File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: LaTiON/LaON as band-engineered charge-trapping layer for nonvolatile memory applications

TitleLaTiON/LaON as band-engineered charge-trapping layer for nonvolatile memory applications
Authors
KeywordsPhysics
Condensed Matter
Optical and Electronic Materials
Nanotechnology
Characterization and Evaluation Materials
Surfaces and Interfaces and Thin Films
Operating Procedures and Materials Treatment
Issue Date2012
PublisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00339/index.htm
Citation
Applied Physics A: Materials Science And Processing, 2012, v. 108 n. 1, p. 229-234 How to Cite?
AbstractCharge-trapping characteristics of stacked LaTiON/LaON film were investigated based on Al/Al 2O 3/LaTiON-LaON/SiO 2/Si (band-engineered MONOS) capacitors. The physical properties of the high-k films were analyzed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The band profile of this band-engineered MONOS device was characterized by investigating the current-conduction mechanism. By adopting stacked LaTiON/LaON film instead of LaON film as charge-trapping layer, improved electrical properties can be achieved in terms of larger memory window (5.4 V at ±10-V sweeping voltage), higher program speed with lower operating gate voltage (2.1 V at 100-μs +6 V), and smaller charge loss rate at 125 °C, mainly due to the variable tunneling path of charge carriers under program/erase and retention modes (realized by the band-engineered charge-trapping layer), high trap density of LaTiON, and large barrier height at LaTiON/SiO 2 (2.3 eV). © 2012 The Author(s).
Persistent Identifierhttp://hdl.handle.net/10722/147131
ISSN
2021 Impact Factor: 2.983
2020 SCImago Journal Rankings: 0.485
ISI Accession Number ID
References

H.J. Kim, S.Y. Cha, D.J. Choi, Mater. Sci. Semicond. Process. 13, 9 (2010) doi: 10.1016/j.mssp.2010.01.002

J.C. Wang, C.T. Lin, J. Appl. Phys. 109, 064506 (2011) 2011JAP...109f4506W doi: 10.1063/1.3556761

J. Kwo, M. Hong, A.R. Kortan, K.L. Queeney, Y.J. Chabal, R.L. Opila, D.A. Muller, S.N.G. Chu, B.J. Sapjeta, T.S. Lay, J.P. Mannaerts, T. Boone, H.W. Krautter, J.J. Krajewski, A.M. Sergnt, J.M. Rosamilia, J. Appl. Phys. 89, 3920 (2001) 2001JAP....89.3920K doi: 10.1063/1.1352688

T.M. Pan, T.Y. Yu, Semicond. Sci. Technol. 24, 095022 (2009) 2009SeScT..24i5022P doi: 10.1088/0268-1242/24/9/095022

J. Robertson, Rep. Prog. Phys. 69, 327 (2006) 2006RPPh...69..327R doi: 10.1088/0034-4885/69/2/R02

Y.H. Wu, L.L. Chen, Y.S. Lin, M.Y. Li, H.C. Wu, IEEE Electron Device Lett. 30, 1290 (2009) 2009IEDL...30.1290W doi: 10.1109/LED.2009.2022346

H.J. Yang, C.F. Cheng, W.B. Chen, S.H. Lin, F.S. Yeh, S.P. McAlister, A. Chin, IEEE Trans. Electron Devices 55, 1417 (2008) 2008ITED...55.1417Y doi: 10.1109/TED.2008.920973

J.Y. Wu, Y.T. Chen, M.H. Lin, T.B. Wu, IEEE Electron Device Lett. 31, 993 (2010) 2010IEDL...31..993W doi: 10.1109/LED.2010.2052090

G. Zhang, C.H. Ra, H.M. Li, T.Z. Shen, B.K. Cheong, W.J. Yoo, IEEE Trans. Electron Devices 57, 2794 (2010) 2010ITED...57.2794Z doi: 10.1109/TED.2010.2066200

G. Dutta, K.P.S.S. Hembram, G.M. Rao, U.V. Waghmare, J. Appl. Phys. 103, 016102 (2008) 2008JAP...103a6102D doi: 10.1063/1.2829777

D.M. Ramo, A.L. Shluger, G. Bersuker, Phys. Rev. B 79, 035306 (2009) 2009PhRvB..79c5306M doi: 10.1103/PhysRevB.79.035306

F.Y. Tian, D. Yang, R.L. Opila, A.V. Teplyakov, Appl. Surf. Sci. 258, 3019 (2012) 2012ApSS..258.3019T doi: 10.1016/j.apsusc.2011.11.030

X.P. Wang, M.F. Li, A. Chin, C.X. Zhu, J. Shao, W. Lu, X.C. Shen, X.F. Yu, R. Chi, C. Shen, A.C.H. Huan, J.S. Pan, A.Y. Du, P. Lo, D.S.H. Chan, D.L. Kwong, Solid-State Electron. 50, 986 (2006) 2006SSEle..50..986W doi: 10.1016/j.sse.2006.05.008

Y. Kim, S.I. Ohmi, K. Tsutsui, H. Iwai, Jpn. J. Appl. Phys. 44, 4032 (2005) 2005JaJAP..44.4032K doi: 10.1143/JJAP.44.4032

W.J. Zhu, T.P. Ma, T. Tamagawa, J. Kim, Y. Di, IEEE Electron Device Lett. 23, 97 (2002) 2002IEDL...23...97Z doi: 10.1109/55.981318

A. Ziani, C. Le Paven-Thivet, L. Le Gendre, D. Fasquelle, J.C. Carru, F. Tessier, J. Pinel, Thin Solid Films 517, 544 (2008) 2008TSF...517..544Z doi: 10.1016/j.tsf.2008.06.061

D. Eom, S.Y. No, C.S. Hwang, H.J. Kim, J. Electrochem. Soc. 154, G49 (2007) doi: 10.1149/1.2409889

 

DC FieldValueLanguage
dc.contributor.authorHuang, XDen_HK
dc.contributor.authorLai, PTen_HK
dc.contributor.authorSin, JKOen_HK
dc.date.accessioned2012-05-28T08:20:04Z-
dc.date.available2012-05-28T08:20:04Z-
dc.date.issued2012en_HK
dc.identifier.citationApplied Physics A: Materials Science And Processing, 2012, v. 108 n. 1, p. 229-234en_HK
dc.identifier.issn0947-8396en_HK
dc.identifier.urihttp://hdl.handle.net/10722/147131-
dc.description.abstractCharge-trapping characteristics of stacked LaTiON/LaON film were investigated based on Al/Al 2O 3/LaTiON-LaON/SiO 2/Si (band-engineered MONOS) capacitors. The physical properties of the high-k films were analyzed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The band profile of this band-engineered MONOS device was characterized by investigating the current-conduction mechanism. By adopting stacked LaTiON/LaON film instead of LaON film as charge-trapping layer, improved electrical properties can be achieved in terms of larger memory window (5.4 V at ±10-V sweeping voltage), higher program speed with lower operating gate voltage (2.1 V at 100-μs +6 V), and smaller charge loss rate at 125 °C, mainly due to the variable tunneling path of charge carriers under program/erase and retention modes (realized by the band-engineered charge-trapping layer), high trap density of LaTiON, and large barrier height at LaTiON/SiO 2 (2.3 eV). © 2012 The Author(s).en_HK
dc.languageengen_US
dc.publisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00339/index.htmen_HK
dc.relation.ispartofApplied Physics A: Materials Science and Processingen_HK
dc.rightsThe Author(s)en_US
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.en_US
dc.subjectPhysicsen_US
dc.subjectCondensed Matteren_US
dc.subjectOptical and Electronic Materialsen_US
dc.subjectNanotechnologyen_US
dc.subjectCharacterization and Evaluation Materialsen_US
dc.subjectSurfaces and Interfaces and Thin Filmsen_US
dc.subjectOperating Procedures and Materials Treatmenten_US
dc.titleLaTiON/LaON as band-engineered charge-trapping layer for nonvolatile memory applicationsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://www.springerlink.com/link-out/?id=2104&code=X350416117W6J7V0&MUD=MPen_US
dc.identifier.emailLai, PT:laip@eee.hku.hken_HK
dc.identifier.authorityLai, PT=rp00130en_HK
dc.description.naturepublished_or_final_versionen_US
dc.identifier.doi10.1007/s00339-012-6881-yen_HK
dc.identifier.scopuseid_2-s2.0-84864571606en_HK
dc.identifier.hkuros225919-
dc.relation.referencesH.J. Kim, S.Y. Cha, D.J. Choi, Mater. Sci. Semicond. Process. 13, 9 (2010)en_US
dc.relation.referencesdoi: 10.1016/j.mssp.2010.01.002en_US
dc.relation.referencesJ.C. Wang, C.T. Lin, J. Appl. Phys. 109, 064506 (2011) <Occurrence Type="Bibcode"><Handle>2011JAP...109f4506W</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1063/1.3556761en_US
dc.relation.referencesJ. Kwo, M. Hong, A.R. Kortan, K.L. Queeney, Y.J. Chabal, R.L. Opila, D.A. Muller, S.N.G. Chu, B.J. Sapjeta, T.S. Lay, J.P. Mannaerts, T. Boone, H.W. Krautter, J.J. Krajewski, A.M. Sergnt, J.M. Rosamilia, J. Appl. Phys. 89, 3920 (2001) <Occurrence Type="Bibcode"><Handle>2001JAP....89.3920K</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1063/1.1352688en_US
dc.relation.referencesT.M. Pan, T.Y. Yu, Semicond. Sci. Technol. 24, 095022 (2009) <Occurrence Type="Bibcode"><Handle>2009SeScT..24i5022P</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1088/0268-1242/24/9/095022en_US
