File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Performance of orthogonal beamforming for SDMA with limited feedback

TitlePerformance of orthogonal beamforming for SDMA with limited feedback
Authors
KeywordsBroadcast channels
Feedback communication
Multiuser channels
Space division multiplexing
Issue Date2009
Citation
IEEE Transactions on Vehicular Technology, 2009, v. 58 n. 1, p. 152-164 How to Cite?
AbstractOn the multiantenna broadcast channel, the spatial degrees of freedom support simultaneous transmission to multiple users. The optimal multiuser transmission, which is known as dirty paper coding, is not directly realizable. Moreover, close-to-optimal solutions such as Tomlinson-Harashima precoding are sensitive to channel state information (CSI) inaccuracy. This paper considers a more practical design called per user unitary and rate control (PU2RC), which has been proposed for emerging cellular standards. PU2RC supports multiuser simultaneous transmission, enables limited feedback, and is capable of exploiting multiuser diversity. Its key feature is an orthogonal beamforming (or precoding) constraint, where each user selects a beamformer (or precoder) from a codebook of multiple orthonormal bases. In this paper, the asymptotic throughput scaling laws for PU2RC with a large user pool are derived for different regimes of the signal-to-noise ratio (SNR). In the multiuser interference-limited regime, the throughput of PU2RC is shown to logarithmically scale with the number of users. In the normal SNR and noise-limited regimes, the throughput is found to scale double logarithmically with the number of users and linearly with the number of antennas at the base station. In addition, numerical results show that PU2RC achieves higher throughput and is more robust against CSI quantization errors than the popular alternative of zero-forcing beamforming if the number of users is sufficiently large. © 2009 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/194230
ISSN
2021 Impact Factor: 6.239
2020 SCImago Journal Rankings: 1.365
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorHuang, K-
dc.contributor.authorAndrews, JG-
dc.contributor.authorHeath Jr, RW-
dc.date.accessioned2014-01-30T03:32:20Z-
dc.date.available2014-01-30T03:32:20Z-
dc.date.issued2009-
dc.identifier.citationIEEE Transactions on Vehicular Technology, 2009, v. 58 n. 1, p. 152-164-
dc.identifier.issn0018-9545-
dc.identifier.urihttp://hdl.handle.net/10722/194230-
dc.description.abstractOn the multiantenna broadcast channel, the spatial degrees of freedom support simultaneous transmission to multiple users. The optimal multiuser transmission, which is known as dirty paper coding, is not directly realizable. Moreover, close-to-optimal solutions such as Tomlinson-Harashima precoding are sensitive to channel state information (CSI) inaccuracy. This paper considers a more practical design called per user unitary and rate control (PU2RC), which has been proposed for emerging cellular standards. PU2RC supports multiuser simultaneous transmission, enables limited feedback, and is capable of exploiting multiuser diversity. Its key feature is an orthogonal beamforming (or precoding) constraint, where each user selects a beamformer (or precoder) from a codebook of multiple orthonormal bases. In this paper, the asymptotic throughput scaling laws for PU2RC with a large user pool are derived for different regimes of the signal-to-noise ratio (SNR). In the multiuser interference-limited regime, the throughput of PU2RC is shown to logarithmically scale with the number of users. In the normal SNR and noise-limited regimes, the throughput is found to scale double logarithmically with the number of users and linearly with the number of antennas at the base station. In addition, numerical results show that PU2RC achieves higher throughput and is more robust against CSI quantization errors than the popular alternative of zero-forcing beamforming if the number of users is sufficiently large. © 2009 IEEE.-
dc.languageeng-
dc.relation.ispartofIEEE Transactions on Vehicular Technology-
dc.subjectBroadcast channels-
dc.subjectFeedback communication-
dc.subjectMultiuser channels-
dc.subjectSpace division multiplexing-
dc.titlePerformance of orthogonal beamforming for SDMA with limited feedback-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/TVT.2008.925003-
dc.identifier.scopuseid_2-s2.0-59649125050-
dc.identifier.volume58-
dc.identifier.issue1-
dc.identifier.spage152-
dc.identifier.epage164-
dc.identifier.isiWOS:000262778800016-
dc.identifier.issnl0018-9545-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats