File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Optical design of organic solar cell with hybrid plasmonic system

TitleOptical design of organic solar cell with hybrid plasmonic system
Authors
KeywordsActive material
Active polymers
Cavity devices
Decay length
Dispersion relations
Issue Date2011
PublisherOptical Society of America. The Journal's web site is located at http://www.opticsexpress.org
Citation
Optics Express, 2011, v. 19 n. 17, p. 15908-15918 How to Cite?
AbstractWe propose a novel optical design of organic solar cell with a hybrid plasmonic system, which comprises a plasmonic cavity coupled with a dielectric core-metal shell nanosphere. From a rigorous solution of Maxwell's equations, called volume integral equation method, optical absorption of the active polymer material has a four-fold increase. The significant enhancement mainly attributes to the coupling of symmetric surface wave modes supported by the cavity resonator. The dispersion relation of the plasmonic cavity is characterized by solving an 1D eigenvalue problem of the air/metal/polymer/ metal/air structure with finite thicknesses of metal layers. We demonstrate that the optical enhancement strongly depends on the decay length of surface plasmon waves penetrated into the active material. Furthermore, the coherent interplay between the cavity and the dielectric core-metal shell nanosphere is undoubtedly confirmed by our theoretical model. The work offers detailed physical explanations to the hybrid plasmonic cavity device structure for enhancing the optical absorption of organic photovoltaics. © 2011 Optical Society of America.
Persistent Identifierhttp://hdl.handle.net/10722/137300
ISSN
2021 Impact Factor: 3.833
2020 SCImago Journal Rankings: 1.394
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorSha, WEIen_HK
dc.contributor.authorChoy, WCHen_HK
dc.contributor.authorChen, YPen_HK
dc.contributor.authorChew, WCen_HK
dc.date.accessioned2011-08-26T14:22:46Z-
dc.date.available2011-08-26T14:22:46Z-
dc.date.issued2011en_HK
dc.identifier.citationOptics Express, 2011, v. 19 n. 17, p. 15908-15918en_HK
dc.identifier.issn1094-4087en_HK
dc.identifier.urihttp://hdl.handle.net/10722/137300-
dc.description.abstractWe propose a novel optical design of organic solar cell with a hybrid plasmonic system, which comprises a plasmonic cavity coupled with a dielectric core-metal shell nanosphere. From a rigorous solution of Maxwell's equations, called volume integral equation method, optical absorption of the active polymer material has a four-fold increase. The significant enhancement mainly attributes to the coupling of symmetric surface wave modes supported by the cavity resonator. The dispersion relation of the plasmonic cavity is characterized by solving an 1D eigenvalue problem of the air/metal/polymer/ metal/air structure with finite thicknesses of metal layers. We demonstrate that the optical enhancement strongly depends on the decay length of surface plasmon waves penetrated into the active material. Furthermore, the coherent interplay between the cavity and the dielectric core-metal shell nanosphere is undoubtedly confirmed by our theoretical model. The work offers detailed physical explanations to the hybrid plasmonic cavity device structure for enhancing the optical absorption of organic photovoltaics. © 2011 Optical Society of America.en_HK
dc.languageengen_US
dc.publisherOptical Society of America. The Journal's web site is located at http://www.opticsexpress.orgen_HK
dc.relation.ispartofOptics Expressen_HK
dc.rightsOptics Express. Copyright © Optical Society of America.-
dc.subjectActive material-
dc.subjectActive polymers-
dc.subjectCavity devices-
dc.subjectDecay length-
dc.subjectDispersion relations-
dc.titleOptical design of organic solar cell with hybrid plasmonic systemen_HK
dc.typeArticleen_HK
dc.identifier.emailSha, WEI: shawei@hku.hken_HK
dc.identifier.emailChoy, WCH: chchoy@eee.hku.hken_HK
dc.identifier.emailChew, WC: wcchew@hku.hken_HK
dc.identifier.authoritySha, WEI=rp01605en_HK
dc.identifier.authorityChoy, WCH=rp00218en_HK
dc.identifier.authorityChew, WC=rp00656en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1364/OE.19.015908en_HK
dc.identifier.pmid21934954-
dc.identifier.scopuseid_2-s2.0-80051745870en_HK
dc.identifier.hkuros191802en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-80051745870&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume19en_HK
dc.identifier.issue17en_HK
dc.identifier.spage15908en_HK
dc.identifier.epage15918en_HK
dc.identifier.eissn1094-4087-
dc.identifier.isiWOS:000293894900028-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridSha, WEI=34267903200en_HK
dc.identifier.scopusauthoridChoy, WCH=7006202371en_HK
dc.identifier.scopusauthoridChen, YP=37033583400en_HK
dc.identifier.scopusauthoridChew, WC=36014436300en_HK
dc.identifier.issnl1094-4087-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats