File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Optimized Power Control for Over-the-Air Computation in Fading Channels

TitleOptimized Power Control for Over-the-Air Computation in Fading Channels
Authors
KeywordsPower control
Fading channels
Wireless communication
Sensors
Wireless sensor networks
Issue Date2020
PublisherInstitute of Electrical and Electronics Engineers. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7693
Citation
IEEE Transactions on Wireless Communications, 2020, v. 19 n. 11, p. 7498-7513 How to Cite?
AbstractOver-the-air computation (AirComp) of a function (e.g., averaging) has recently emerged as an efficient multiple-access scheme for fast aggregation of distributed data at mobile devices (e.g., sensors) at a fusion center (FC) over wireless channels. To realize reliable AirComp in practice, it is crucial to adaptively control the devices' transmit power for coping with channel distortion to achieve the desired magnitude alignment of simultaneous signals. In this paper, we solve the power control problem. Our objective is to minimize the computation error by jointly optimizing the transmit power at devices and a signal scaling factor (called denoising factor) at the FC, subject to individual average power constraints at devices. The problem is generally non-convex due to the coupling of the transmit powers at devices and denoising factor at the FC. To tackle the challenge, we first consider the special case with static channels, for which we derive the optimal solution in closed form. The derived power control exhibits a threshold-based structure: if the product of the channel quality and power budget for each device, called quality indicator, exceeds an optimized threshold, this device applies channel-inversion power control; otherwise, it performs full power transmission. We proceed to consider the general case with time-varying channels. To solve the more challenging non-convex power control problem, we use the Lagrange-duality method via exploiting its 'time-sharing' property. The derived power control exhibits a regularized channel inversion structure, where the regularization balances the tradeoff between the signal-magnitude alignment and noise suppression. Moreover, for the special case with only one device being power limited, we show that the power control for the power-limited device has an interesting channel-inversion water-filling structure, while those for other devices (with sufficiently large power budgets) reduce to channel-inversion power control. Numerical results show that the derived power control significantly reduces the computation error as compared with the conventional designs.
Persistent Identifierhttp://hdl.handle.net/10722/295850
ISSN
2021 Impact Factor: 8.346
2020 SCImago Journal Rankings: 2.010
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorCao, X-
dc.contributor.authorZHU, G-
dc.contributor.authorXu, J-
dc.contributor.authorHuang, K-
dc.date.accessioned2021-02-08T08:14:55Z-
dc.date.available2021-02-08T08:14:55Z-
dc.date.issued2020-
dc.identifier.citationIEEE Transactions on Wireless Communications, 2020, v. 19 n. 11, p. 7498-7513-
dc.identifier.issn1536-1276-
dc.identifier.urihttp://hdl.handle.net/10722/295850-
dc.description.abstractOver-the-air computation (AirComp) of a function (e.g., averaging) has recently emerged as an efficient multiple-access scheme for fast aggregation of distributed data at mobile devices (e.g., sensors) at a fusion center (FC) over wireless channels. To realize reliable AirComp in practice, it is crucial to adaptively control the devices' transmit power for coping with channel distortion to achieve the desired magnitude alignment of simultaneous signals. In this paper, we solve the power control problem. Our objective is to minimize the computation error by jointly optimizing the transmit power at devices and a signal scaling factor (called denoising factor) at the FC, subject to individual average power constraints at devices. The problem is generally non-convex due to the coupling of the transmit powers at devices and denoising factor at the FC. To tackle the challenge, we first consider the special case with static channels, for which we derive the optimal solution in closed form. The derived power control exhibits a threshold-based structure: if the product of the channel quality and power budget for each device, called quality indicator, exceeds an optimized threshold, this device applies channel-inversion power control; otherwise, it performs full power transmission. We proceed to consider the general case with time-varying channels. To solve the more challenging non-convex power control problem, we use the Lagrange-duality method via exploiting its 'time-sharing' property. The derived power control exhibits a regularized channel inversion structure, where the regularization balances the tradeoff between the signal-magnitude alignment and noise suppression. Moreover, for the special case with only one device being power limited, we show that the power control for the power-limited device has an interesting channel-inversion water-filling structure, while those for other devices (with sufficiently large power budgets) reduce to channel-inversion power control. Numerical results show that the derived power control significantly reduces the computation error as compared with the conventional designs.-
dc.languageeng-
dc.publisherInstitute of Electrical and Electronics Engineers. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7693-
dc.relation.ispartofIEEE Transactions on Wireless Communications-
dc.rightsIEEE Transactions on Wireless Communications. Copyright © Institute of Electrical and Electronics Engineers.-
dc.rights©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.subjectPower control-
dc.subjectFading channels-
dc.subjectWireless communication-
dc.subjectSensors-
dc.subjectWireless sensor networks-
dc.titleOptimized Power Control for Over-the-Air Computation in Fading Channels-
dc.typeArticle-
dc.identifier.emailHuang, K: huangkb@eee.hku.hk-
dc.identifier.authorityHuang, K=rp01875-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/TWC.2020.3012287-
dc.identifier.scopuseid_2-s2.0-85095502731-
dc.identifier.hkuros321244-
dc.identifier.volume19-
dc.identifier.issue11-
dc.identifier.spage7498-
dc.identifier.epage7513-
dc.identifier.isiWOS:000589218700035-
dc.publisher.placeUnited States-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats