
352 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 3, MAY 2007

Incorporating Web Analysis Into Neural Networks:
An Example in Hopfield Net Searching
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Abstract—Neural networks have been used in various applica-
tions on the World Wide Web, but most of them only rely on
the available input-output examples without incorporating Web-
specific knowledge, such as Web link analysis, into the network
design. In this paper, we propose a new approach in which the Web
is modeled as an asymmetric Hopfield Net. Each neuron in the net-
work represents a Web page, and the connections between neurons
represent the hyperlinks between Web pages. Web content analy-
sis and Web link analysis are also incorporated into the model by
adding a page content score function and a link score function into
the weights of the neurons and the synapses, respectively. A sim-
ulation study was conducted to compare the proposed model with
traditional Web search algorithms, namely, a breadth-first search
and a best-first search using PageRank as the heuristic. The results
showed that the proposed model performed more efficiently and
effectively in searching for domain-specific Web pages. We believe
that the model can also be useful in other Web applications such
as Web page clustering and search result ranking.

Index Terms—Hopfield net, neural network, spreading activa-
tion, Web analysis, Web mining.

I. INTRODUCTION

ARTIFICIAL neural network learning algorithms have been
applied in many different applications such as classifica-

tion, clustering, and pattern recognition by modeling the human
neural system. These applications have been studied and tested
in various domains including engineering, medicine, and fi-
nance, among others. Neural network models have also been
widely used in the area of information retrieval and text mining,
such as text classification, text clustering, and collaborative fil-
tering. In recent years, with the fast growth of the World Wide
Web and the Internet, these algorithms have also been used in
Web-related applications such as Web usage analysis [2], Web
searching [14], and Web page clustering [9]. Although such ap-
plications have been successful, most traditional neural network
systems only rely on the available input-output examples [17];
useful information and knowledge of the Web, which is not in the
form of such examples, have not been incorporated into the neu-
ral network model. As a result, most Web-specific knowledge,
such as the Web’s link structure, has been lost in the process.
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In this paper, we study how to represent and incorporate Web-
based knowledge in the design of neural networks. In particular,
we propose a model in which Web content and Web link struc-
ture analysis are incorporated in a Hopfield net spreading acti-
vation algorithm. The rest of the paper is structured as follows.
In Section II, we review related work in neural network learn-
ing in information retrieval applications and Web content and
link analysis techniques. We formulate our research questions
in Section III and present our proposed model in Section IV.
In Section V, we describe a simulation study designed to val-
idate the proposed model. Finally, we conclude our paper in
Section VI with a summary of our research and some future
directions.

II. RELATED WORK

In this section, we review how neural networks have been
used in information retrieval research. We also review how Web
content and Web analysis knowledge are often represented in
various Web applications.

A. Neural Networks for Information Retrieval

Artificial neural networks are designed with an attempt to
achieve human-like performance by modeling the human neu-
ral system. A neural network is a graph of many active nodes
(neurons) that are connected with each other by weighted links
(synapses). Contrary to symbolic learning, in which knowledge
is represented by symbolic descriptions such as decision tree
and production rules, neural network models acquire knowl-
edge by learning and remembering them in a network of in-
terconnected neurons, weighted synapses, and threshold logic
units [25]. Based on training examples, learning algorithms can
be used to adjust the connection weights in the network such
that it can predict or classify unknown examples correctly.

Many different types of neural networks have been devel-
oped, among which the feedforward/backpropagation model is
the most widely used. Backpropagation networks are fully con-
nected, layered, feedforward networks in which activations flow
from the input layer through the hidden layer(s) and, then, to
the output layer [29]. The network usually starts with a set
of random weights and adjusts its weights according to each
learning example. Each learning example is passed through the
network to activate the nodes. The network’s actual output is
then compared with the target output, and the error estimates
are then propagated back to the hidden and input layers. The
network updates its weights incrementally according to these
error estimates until the network stabilizes. Other popular neu-
ral network models include Kohonen’s self-organizing map and
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the Hopfield network. Self-organizing maps have been widely
used in unsupervised learning, clustering, and pattern recogni-
tion [19]; Hopfield networks have been used mostly in search
and optimization applications [16], as well as in other graph
problems [31].

In information retrieval systems, neural network programs
have been applied to text classification, usually employing the
backpropagation neural network [22]. Using the vector space
model, term frequencies or TF × IDF scores (term frequency
multiplied by inverse document frequency) of the terms are
used to form a vector which can be used as the input to the
network. Text clustering is another area in which neural net-
work algorithms have been applied. For example, Kohonen’s
self-organizing map has been widely used for text cluster-
ing [20], [24].

Spreading activation algorithms have also been used in doc-
ument searching and concept retrieval [3], [11]. In the adaptive
information retrieval (AIR) system [3], keywords, documents,
and authors are represented by the neurons in a neural network,
and the relationships among these entities, as measured by con-
ditional probabilities, are represented by the synaptic weights
between the neurons. When a search query is received by the
system, the corresponding nodes will “fire” and activate the
network to retrieve the relevant results. Chen and Ng [11] use
a Hopfield net to model a concept space, which consists of a
network of semantically related concepts extracted from doc-
uments. Concepts (terms) are represented by the neurons, and
their semantic distances are represented by the synaptic weights.
They apply the spreading activation algorithm over the network
to retrieve relevant concepts from the network.

Although neural networks have been applied in Web appli-
cations, most such applications do not make use of the specific
characteristics of the Web; instead, they only rely on traditional
representation such as the vector space model. Important ad-
ditional information about a Web page, such as the Web link
structure information, often is not effectively incorporated.

B. Knowledge Representation on the Web

There are different ways to represent and analyze the content
and structure of the Web. In general, they can be classified
into two categories, namely, content-based approaches and link-
based approaches. We review the two approaches in this section.

1) Content-Based Approaches: Content-based approaches
rely on the actual content of a page to infer information about
it. Although the traditional vector space model has been used
in most Web applications for Web content analysis, the actual
hypertext markup language (HTML) content of a Web page
provides some additional information about the page itself. For
example, the title or the body text of a Web page can be analyzed
to determine whether the page is relevant to a target domain. Do-
main knowledge can also be incorporated into the analysis to
improve the results. For example, words can be checked against
a list of domain-specific terminology. In addition, the uniform
resource locator (URL) address of a Web page often contains
useful information about the page, such as the Web domain
name and some relevant keywords.

2) Link-Based Approaches: In recent years, Web link struc-
ture has been widely used to infer important information about
pages. Intuitively, the author of a Web page A places a link to
Web page B if he or she believes that B is relevant to A, or
of good quality. Usually, the larger the number of in-links (the
hyperlinks pointing to a page), the better a page is considered to
be. The reason is that a page referenced by more people is likely
to be more important than is the page that is seldom referenced.

By analyzing the pages containing the current URL, we can
also obtain the anchor text that describes a link. Anchor text
provides a good description of the target page because it repre-
sents how other people linking to the page actually describe it.
Several studies have tried to make use of anchor text or the text
nearby to predict the content of the target page [1], [12].

In addition, it is reasonable to give a link from an authoritative
source (such as Yahoo) a higher weight than a link from an
unimportant personal homepage. Several algorithms have been
developed to address this problem. Among these, PageRank and
hyperlink-induced topic search (HITS) are the two most widely
used algorithms.

The PageRank algorithm is computed by weighting each in-
link to a page proportionally to the quality of the page containing
the in-link [4]. The qualities of these referring pages are also
determined by PageRank. A Web page has a high PageRank if
the page is linked from many other pages, and the scores will be
even higher if these referring pages are also good pages (pages
that have high PageRank scores). The PageRank algorithm was
applied in the commercial search engine Google and was shown
to be very effective for ranking the search results [4].

Kleinberg [18] proposed a similar method called HITS. In
the HITS algorithm, authority pages are defined as high-quality
pages related to a particular topic or search query. Hub pages
are those that are not necessarily authority pages themselves
but provide pointers to other authority pages. A page that many
others point to should be a good authority, and a page that points
to many others should be a good hub. Based on this intuition, two
scores are calculated in the HITS algorithm for each Web page:
an authority score and a hub score. A page with a high authority
score is the one pointed to by many hubs, and a page with a
high hub score is the one that points to many authorities. One
example that applies the HITS algorithm is the Clever search
engine [5], which achieves a higher user evaluation than does
the manually compiled directory of Yahoo.

III. RESEARCH QUESTIONS

As discussed earlier, most Web retrieval applications only
use traditional neural network models in a way similar to those
used in other information retrieval systems. The useful content-
based and link-based knowledge extracted from the Web has not
been effectively incorporated in such neural network models.
We suggest that by incorporating such knowledge into neural
networks, their performance can be improved over traditional
models. We pose the following research questions: 1) can we
represent the World Wide Web using neural network models and
2) can we apply the spreading activation algorithm on the model
to improve Web retrieval when compared to existing techniques?
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IV. PROPOSED MODEL

A. Modeling the Web as a Hopfield Net

While attempting to answer our research questions, we re-
viewed the various types of neural network models and identi-
fied the Hopfield net to be the most suitable for modeling the
Web’s characteristics. There are several reasons, which are as
follows.

1) The Hopfield net represents a physical system in which the
dynamics is dominated by a substantial number of locally
stable states [16]. This is consistent with the dynamics
of the Web where there are many Web communities (sets
of Web pages with related content), which are stable in
the sense that they have strong linkage among themselves,
have high similarity in content, and spontaneously orga-
nize themselves into such state [13], [21].

2) These Web communities can often be identified by a small
set of starting URLs [6]. Therefore, they also satisfy the
collective properties of the Hopfield net model in which
they are “content addressable memories,” where an entire
memory can be retrieved from any subpart of sufficient
size.

3) The Web can be viewed as a large collection of distributed
yet interconnected knowledge, which can be activated and
retrieved by various algorithms. This is analogous to previ-
ous research in Hopfield net, where each neuron represents
a conceptual meaning [11], [23].

4) The asynchronous parallel processing nature of the Hop-
field net is similar to popular Web search systems, where
Web crawlers or spiders are designed to connect to dif-
ferent Web sites and retrieve Web pages in parallel, either
using multithreading or asynchronous network connec-
tion [4], [8], [15].

5) Hyperlinks on the Web are asymmetric, i.e., a link from
page A to page B does not imply a link from B to A. This
asymmetric linking characteristic is consistent with the
learning model of an asymmetric Hopfield net—a Hop-
field net model in which the strength of the link between
two neurons is not symmetric. This asymmetric linking
characteristic of the Web has made other neural network
models such as a backpropagation network unsuitable.
Also, the Hopfield net is preferred to perceptrons [27]
in modeling the Web. The reason is that perceptrons can
only deal with links in a “forward” direction (e.g., A→B,
B→C), but not a network with strong backward coupling
(e.g., A→B→ C, B→A, C→A) [16].

These similarities between the Hopfield net and the Web made
it ideal to use an asymmetric Hopfield net to model the Web’s
structure.

B. Model

We propose a model in which we incorporate the character-
istics of the Web into the Hopfield net model. Based on the
traditional Hopfield net, any given Web page pi can be defined
as a neuron i that represents the page. The activation score of

each neuron in the beginning, set at time t = 0, is defined as

µi(0) = g(pi) (1)

where g is a function that calculates a score of the Web page
pi based on its content. This function can be defined differently
such that it can be tailored to the applications involved. A simple
example is to define this function based on the number of terms
in the Web page, which are considered relevant to an area of
interest.

In addition to Web content, we also incorporate Web link
characteristics into our model. The weight between the neurons
i and j, denoted by Ti,j , is defined as follows:

Ti,j =
{

0, if there is no hyperlink from pito pj

h(pi, pj), otherwise. (2)

Similar to the function g, the function h represents the score
of the link from pi to pj and is application-specific. For example,
it can be defined as a function of the position of the link in the
Web page, or the number of relevant terms in the anchor text.
One should note that according to (2), we do not require Ti,j to
be symmetric, i.e., Ti,j does not necessarily equal to Tj,i in our
model for any given i and j. In other words, the Hopfield net
model used here is asymmetric.

It is also necessary to incorporate into the network the fact
that Web pages that are pointed to by a lot of other pages are
often considered important. Therefore, we define the activation
score of a neuron i at time t > 0 as follows:

µi(t) = fs


∑

i�=j

Tj,iµj(t − 1)


 . (3)

The summation term in (3) represents the weight of all the
Web pages pj that have a link pointing to URL pi multiplied by
the strength of the link, and fs is a slightly modified sigmoidal
function that normalizes the summation value into the interval
[0,1)

fs(x) = 2
(

1
1 + e−x

− 0.5
)

. (4)

The network converges when the difference between the aver-
age activation scores at t and t − 1 is not significantly different
or when t is large enough.

In order to support searching in the network, we define a value
Vi for each neuron to represent where the neuron should “fire”
(i.e., activate) [26]. The neuron is firing if Vi = 1 and not firing
if Vi = 0

Vi =
{

1, ifµi(t) ≥ θ
0, otherwise.

(5)

As discussed, the activation score µi(t) represents the strength
of the page pi inherited from its parent pages. If the strength
is greater than a threshold θ, then pi should be activated and
retrieved.

After all qualifying Web pages with Vi = 1 have been ac-
tivated, the activation score of each neuron is recalculated by
incorporating the page content function g(pi)

µi(t′) = fs (µi(t)g(pi)) . (6)



CHAU AND CHEN: INCORPORATING WEB ANALYSIS INTO NEURAL NETWORKS 355

A spreading activation algorithm can then be applied on the
model to retrieve a set of documents from the Web in a specific
domain, given some seed URLs defined by domain experts.
We have adopted the spreading activation algorithm for Web
retrieval and the pseudocode is as follows.

1) Let S be the set of seed URLs;
2) t = 0 (iteration);
3) n = 0 (number of pages retrieved);
4) for each URL u ∈ S,

a) remove u from S;
b) retrieve document p from the Web at address u;
c) n = n + 1;
d) initialize a neuron i and set µi(0) = g(pi);
e) extract all URLs from Web page p and add to S;

5) while (n < number of pages required);
a) t = t + 1;
b) for each URL u ∈ S;

i) remove u from S;
ii) initialize a neuron i and calculate µi(t)

[based on (3)];
iii) if µi(t) > θ;

– retrieve document p from the Web at ad-
dress u;

– n = n + 1;
– calculate µi(t′) [based on (6)];
– extract all URLs from Web page p and

add to S.
In step 5), the algorithm is looped until the number of pages

visited has reached the required number. Alternatively, the stop-
ping criteria can be defined based on t or the difference between
the averages of µi(t) and µi(t − 1).

C. Characteristics of the Model

The proposed model is different from the traditional Hopfield
net model in several ways. First, the proposed model does not
start with a random state. Instead of having a set of random
values to initialize the network, the model starts with the page
content score g(pi) of a set of predefined Web pages (1). Sec-
ond, we incorporate the hyperlink score function h(pi, pj) into
the synaptic weights between the neurons (2). As mentioned,
the function h can be defined based on metrics such as link po-
sition or anchor text, depending on the application need. Third,
in the traditional Hopfield net model, the number of neurons
is fixed, and all neurons are known at the beginning of activa-
tion algorithm. However, in our model, new nodes are explored
throughout the process as new URLs are discovered in the exist-
ing Web pages. As a result, the search space grows continuously
before it stabilizes. Lastly, we incorporate the content score of
Web pages into the network during each iteration by combining
it with the activation score (6).

Another area for discussion is the computational complexity
involved. As the Web contains a large number of documents, the
size of the Hopfield net can be very large. For a collection with n
documents, one might expect that the Hopfield net would need
to have n neurons and n2 synapses that link each neuron to every
other neuron. This would be computationally very expensive. In
practical applications, however, the computational requirement

will be manageable. The reason is that each Web document has
only a limited number of incoming links and outgoing links,
thus, a neuron would only have a limited number of synapses;
all other synapses can be given a weight of zero. Also, not
all n neurons would be involved in a retrieval process; only
those relevant would be involved. Therefore, although the whole
structure is complex, searching within the structure can still be
performed within a practical time limit. This is analogous to
the functioning of the human brain, where a large number of
neurons exist but processing is reasonably fast.

V. EXPERIMENTAL STUDY

To demonstrate the effectiveness of the proposed model, we
implemented it into a Web application and ran a simulation test
to evaluate its performance. Specifically, we used the Hopfield
net model for the Web and applied the spreading activation
algorithm over the network to search for Web pages that are
relevant to a given domain. The performance of the system was
compared with two other Web search algorithms: 1) breadth-first
search and 2) best-first search using PageRank. By considering
the Web as a directed graph with a set of Web pages as vertices
V and the directed links between Web pages as edges E, the
PageRank score is calculated as follows [4]:

PageRank(pi) = (1 − d) + d
∑

j,∀(j,i)∈E

(
PageRank(pj)

c(pj)

)
(7)

where d is a damping factor between 0 and 1, and c(pj) is the
number of outgoing links in pj . Content-based analysis was also
used in the best-first search, where URLs that have been pointed
to by some relevant anchor text will be visited first [12].

These two algorithms are popular in Web search applications
and have been shown to achieve high levels of performance.
The breadth-first search can often discover high-quality pages
early on in a Web retrieval process because if a URL is
relevant to a target domain, it is likely that the Web pages in
its neighborhood are also relevant [28]. For the best-first search
algorithm using PageRank, it has been shown to perform the
best among various Web searching algorithms in a simulation
experiment [12]. Therefore, these two algorithms were chosen
as our benchmarks for comparison. We ran the experiment
in the medical domain where information retrieval has been
widely studied and various resources such as domain lexicon
are readily available. In our experiment, the value of d in the
PageRank algorithm was set to 0.90.

A. Customizing the Hopfield Net

In order to customize the algorithm for Web page searching,
we must define the page content score function g and the link
score function h based on the application. For page content, we
define the score function g of a Web page pi based on its page
title, textual content, and the links contained in the page. The title
of each Web page is usually a good indicator of the content of
the page. Therefore, we compare whether the title of a Web page
contains any popular unwanted phrases (such as “job posting”
and “contact us”). We define b(pi) to be the number of unwanted
words in the title of a Web page pi. We define g(pi) to be 0 if
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b(pi) is greater than 0. Otherwise, we define the page content
score to be the weighted average of two components. The first
part measures how the page is similar to the medical domain. We
first use the Arizona Noun Phraser [30] to extract key phrases
from each document and we calculate the score based on the
number of relevant phrases in the document that can be found in
a medical lexicon [obtained from the Unified Medical Library
System (UMLS)]. The second part measures the quality of the
outgoing links in the Web page. A hyperlink with more medical
phrases in its anchor text receives a higher score. We assign a
weight w to the first part (relevance of content) and a weight of
(1 − w) to the second part (relevance of out-links). The function
g is thus defined as follows:

g(pi)=
{

0, if b(pi)> 0
wft,α(r(pi))+(1−w)ft,α

∑
j a(pi, pj), otherwise

(8)
where r(pi) is the number of relevant phrases in the document
that can be found in the medical lexicon and a(pi, pj) is the
number of anchor text phrases in the link from pi to pj that can
be found in the medical lexicon. Also, a(pi, pj) is zero if no
phrases in the anchor text can be found in the medical lexicon
or the link does not exist.

A linear normalization function ft is used to normalize the
score to the range from 0 to 1 based on a simple threshold
logic [25]

ft,α(x) = max
(x

α
, 1

)
. (9)

Similar to the content score function, we define the link score
function h(pi, pj) by matching the number of phrases in the
anchor text in page pi to pj that are relevant medical pages.
In addition, we also look at the Web host to see whether it is
in the list of authoritative Web hosts that have been manually
predefined by a medical expert. For example, the Web site of
the National Library of Medicine is considered an authoritative
Web site and, therefore, nodes that belong to this domain should
be given a higher score. The function h is, then, simply defined
as follows:

h(pi, pj) = d(pi) + a(pi, pj) (10)

where d(pi) is 1 if the URL of pi is in the authoritative host list
or 0 otherwise.

Based on some experimentation, the following parameters
were used in our experiment: w = 0.80, α = 10, and θ = 0.001.

B. Experimental Setup

Because of the dynamic nature of the Web, we created
a controlled environment for our experiments by taking a
snapshot of a portion of the Web [7]. This ensured that our
experiments would not be affected by changes in Web pages or
variations in network traffic load. The snapshot was created by
running a random-first search, which started with a set of five
seed URLs in the medical domain and spread out in a random
order. The five seed URLs were identified by a medical domain
expert and included http://biomednet.com, http://ch.nus.sq,
http://biomed.nus.sg/Cancer/, http://cancer.med.upenn.edu/,
and http://bones.med.ohio-state.edu/hw/cardiology/index.html.

TABLE I
SIMULATION RESULTS

The resulting testbed contained 1 040 388 Web pages and
6 904 026 links.

In our simulation, each search algorithm performed a “crawl”
on the local testbed by starting with the same set of five seed
URLs in the medical domain. Each algorithm used these five
URLs as the seeds and followed their links recursively. All the
three algorithms tried to retrieve Web pages that are relevant
to the medical domain and avoided irrelevant pages. However,
the order of visiting these pages would be different in each
algorithm. Each algorithm ran continuously until 100 000 Web
pages (no matter whether relevant or not) had been retrieved.

To compare the performances of the three algorithms, we
measured the quality of each Web page visited using the notion
of Important Page proposed in [12], which estimated a Web
page’s relevance to the given domain. We considered a Web
page as an Important Page if the number of medical phrases
divided by the total number of phrases found in the page was
greater than a certain percentage.1 Using this classification, the
testbed in the current experiment contained 171 405 Important
Pages. The precision performance of a search algorithm i is,
thus, calculated as follows:

Pi =
ni

N
(11)

where ni is the number of Important Pages retrieved by an
algorithm, and N = 100 000 for all the three algorithms in our
simulation.

C. Experimental Results

The results are summarized in Table I. The spreading ac-
tivation algorithm retrieved 40 014 Important Pages (40.0%
of all pages visited) compared with 36 307 (36.3%) by the
breadth-first search algorithm and 19 630 (19.6%) by the best-
first search. The spreading activation algorithm also took the
shortest amount of time in completing the task. The evaluation
results demonstrated that Hopfield network searching that incor-
porates Web link structure analysis and page content analysis
performed better than did traditional Web search algorithms, lo-
cated domain-specific Web pages, and identified Web communi-
ties more effectively and efficiently. The fact that bad pages were
filtered out also increased the precision rate of the algorithm.

In addition to the final collection, we are also interested in
studying the performance of the algorithms during different
stages of the process. Fig. 1 shows the total number of Impor-
tant Pages visited throughout the process of each of the three
algorithms. It can be seen that the Hopfield net algorithm con-
sistently achieved the best performance during the process. The

1The percentage used in our experiment was 1.86. A preliminary experiment
showed that the error rate of this method is 5.0% on our testbed.
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Fig. 1. Number of important pages visited at different stages of the search
processes.

breadth-first search was slightly less effective than the Hopfield
net most of the time, and the best-first search had the worst
performance throughout the process.

The performance of the best-first search was rather unex-
pected because it had been anticipated to perform at least as
well as the breadth-first search, which did not use any heuristics.
After analyzing the data in detail, we found that the best-first
search algorithm explored a lot of irrelevant nodes during the
early stage of the search, because those nodes had high PageR-
ank scores. For example, among the first 5000 nodes explored by
the best-first search method, close to 70% of them (3464 nodes)
were irrelevant, whereas the corresponding percentages for the
spreading activation algorithm and the breadth-first search were
42.6% and 48.2%, respectively. One possible reason for the high
percentage of irrelevant pages retrieved by PageRank is that it
is not powerful when the number of pages is very small, as
there would not be enough links for a good indication for au-
thoritativeness of pages. As a result, the algorithm might have
visited some irrelevant pages in the early stage of the run. These
irrelevant nodes tended to point to other pages that were also
irrelevant. Because of the recursive nature of the PageRank cal-
culation, a large number of irrelevant pages got a high PageRank
score and were explored before other pages. On the other hand,
the Hopfield net spreading activation did not suffer from such
problem because it incorporated Web link analysis and domain-
specific content analysis into the design. The parallel and asyn-
chronous exploration process of the Hopfield net also prevented
the algorithm from exploring into irrelevant search space.

In terms of efficiency, the Hopfield net spreading activation
algorithm is as fast as the simple breadth-first search algorithm.
On the other hand, the PageRank-based best-first search process
was significantly slower, mainly because of the heavy compu-
tational requirement of the PageRank method [4].

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed a model to incorporate Web
analysis into a special kind of neural network: The Web is mod-
eled as an asymmetric Hopfield net, and the Web structure and
content analysis are incorporated into the network through a new
design of the network and two score functions. A simulation
test was performed, and the proposed model performed better
than did traditional Web search algorithms such as breadth-
first search and best-first search. The results demonstrated that
the proposed approach is useful in modeling and searching
in the Web. While the current model did not demonstrate a
large improvement in performance, it would be interesting to
study how the two score functions could be revised in order
to improve the overall performance of the model for future
applications.

As the proposed Hopfield model is domain-independent, it
can be easily customized to search for domain-specific Web
pages in other areas easily. This will be useful for building
domain-specific search engines or Web search agents. For ex-
ample, the model has been successfully used as the backend
search algorithm for a medical Web search engine [7], [10].
Medical documents were collected automatically from the Web
using the Hopfield net model, and the documents were used as
the backend database of the system.

In general, the model can be applied to other retrieval prob-
lems where the nodes are linked to each other and such linkage
can be measured. The content score function and the link score
function can be customized easily depending on the nature of the
application. For example, the model can be used in patent docu-
ment retrieval where patent citation information can be used in
the link score function.

Currently, we are also studying the use of the model in other
Web applications. For example, we would like to investigate
whether we can use the proposed model for Web page clustering
as Hopfield net has been successfully used for clustering in other
applications [23]. We also plan to study how the model can be
used for search result ranking in a way similar to the PageRank
and the HITS algorithms.
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