dc.relation.referencesJ. Robertson, Rep. Prog. Phys. 69, 327 (2006) <Occurrence Type="Bibcode"><Handle>2006RPPh...69..327R</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1088/0034-4885/69/2/R02en_US
dc.relation.referencesY.H. Wu, L.L. Chen, Y.S. Lin, M.Y. Li, H.C. Wu, IEEE Electron Device Lett. 30, 1290 (2009) <Occurrence Type="Bibcode"><Handle>2009IEDL...30.1290W</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1109/LED.2009.2022346en_US
dc.relation.referencesH.J. Yang, C.F. Cheng, W.B. Chen, S.H. Lin, F.S. Yeh, S.P. McAlister, A. Chin, IEEE Trans. Electron Devices 55, 1417 (2008) <Occurrence Type="Bibcode"><Handle>2008ITED...55.1417Y</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1109/TED.2008.920973en_US
dc.relation.referencesJ.Y. Wu, Y.T. Chen, M.H. Lin, T.B. Wu, IEEE Electron Device Lett. 31, 993 (2010) <Occurrence Type="Bibcode"><Handle>2010IEDL...31..993W</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1109/LED.2010.2052090en_US
dc.relation.referencesG. Zhang, C.H. Ra, H.M. Li, T.Z. Shen, B.K. Cheong, W.J. Yoo, IEEE Trans. Electron Devices 57, 2794 (2010) <Occurrence Type="Bibcode"><Handle>2010ITED...57.2794Z</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1109/TED.2010.2066200en_US
dc.relation.referencesG. Dutta, K.P.S.S. Hembram, G.M. Rao, U.V. Waghmare, J. Appl. Phys. 103, 016102 (2008) <Occurrence Type="Bibcode"><Handle>2008JAP...103a6102D</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1063/1.2829777en_US
dc.relation.referencesD.M. Ramo, A.L. Shluger, G. Bersuker, Phys. Rev. B 79, 035306 (2009) <Occurrence Type="Bibcode"><Handle>2009PhRvB..79c5306M</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1103/PhysRevB.79.035306en_US
dc.relation.referencesF.Y. Tian, D. Yang, R.L. Opila, A.V. Teplyakov, Appl. Surf. Sci. 258, 3019 (2012) <Occurrence Type="Bibcode"><Handle>2012ApSS..258.3019T</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1016/j.apsusc.2011.11.030en_US
dc.relation.referencesX.P. Wang, M.F. Li, A. Chin, C.X. Zhu, J. Shao, W. Lu, X.C. Shen, X.F. Yu, R. Chi, C. Shen, A.C.H. Huan, J.S. Pan, A.Y. Du, P. Lo, D.S.H. Chan, D.L. Kwong, Solid-State Electron. 50, 986 (2006) <Occurrence Type="Bibcode"><Handle>2006SSEle..50..986W</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1016/j.sse.2006.05.008en_US
dc.relation.referencesY. Kim, S.I. Ohmi, K. Tsutsui, H. Iwai, Jpn. J. Appl. Phys. 44, 4032 (2005) <Occurrence Type="Bibcode"><Handle>2005JaJAP..44.4032K</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1143/JJAP.44.4032en_US
dc.relation.referencesW.J. Zhu, T.P. Ma, T. Tamagawa, J. Kim, Y. Di, IEEE Electron Device Lett. 23, 97 (2002) <Occurrence Type="Bibcode"><Handle>2002IEDL...23...97Z</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1109/55.981318en_US
dc.relation.referencesA. Ziani, C. Le Paven-Thivet, L. Le Gendre, D. Fasquelle, J.C. Carru, F. Tessier, J. Pinel, Thin Solid Films 517, 544 (2008) <Occurrence Type="Bibcode"><Handle>2008TSF...517..544Z</Handle></Occurrence>en_US
dc.relation.referencesdoi: 10.1016/j.tsf.2008.06.061en_US
dc.relation.referencesD. Eom, S.Y. No, C.S. Hwang, H.J. Kim, J. Electrochem. Soc. 154, G49 (2007)en_US
dc.relation.referencesdoi: 10.1149/1.2409889en_US
dc.relation.referencesS.H. Lin, A. Chin, F.S. Yeh, S.P. McAlister, in Tech. Dig. Int. Electron Device Meet (2008), p. 843en_US
dc.relation.referencesX.D. Huang, P.T. Lai, ECS Trans. (2012) will be publisheden_US
dc.identifier.spage229en_HK
dc.identifier.epage234en_HK
dc.identifier.eissn1432-0630en_US
dc.identifier.isiWOS:000306126600033-
dc.publisher.placeGermanyen_HK
dc.description.otherSpringer Open Choice, 28 May 2012en_US
dc.identifier.scopusauthoridHuang, XD=37057428400en_HK
dc.identifier.scopusauthoridLai, PT=7202946460en_HK
dc.identifier.scopusauthoridSin, JKO=7103312667en_HK
dc.identifier.citeulike10498496-
dc.identifier.issnl0947-8396-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats