File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On stent-graft models in thoracic aortic endovascular repair: A computational investigation of the hemodynamic factors

TitleOn stent-graft models in thoracic aortic endovascular repair: A computational investigation of the hemodynamic factors
Authors
KeywordsComputational fluid dynamics
Endovascular repair
Hemodynamics
Stent-graft modeling
Issue Date2008
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/compbiomed
Citation
Computers In Biology And Medicine, 2008, v. 38 n. 4, p. 484-489 How to Cite?
AbstractIn treating thoracic aortic diseases, endovascular repair involves the placement of a self-expanding stent-graft system across the diseased thoracic aorta. Computational fluid dynamic techniques are applied to model the blood flow by numerically solving the three-dimensional continuity equation and the time-dependent Navier-Stokes equations for an incompressible fluid. From our results, high blood pressure level and high systolic slope of the pressure waveform will significantly increase the drag force on a stent-graft whereas high blood viscosity causes only a mild increase. It indicates that hemodynamic factors might have an important impact on the drag force and thus play a significant role in the risk of stent-graft failure. © 2008 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/156946
ISSN
2021 Impact Factor: 6.698
2020 SCImago Journal Rankings: 0.884
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorFung, GSKen_US
dc.contributor.authorLam, SKen_US
dc.contributor.authorCheng, SWKen_US
dc.contributor.authorChow, KWen_US
dc.date.accessioned2012-08-08T08:44:39Z-
dc.date.available2012-08-08T08:44:39Z-
dc.date.issued2008en_US
dc.identifier.citationComputers In Biology And Medicine, 2008, v. 38 n. 4, p. 484-489en_US
dc.identifier.issn0010-4825en_US
dc.identifier.urihttp://hdl.handle.net/10722/156946-
dc.description.abstractIn treating thoracic aortic diseases, endovascular repair involves the placement of a self-expanding stent-graft system across the diseased thoracic aorta. Computational fluid dynamic techniques are applied to model the blood flow by numerically solving the three-dimensional continuity equation and the time-dependent Navier-Stokes equations for an incompressible fluid. From our results, high blood pressure level and high systolic slope of the pressure waveform will significantly increase the drag force on a stent-graft whereas high blood viscosity causes only a mild increase. It indicates that hemodynamic factors might have an important impact on the drag force and thus play a significant role in the risk of stent-graft failure. © 2008 Elsevier Ltd. All rights reserved.en_US
dc.languageengen_US
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/compbiomeden_US
dc.relation.ispartofComputers in Biology and Medicineen_US
dc.subjectComputational fluid dynamics-
dc.subjectEndovascular repair-
dc.subjectHemodynamics-
dc.subjectStent-graft modeling-
dc.subject.meshAngioplasty - Instrumentationen_US
dc.subject.meshAorta, Thoracic - Physiopathology - Surgeryen_US
dc.subject.meshAortic Aneurysm, Thoracic - Physiopathology - Surgeryen_US
dc.subject.meshBlood Flow Velocity - Physiologyen_US
dc.subject.meshBlood Pressure - Physiologyen_US
dc.subject.meshBlood Vessel Prosthesis Implantationen_US
dc.subject.meshBlood Viscosity - Physiologyen_US
dc.subject.meshComputer Simulationen_US
dc.subject.meshEquipment Failure Analysisen_US
dc.subject.meshHemodynamics - Physiologyen_US
dc.subject.meshHumansen_US
dc.subject.meshMathematical Computingen_US
dc.subject.meshShear Strengthen_US
dc.subject.meshStentsen_US
dc.titleOn stent-graft models in thoracic aortic endovascular repair: A computational investigation of the hemodynamic factorsen_US
dc.typeArticleen_US
dc.identifier.emailCheng, SWK:wkcheng@hkucc.hku.hken_US
dc.identifier.emailChow, KW:kwchow@hku.hken_US
dc.identifier.authorityCheng, SWK=rp00374en_US
dc.identifier.authorityChow, KW=rp00112en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.compbiomed.2008.01.012en_US
dc.identifier.pmid18342843-
dc.identifier.scopuseid_2-s2.0-40949115836en_US
dc.identifier.hkuros143436-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-40949115836&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume38en_US
dc.identifier.issue4en_US
dc.identifier.spage484en_US
dc.identifier.epage489en_US
dc.identifier.isiWOS:000255450600009-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridFung, GSK=7004213392en_US
dc.identifier.scopusauthoridLam, SK=7402279473en_US
dc.identifier.scopusauthoridCheng, SWK=7404684779en_US
dc.identifier.scopusauthoridChow, KW=13605209900en_US
dc.identifier.issnl0010-4825-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats