium. The factor of safety thus com-
puted is regarded as less justifiable when compared with
those from the rigorous methods. This normal stress distribu-
tion can be taken as the initial �0(x), and equation (20) is
then used to calculate the factor of safety, which is within
the rigorous context because equation (20) satisfies all
the equilibrium conditions. In this situation, the values of
parameters �1 and �2 will differ from unity. Therefore, for
non-rigorous methods, we can say that there exist two
corresponding factors of safety, one computed with such
methods themselves, and the other, recalculated using equa-
tion (20), within the rigorous context.

The solution by limit equilibrium method can be definitely
regarded as acceptable if the associated internal forces are
statically reasonable. Thus checking is often carried out on
the internal forces. For non-rigorous methods, the internal
forces cannot be statically reasonable as they violate the
essential equilibrium conditions. It has been found that
unreasonable assumptions regarding internal forces could
lead to unreasonable internal forces, even if the overall
equilibrium conditions for the sliding mass are completely
satisfied.

The internal force is said to be reasonable if four criteria
are satisfied:

(a) the effective normal stress along the slip surface is non-
negative

(b) the line of thrust lies within the sliding mass
(c) the effective normal internal forces are non-negative
(d ) the local factor of safety along the vertical interfaces of

slices is not less than that along the sliding surface.

For rigorous methods of slices except the rigorous Janbu
method, the location of the line of thrust, yt(x), as shown in
Fig. 1, is the result of the solution itself, which can be
calculated from moment equilibrium for the part of the
sliding mass from a to x. Such moment equilibrium is given
as follows:ðx

a

[(�� . s9þ �) . (yt � s) þ (� þ � . s9� w � q y) . (� � x)

� kcw(yt � 0:5s � 0:5g) þ qx(yt � g)]d�

¼ �Ta(a � x) � Ea(yt � yta)

from which the location of the line of thrust is determined
as

yt(x) ¼

ðx

a

[(�� . s9þ �) . s � (� þ � . s9� w � q y) . (� � x)

�0:5kcw(s þ g) þ qx g]d� þ Ea yta � Ta(a � x)ðx

a

(�� . s9þ �� kcw þ qx)d� þ Ea

(58)

The local factor of safety along this interface is defined as

Fv
s(x) ¼ [E(x) � Pw(x)]łv(x) þ cv(x)h(x)

T (x)
(59)

Unlike Fs, Fv
s (x) may be either positive or negative. Accord-

ing to the fourth criterion of statical reasonableness intro-

duced, the ratio of Fs to Fv
s (x), rv, should lie in the range

�1 to 1: that is,

�1 < rv < 1 (60)

where rv can be regarded as the ratio of local strength
mobilisation along the vertical interface with respect to that
along the slip surface.

From equation (59), we have

rv ¼ T (x)Fs

[E(x) � Pw(x)]łv(x) þ cv(x)h(x)
(61)

The above four criteria for checking internal stress reason-
ableness are too stringent for most practical problems. It has
been found that the factors of safety with unreasonable
internal stresses often differ slightly, considering the inherent
uncertainties associated with the soil strength parameters,
from those with reasonable internal stresses if available,
provided complete equilibrium conditions are satisfied
(Duncan, 1996). However, if the factor of safety associated
with a method deviates largely from other methods, the
feature of internal forces helps to check the reasonableness
of the solution.

EXAMPLE STUDIES
An example slope is studied with two potential slip

surfaces: circular and general slip surfaces, as shown in Fig.
3. For illustrative purposes, the two slip surfaces are speci-
fied and not associated with the minimum factor of safety.
The slope consists of four layers of soil, whose properties
are given in Table 2. The strength of the boundary between
layers 3 and 4 is the same as that of layer 3, since it is
weaker than layer 4. The slope is assumed to be under both
water pressure and earthquake conditions, with the seismic
coefficient taken as 0·1.

Slope stability along the two slip surfaces is analysed
using the aforementioned procedure proposed and the 12
methods listed in Table 1. The results are presented in Table
3 and Figs 4–7. A total of 100 vertical slices are used to
discretise the sliding mass. The computed factors of safety
and associated parameters are listed in Table 3, for the first
two steps and the final step at convergence. Note that the
tolerance on the difference in Fs between two adjacent steps
is taken as 0·001. For non-rigorous methods, factors of
safety computed using equation (20) within the rigorous
context are also presented. Comparisons of factors of safety
between the various methods of slices are displayed graphi-
cally in Figs 4 and 5. The internal force features associated
with the 12 methods of slices for the two slip surfaces are
plotted in Figs 6 and 7. These features include the location
of the line of thrust yt(x), the total normal stress distribution
along the slip surface, the normal and shear interslice forces,
and the ratio of local strength mobilisation along the vertical
interfaces.

30.0

1

3

4

2

Circular slip surface

General slip surface

0.0

2
1

Fig. 3. Profile of example slope
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It is shown in Table 3 that the solution is converged
within 3–10 iterations with such a small tolerance. At
convergence, the parameters �1 and �2 almost approach
unity, as anticipated theoretically.

It is noteworthy that the solution for factor of safety with
the rigorous Janbu method also converged rapidly. In prac-
tice, non-convergence is often encountered with this method
when using conventional computational procedure. For this
method, it is interesting to note that the value of the factor
of safety computed with equation (26) is nearly identical to
that computed with equation (20), which satisfies overall
equilibrium. This is due to the fact that the interslice force
relationship, equation (52), originally derived by Janbu,
automatically satisfies the moment equilibrium condition.

It is shown in Fig. 4 that, for the circular slip surface, small
differences of less than 3% exist among the values of factors
of safety obtained by the rigorous methods of slices. How-
ever, for non-circular slip surfaces, significant differences of
as much as 11% are observed among computed factors of
safety within the rigorous context. Larger differences in
values of factor of safety among non-rigorous methods are
observed for both the circular and general slip surfaces.

It is shown in Figs 6 and 7 that the internal force features
for most solutions can be regarded as statically reasonable.
However, statical unreasonableness is observed in some
solutions, although their calculated values of factors of
safety are not far from those for which the internal force
features are statically reasonable. For example, for method
1, the line of thrust associated with rigorous solution is
beyond the reasonable range. For methods 4 and 5 the
distribution of normal stress along the slip surface is some-
what unreasonable since its variation at several points is too
abrupt, which may not be acceptable from the point of view
of physical intuition. For methods 1, 4 and 12 the values of
rv are beyond the reasonable range at some locations.

COMPARISON STUDY
In order to test the validity of the proposed procedure, a

comparison is made with the GLE method (Fredlund &
Krahn, 1977). Fig. 8 shows the slope profile for comparison
study purposes. Six cases are considered, which correspond
to two slip surfaces and three water conditions respectively.
Comparison of the computed factors of safety for this
problem is shown in Table 4. It is demonstrated that, for the
circular slip surface, essentially identical values of factors of
safety are obtained between the present method and those
computed by Fredlund & Krahn (1977) using the GLE
method. For the non-circular slip surface, there exist some
minor (and practically negligible) differences, possibly due
to inexact reproduction of the geometry of the slip surface.

CONCLUDING REMARKS
A generalised framework of limit equilibrium methods of

slices has been proposed in this paper to calculate the
factors of safety of slopes. In comparison with those pre-
vious approaches that are widely used in practice, the
present framework has several advantages, as follows:

(a) The three equilibrium equations are derived based on
the normal stress distribution on the slip surface, which
is described by the product of the initially assumed
distribution and a modified function involving two
parameters, �1 and �2. The factor of safety is then
solved analytically.

(b) The assumptions regarding the interslice forces made
by the conventional methods of slices (12 in total) are
transformed into a unified expression of normal stress
distribution over the slip surface. Thus these conven-
tional methods are incorporated into the present
framework.

(c) The solution process for the factor of safety is
reasonably straightforward. An assumed initial value
of the factor of safety is required, which may be
assumed to be unity in most cases. Improved values of
factor of safety and the scaling parameter º are
automatically yielded in subsequent steps, and a
converged solution is rapidly obtained within several
iterations.

(d ) A smoothing technique is employed to avoid numerical
difficulty in the solution process, especially for the
rigorous Janbu method, which is often subject to non-
convergence.

Table 1. Summary of methods of slices examined

No. Method Assumption 1̂(x) ˆ91(x) Fs Equilibrium conditions

2̂(x) ˆ92(x)

Vertical force Horizontal force Moment

1 Ordinary Eq. (32) Eq. (33a) Eq. (33b) Eq. (27) C
2 Simplified Bishop Eq. (34) Eq. (35a) Eq. (35b) Eq. (23) S C
3 Simplified Janbu Eq. (34) Eq. (35a) Eq. (35b) Eq. (26) S S
4 Corps of Engineers Eq. (36) Eq. (37a) Eq. 37(b) Eq. (26) S S
5 Lowe & Karafiath Eq. (38) Eq. (39a) Eq. 39(b) Eq. (26) S S
6 Sarma I Eq. (40) Eq. (41a) Eq. (41b) Eq. (26) S S
7 Spencer Eq. (42) Eq. (43a) Eq. (43b) Eq. (20) S S S
8 Morgenstern & Price Eq. (44) Eq. (45a) Eq. (45b) Eq. (20) S S S
9 Sarma II Eq. (46) Eq. (47a) Eq. (47b) Eq. (20) S S S

10 Sarma III Eq. (48) Eq. (49a) Eq. (49b) Eq. (20) S S S
11 Correia Eq. (50) Eq. (51a) Eq. (51b) Eq. (20) S S S
12 Rigorous Janbu Eq. (52) Eq. (53a) Eq. (53b) Eq. (26) S S AS

Note: C ¼ considered, S ¼ satisfied; AS ¼ automatically satisfied.

Table 2. Properties of soils used in example slope

Layer ª: kN=m3 c: kPa �: degrees

1 18·2 20 32
2 18·0 25 30
3 18·5 40 18
4 18·8 40 28
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(e) The factors of safety associated with the non-rigorous
methods of slices are less justifiable than those
associated with the rigorous methods. However, we
can adjust their normal stress distribution to bring the
sliding mass into complete equilibrium conditions,
resulting in factors of safety within the rigorous
context.

It should be pointed out that the limit equilibrium solution is
neither upper- nor lower-bound for the actual solution. How-
ever, many solutions based on the various limit equilibrium
methods within the rigorous context provide a rather narrow
range of possible solutions. Although the simplified Bishop
method is not rigorous, it is still applicable to circular slip
surfaces, owing to its simplicity and nearly identical solu-
tions with other rigorous methods. For non-circular slip
surfaces, the Morgenstern–Price method and the Spencer
method are most useful as they provide consistent factors of
safety and involve very few numerical difficulties.

Moreover, slope stability analysis often entails another
important issue: location of the critical slip surface that is
associated with the minimum factor of safety. The present
study has not addressed this issue, which has been studied
by many researchers (e.g. Duncan, 1996). Herein all the
methods of slices are brought into a generalised framework.
However, for the same slope, different methods of slices
could have different locations of the critical slip surfaces.
Locating the critical slip surfaces within such a generalised
framework will be a subject of future studies by the authors.
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Table 3. Results of calculation for example slope

No. Method Circular slip surface General slip surface

Step Fs �1 �2 º Step Fs �1 �2 º

1 Ordinary 1 1·066 1 0·979
R 1·301 1·3036 1·0490 R 1·128 1·1756 1·0872

2 Simplified Bishop 1 1·280 1·0172 1·0172 1 1·154 1·0093 1·0093
2 1·278 0·9999 0·9999 2 1·156 1·0001 1·0001
3(C) 1·278 1·0000 1·0000 3(C) 1·156 1·0000 1·0000
R 1·292 1·2988 0·7788 R 1·110 1·2349 0·8322

3 Simplified Janbu 1 1·138 1·0095 1·0095 1 1·026 1·0018 1·0018
2 1·106 0·9979 0·9979 2 1·021 0·9996 0·9996
5(C) 1·112 1·0000 1·0000 4(C) 1·022 1·0000 1·0000
R 1·291 1·2579 0·8226 R 1·117 1·2023 0·8672

4 Corps of Engineers 1 1·138 1·0095 1·0095 1 1·026 1·0018 1·0018
2 1·440 0·9870 0·9870 2 1·067 0·9998 0·9998
7(C) 1·377 1·0000 1·0000 5(C) 1·059 1·0000 1·0000
R 1·315 0·9352 1·0523 R 1·045 0·9707 1·0212

5 Lowe & Karafiath 1 1·138 1·0095 1·0095 1 1·026 1·0018 1·0018
2 1·316 0·9889 0·9889 2 1·082 0·9897 0·9897
4(C) 1·290 0·9999 0·9999 4(C) 1·077 0·9999 0·9999
R 1·304 1·0195 0·9850 R 1·092 1·0337 0·9760

6 Sarma I 1 1·138 1·0095 1·0095 1 1·026 1·0018 1·0018
2 1·465 0·9856 0·9856 2 1·363 0·9822 0·9822
10(C) 1·340 1·0000 1·0000 10(C) 1·229 1·0000 1·0000
R 1·289 0·9426 1·0450 R 1·171 0·9120 1·0655

7 Spencer 1 1·290 1·2228 0·8600 0·2629 1 1·118 1·1960 0·8737 0·3170
2 1·293 0·9987 1·0009 0·2626 2 1·171 0·9211 1·0528 0·2538
3(C) 1·293 1·0001 0·9999 0·2628 7(C) 1·155 1·0013 0·9991 0·2554

8 Morgenstern & Price 1 1·290 1·2228 0·8600 0·2629 1 1·118 1·1960 0·8737 0·3170
2 1·300 1·0639 0·9488 0·3353 2 1·119 1·0205 0·9840 0·3485
4(C) 1·303 1·0000 1·0000 0·3383 3(C) 1·119 1·0011 0·9991 0·3508

9 Sarma II 1 1·290 1·2228 0·8600 0·8718 1 1·118 1·1960 0·8737 0·8330
2 1·289 0·9660 1·0258 0·7675 2 1·171 0·9118 1·0603 0·6511
3(C) 1·289 1·0055 0·9959 0·7845 8(C) 1·154 0·9987 1·0009 0·6466

10 Sarma III 1 1·290 1·2228 0·8600 0·8718 1 1·118 1·1960 0·8737 0·8330
2 1·301 1·0638 0·9489 1·1265 2 1·111 1·0305 0·9763 0·9545
4(C) 1·303 1·0032 0·9974 1·1374 3(C) 1·112 1·0018 0·9984 0·9648

11 Correia 1 1·290 1·2228 0·8600 2562·7 1 1·119 1·1960 0·8737 1608·4
2 1·283 0·9684 1·0259 2290·2 2 1·120 0·9936 1·0050 1557·0
4(C) 1·284 0·9992 1·0007 2291·7 3(C) 1·119 1·0008 0·9994 1563·0

12 Rigorous Janbu 1 1·138 1·0095 1·0095 1 1·026 1·0018 1·0018
2 1·336 1·0020 1·0020 2 1·145 1·0021 1·0021
5(C) 1·318 1·0001 1·0001 6(C) 1·137 1·0001 1·0001
R 1·317 0·9987 1·0010 R 1·136 0·9984 1·0012

Note: C ¼ converged value, R ¼ rigorous value.
The centre of the circle is chosen as the common centre for the two slip surfaces.
The interslice force functions for methods 8, 10 and 11 are in the form of a half-sine.
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APPENDIX 1. PARAMETERS RELATED TO
COMPUTATION OF FACTOR OF SAFETY

A1 ¼ �
ðb

a

s9�1�0 dx; A91 ¼
ðb

a

ł�1�0 dx (62a)

A2 ¼ �
ðb

a

s9�2�0 dx; A92 ¼
ðb

a

ł�2�0 dx (62b)

A3 ¼ Fx; A93 ¼
ðb

a

(uł� c)dx (62c)

B1 ¼
ðb

a

�1�0 dx; B91 ¼
ðb

a

s9ł�1�0 dx (63a)

B2 ¼
ðb

a

�2�0 dx; B92 ¼
ðb

a

s9ł�2�0 dx (63b)

B3 ¼ Fy; B93 ¼
ðb

a

s9(uł� c)dx (63c)

D1 ¼
ðb

a

�0�1łr� dx; D2 ¼
ðb

a

�0�2łr� dx; D3 ¼
ðb

a

(�ułþ c)r� dx

(64)
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Fig. 4. Comparison of factors of safety: circular slip surface
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Fig. 5. Comparison of factors of safety: general slip surface
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E1 ¼ �
ðb

a

�0�1 r� dx; E2 ¼ �
ðb

a

�0�2 r� dx; E3 ¼ Mc (65)

T0 ¼ A3 B2 � A2 B3 (66a)

T1 ¼ A3 B92 þ A93 B2 � A2 B93 � A92 B3 (66b)

T2 ¼ A93 B92 � A92 B93 (66c)

S0 ¼ A1 B3 � A3 B1 (67a)
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Fig. 6. Internal forces distribution (circular slip surface): (a) method 1, Ordinary; (b) method 2,
simplified Bishop; (c) method 3, simplified Janbu; (d) method 4, Corps of Engineers; (e) method 5,
Lowe & Karafiath; (f ) method 6, Sarma I; (g) method 7, Spencer; (h) method 8, Morgenstern & Price;
(i) method 9, Sarma II; ( j) method 10, Sarma III; (k) method 11, Correia; (l) method 12, rigorous
Janbu
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S1 ¼ A1 B93 þ A91 B3 � A3 B91 � A93 B1 (67b)

S2 ¼ A91 B93 � A93 B91 (67c)

G0 ¼ A1 B2 � A2 B1 (68a)

G1 ¼ A1 B92 þ A91 B2 � A2 B91 � A92 B1 (68b)

G2 ¼ A91 B92 � A92 B91 (68c)

t0 ¼ � D1T2 þ D2S2 þ D3G2

E1T0 þ E2S0 þ E3G0

(69a)
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Fig. 6. (continued )
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t1 ¼ E1T2 þ E2S2 þ E3G2 � D1T1 � D2S1 � D3G1

E1T0 þ E2S0 þ E3G0

(69b)

t2 ¼ E1T1 þ E2S1 þ E3G1 � D1T0 � D2S0 � D3G0

E1T0 þ E2S0 þ E3G0

(69c)

p ¼ � t2
2

3
þ t1 (70a)

q ¼ � 1

27
t3
2 �

1

3
t1 t2 þ t0 (70b)

p1 ¼ (E1 þ E2)B93 þ E3(B91 þ B92) � (D1 þ D2)B3 � (B1 þ B2)D3

(E1 þ E2)B3 þ E3(B1 þ B2)

(71a)
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Fig. 6. (continued )

390 ZHU, LEE AND JIANG



q1 ¼ � (D1 þ D2)B93 þ (B91 þ B92)D3

(E1 þ E2)B3 þ E3(B1 þ B2)
(71b)

p2 ¼ (A1 þ A2)B93 þ (A91 þ A92)B3 � A3(B91 þ B92) � A93(B1 þ B2)

(A1 þ A2)B3 � A3(B1 þ B2)

(72a)
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Fig. 7. Internal forces distribution (general slip surface): (a) method 1, Ordinary; (b) method 2,
simplified Bishop; (c) method 3, simplified Janbu; (d) method 4, Corps of Engineers; (e) method 5,
Lowe & Karafiath; (f ) method 6, Sarma I; (g) method 7, Spencer; (h) method 8, Morgenstern & Price;
(i) method 9, Sarma II; ( j) method 10, Sarma III; (k) method 11, Correia; (l) method 12, rigorous
Janbu
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q2 ¼ (A91 þ A92)B93 � A93(B91 þ B92)

(A1 þ A2)B3 � A3(B1 þ B2)
(72b)

APPENDIX 2. SMOOTHING TECHNIQUE
Assume values of function y(x) at a series of points distributed

between x ¼ a and x ¼ b, as shown in Fig. 9. Now determine the
numerical value of derivative y9(x0) at point x0.
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When point x0 is located so far from the end points, x ¼ a and
x ¼ b, that an interval [x1, x2] with a distance ˜ can bracket it at the
midpoint, in which ˜ ffi (b � a)=10, the derivative is numerically
determined as

y9(x0) ¼ y2 � y1

˜
(73)

When the distance between point x0 and the end point is less than
half of ˜—that is, ˜1 , 0:5˜ or ˜2 , 0:5˜, as shown in Fig. 9—
the derivative is numerically computed with the following equation:

y9(x0) ¼ ˜2

˜

y0 � y1

˜1

þ ˜1

˜

y2 � y0

˜2

(74)
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(120, 90)

R � 80 ft

2

1

Non-circular slip surface

Circular slip surface
c ′ � 0, φ′ � 10º

γ � 120 lb/ft3

c ′ � 600 lb/ft2

φ′ � 20º

60

40

20

0

ft

0 20 40 60 80 100 120 140 160 ft

Fig. 8. Example for comparison study (after Fredlund & Krahn, 1977)

Table 4. Comparison of computed factors of safety for the example used by Fredlund & Krahn (1977)

Case Case Ordinary Simplified Rigorous Spencer Morgenstern–Price
No. Bishop Janbu

Fs Fs Fs Fs º Fs º

1 Circular slip surface without 1·928 2·080 2·008 2·073 0·237 2·076 0·318
water pressure 1·931� 2·078� 2·080� 2·075� 0·258� 2·074� 0·318�

2·064�R 2·071�R

2 Non-circular slip surface without 1·288 1·377 1·432 1·373 0·185 1·370 0·187
water pressure 1·300� 1·380� 1·375� 1·381� 0·189� 1·371� 0·228�

1·378�R 1·366�R

3 Circular slip surface with water 1·607 1·766 1·708 1·761 0·255 1·764 0·304
pressures defined by ru ¼ 0:25 1·610� 1·761� 1·765� 1·760� 0·250� 1·759� 0·309�

1·749�R 1·756�R

4 Non-circular slip surface with 1·029 1·124 1·162 1·118 0·139 1·118 0·130
water pressures defined by 1·038� 1·118� 1·160� 1·119� 0·164� 1·109� 0·195�
ru ¼ 0:25 1·110�R 1·107�R

5 Circular slip surface with water 1·693 1·834 1·776 1·830 0·247 1·832 0·290
pressures defined by piezometric 1·698� 1·832� 1·836� 1·831� 0·240� 1·831� 0·298�
line 1·822�R 1·828�R

6 Non-circular slip surface with 1·171 1·248 1·298 1·245 0·121 1·245 0·101
water pressures defined by 1·192� 1·260� 1·299� 1·261� 0·144� 1·254� 0·165�
piezometric line 1·255�R 1·251�R

No superscript: Fredlund & Krahn (1977).
� Present method.
�R Factor of safety in rigorous context modified from the non-rigorous one.
The interslice function used in the Morgenstern–Price method is half-sine.

∆1 ∆2 � ∆ � ∆1 ∆/2 ∆/2 ∆2∆1 � ∆ � ∆2
y1

y0

y2

y1

y0

y2

y1

y0

y2

x1 � a x0 x2 x1 x0 x2 x1 x0 x2 � b

Fig. 9. Determination of derivative y9(x0)
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NOTATION
Fs factor of safety
kc horizontal seismic coefficient

g(x) ordinate of the ground surface
s(x) ordinate of the slip surface

yt(x) ordinate of the line of thrust
E(x) normal interslice force
T(x) shear interslice force

Pw(x) resultant of pore pressure along the interface of
slices

qx(x), qy(x) horizontal and vertical external pressure on the
ground

Ea, Ta, Eb, Tb external forces at the two ends of the sliding body
w(x) self-weight of slice of unit width

(xc, yc) coordinates of the centre of the moment
f(x) shape of interslice force function
h(x) height of slice

ht(x) height of line of thrust
a, b abscissa of the two ends of the sliding body

� total normal stress over the slip surface
�0 initial total normal stress over the slip surface
� shear stress over the slip surface
u pore pressure at the slip surface
c cohesion in terms of effective or total stress as the

case may be
� internal friction angle in terms of effective or total

stress as the case may be
ł friction coefficient
� modifying function

�1, �2 auxiliary unknowns
º scaling factor in interslice force function

1̂, 2̂ coefficients defining the interslice force relationship
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