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Abstract. After explaining the concepts of Langlands dual and miniscule representations, we define

an analog of the Gauss sum for any compact, simple Lie group with a simply laced Lie algebra. We

then show a reciprocity property when a Lie group is exchanged with its Langlands dual. We also

explore the relation with theta functions and modular transformations. In the non-simply laced

case, we construct a unitary representation of the Hecke group which involves interesting new phase

factors.
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1. Introduction

Duality has played an important role in physics and mathematics. One of the earliest examples is

the electric-magnetic duality or S-duality [9, 16], which is exact in the N = 4 supersymmetric gauge

theory. This leads to the celebrated conjecture of Vafa and Witten [20] on the Euler number of the

moduli space of anti-self-dual connections. In this paper, we study some finite dimensional unitary

representations of the modular group motivated from the S-duality transformations in [20] and their

consequences. We also construct similar representations of the Hecke groups. We leave the interplay

with four manifolds to subsequent work.

The paper is organized as follows. In Section 2, we review the concepts of Langlands dual and

miniscule representations. In Section 3, we study the simply laced case. We define an analog of the

Gauss sum for a compact simple Lie group using miniscule representations. We then show a reciprocity

property when the Lie group is exchanged with its Langlands dual. We also explore the relation with

theta functions and modular transformations. Section 4 is on the non-simply laced case. We start with

the theta functions and derive an analog of the modular transformations for the Hecke group. This

enables us to construct a finite dimensional unitary representation of the Hecke group which involves

new phase factors that will have interesting implications on S-duality.
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2Current address. E-mail: swu@maths.hku.hk
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2. Langlands dual and miniscule representations

To explain the concept of dual groups, we start with the Abelian case. Suppose T is a compact

real torus with Lie algebra t. Then T = t/2π
√
−1 ℓ, where ℓ ⊂

√
−1 t is a lattice of full rank. We note

that ℓ ∼= Hom(U(1), T ). On the other hand, the (one-dimensional) irreducible representations of T are

classified by the dual lattice ℓ∗ ⊂
√
−1 t∗. The dual torus is T ∗ = t∗/2π

√
−1 ℓ∗, for which the roles of

ℓ and ℓ∗ are reversed. That is, ℓ∗ ∼= Hom(U(1), T ∗) whereas ℓ classifies the irreducible representations

of T ∗.

Now let G be a simple, compact and connected Lie group. The Langlands dual LG of G is char-

acterised by the property that the irreducible representations of LG are in one-to-one correspondence

with the homomorphisms from U(1) to G modulo the conjugation in G. We will describe a construction

of LG below. Some examples of G and its dual LG are listed as follows.

G SU(n) Spin(2n) Sp(n) Spin(2n + 1) E8

LG SU(n)/Zn SO(2n)/Z2 SO(2n + 1) Sp(n)/Z2 E8

Let T be a maximal torus of G and g, t, the Lie algebras of G, T , respectively. Recall that the

root system ∆ ⊂
√
−1 t∗ is the set of roots and that the root lattice Λ = spanZ∆ ⊂

√
−1 t∗ is the

lattice generated by ∆. For any α ∈ ∆, the corresponding coroot α̌ ∈ t is the vector such that

〈β, α̌〉 = 2(β, α)/(α,α) for any β ∈ ∆. Here 〈·, ·〉 is the pairing between
√
−1 t and it dual space

√
−1 t∗

while (·, ·) is an inner product on
√
−1 t∗ invariant under the Weyl group; such an inner product is

unique up to a multiple of positive scalars (since g is simple) and the coroot α̌ does not depend on its

choice. The set ∆̌ = {α̌|α ∈ ∆} is also a root system. Let Λ̌ = spanZΛ̌ ⊂
√
−1 t be the coroot lattice.

Then the weight lattice is Λ̌∗ ⊂
√
−1 t∗ and the coweight lattice is Λ∗ ⊂

√
−1 t. Let ℓ ⊂

√
−1 t be the

lattice such that T = t/2π
√
−1 ℓ. Then we have the inclusions [5, §4.9]

Λ̌ ⊂ ℓ ⊂ Λ∗ ⊂
√
−1 t, Λ ⊂ ℓ∗ ⊂ Λ̌∗ ⊂

√
−1 t∗. (2.1)

The Lie algebra g uniquely determines the universal covering group G̃ of G, which is simply con-

nected and whose centre is Z(G̃) ∼= Λ∗/Λ̌. Here is a table of Z(G̃).

g Ar Br Cr Dr Er=6,7,8 F4 G2

Z(G̃) Zr+1 Z2 Z2 Z4
(r odd)

Z2 ⊕ Z2
(r even)

Z9−r 1 1

At the opposite extreme of G̃, the adjoint group Gad = G̃/Z(G̃) has the same Lie algebra g, but has

Z(Gad) = 1 and π1(Gad) = Z(G̃). Notice that ℓ = Λ̌ for G = G̃ and ℓ = Λ∗ for G = Gad. For a general

compact group G with Lie algebra g, we have Z(G) = Λ∗/ℓ and π1(G) = ℓ/Λ̌.

The construction of the Langlands dual LG is achieved in two steps. First, the Lie algebra Lg is

defined so that its root system is the coroot system ∆̌ of g. In Cartan’s classification, Lg is of the same

type as g unless g is of type Br or Cr, in which case Lg is of type Cr or Br, respectively. The Lie algebra
Lg then determines the universal covering group L̃G, whose centre is Z(L̃G) ∼= Λ̌∗/Λ. The latter is also

the character group Z(G̃)∗ = Hom(Z(G̃), U(1)) of Z(G̃). Second, the fundamental group of LG, which

should be a subgroup of Z(L̃G) ∼= Z(G̃)∗, is defined to be π1(
LG) = {χ ∈ Z(G̃)∗ |χ(π1(G)) = 1}. L̃G

and π1(
LG) uniquely detemine LG = L̃G/π1(

LG). We have π1(
LG) ∼= Z(G)∗ ∼= ℓ∗/Λ and Z(LG) ∼=

π1(G)∗ ∼= Λ̌∗/ℓ∗. In particular, the Langlands duals of G̃, Gad are (LG)ad, L̃G, respectively.
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A non-trivial representation of g is miniscule if all the weights form a single Weyl group orbit.

Their highest weights are called miniscule weights. A miniscule weight must be fundamental, but the

converse is not true. For some simple Lie algebras (of types Br (r ≥ 3), Dr (r ≥ 4) and all exceptional

types), the adjoint representation is fundamental, but it can not be miniscule because 0 is a weight not

in the orbit of the highest weight. A fundamental representation may also contain non-zero weights

of different lengths. For example, the adjoint representation of Br (r ≥ 3) is fundamental; it is the

second exterior product of the defining representation. But all non-zero weights of the latter are the

weights of the former. If a representation is miniscule, then so are its conjugate representation and

those obtained by (outer) automorphisms of g. A complete list of miniscule weights is shown below by

highlighting the corresponding vertices in the Dynkin diagrammes.

a a a a a

Ar

a a a a q

Br

g g g g g g

q q q q a

Cr

a a a a�
�

�

H
H

H

a

a

Dr

g g

g

g

a a a a a

a

E6

a a a a a a

a

E7

g g g

For any simple Lie algebra g, the miniscule weights are in one-to-one correspondence with the non-

zero elements in Λ̌∗/Λ [4, §VIII.7.3]. To paraphrase this result, notice that the set Λ̌∗/Λ is precisely

Z(L̃G), the centre of (the universal covering of) the Langlands dual group. So there is a one-to-one

correspondence between the miniscule representations and the non-trivial elements of Z(L̃G). The

above list of miniscule representations can be compared with the table of the centre.

Let M(g) be the set of zero and miniscule weights of g. The bijection with Z(L̃G) = Z(G̃)∗ means

that there is a group structure on the set M(g), which we now describe. Two irreducible representations

of g are congruent [7, §3] if the differences of their weights are in the root lattice Λ. This classifies

representations of g according to how Z(G̃) acts. That is, two representations of g are in the same

congruence class if and only if they, upon exponentiating to G̃ and restricting to the center, yield the

same character. (Compare [7, Theorem 3.1].) For example, the representations of Br fall into two

congruence classes: those that are representations of SO(2r + 1) (such as the defining representation

and its tensor powers) and those that are not (such as the spinor representation). The group structure

on the congruence classes comes from the tensor product (which is well-defined on such classes) and

coincides with the multiplication of characters on Z(G̃). In each congruent class of representations,

the (unique) one of the smallest dimension is the trivial or miniscule representation. So M(g) is the

set of representatives of the congruence classes of representations. Moreover, it can shown that given

two miniscule representations, their tensor product contains a miniscule or trivial representation as a

summand.
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At the group level, we say that a representation of G is miniscule if the induced representation of the

Lie algebra g is so. Let M(G) be the set of highest weights of the trivial or miniscule representations

of G. Clearly, M(G) is a subgroup of M(g) under the tensor product of congruence classes, and

M(G̃) = M(g), M(Gad) = {0}. For example, if G = SU(pq)/Zp, then M(G) ∼= Zq. In general, M(G) is

in one-to-one correspondence with the subset ℓ∗/Λ of Λ̌∗/Λ ∼= Z(L̃G). Therefore we have the following

Lemma 2.1 There is an isomorphism between the groups M(G) and π1(
LG) ∼= Z(G)∗.

3. Simply laced case: Gauss sum and modular invariance

As before, let G be a compact, simple Lie group. Suppose the Lie algebra g is simply laced, that

is, all the roots are of the same length. We consider the Weyl group invariant inner product (·|·) on√
−1 t∗ so that (α|α) = 2 for all α ∈ ∆. We define an analog of the Gauss sum

G(G) =
1√

|Z(G)|
∑

µ∈M(G)

eπ
√
−1 (µ|µ) (3.1)

and set G(g) = G(G̃). For example, G(E8) = 1 since Z(E8) = 1 and

G(SU(n)) =
1√
n

n−1∑

k=0

eπ
√
−1

k(n−k)
n . (3.2)

The latter can be compared with the classical Gauss sum

n−1∑

k=0

e2π
√
−1 k2

n =
√

n 1+(−
√
−1 )n

1−
√
−1

. (3.3)

Identifying
√
−1 t with

√
−1 t∗ using the inner product (·|·), we have Λ̌ = Λ ⊂ Λ̌∗ = Λ∗. The

following is a relation between the Gauss sum of G and that of the Langlands dual LG.

Theorem 3.1 If g is simply laced and of rank r, then

G(G) = G(LG) e
π
√−1
4

r. (3.4)

In particular, ∑

µ∈M(g)

eπ
√
−1 (µ|µ) =

√
|Z(G)| eπ

√
−1
4

r. (3.5)

Examples of (3.5) are below.

Ar

r∑
k=0

eπ
√
−1 k(r+1−k)

r+1 =
√

r + 1 e
π
√

−1
4

r

Dr 1 + eπ
√
−1 + 2eπ

√
−1 r

4 =
√

4 e
π
√

−1
4

r

E6 1 + 2eπ
√
−1 4

3 =
√

3(e
π
√−1
4 )6

E7 1 + eπ
√
−1 3

2 =
√

2(e
π
√

−1
4 )7

E8 1 = (e
π
√

−1
4 )8
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If Z(G̃) = 1, then (3.5) is consistent only if the rank r = 0 mod 8, which is the case for E8. A non-trivial

example of (3.4) is

G(p, q) =

√
q

p
e

π
√

−1
4

(pq−1)
G(q, p) (3.6)

when G = SU(pq)/Zp,
LG = SU(pq)/Zq, r = pq − 1. Here

G(p, q) =

q−1∑

k=1

eπ
√
−1 p

k(q−k)
q (3.7)

is the generalised Gauss sum [6, §V.2]. If p, q are distinct odd primes, since G(p, q) =
(

p
q

)
G(1, q),

where
(

p
q

)
is the Legendre symbol, (3.6) implies (see for example [6, §V.3]) the celebrated quadratic

reciprocity of Gauss (
p

q

) (
q

p

)
= (−1)

(p−1)(q−1)
4 . (3.8)

The formula (3.5) for G = SU(n) appears explicitly in [20]; the generalisation to any simply laced

g is straightforward. As observed in [20], (3.5) is a special case of the following. Let V be a real vector

space with a (not necessarily positive) non-degenerate quadratic form (·, ·), which identifies V ∗ with

V . If L is an even lattice in V , then [2] (see also [15, Appen. 4])

∑

µ∈L∗/L

eπ
√
−1 (µ,µ) =

√
|L∗/L| e

π
√−1
4

σ, (3.9)

where σ is the signature of (·, ·).
(3.4) can be proved using the Fourier transform on finite Abelian groups (see for example [18,

§I.4]). To explain the general setting, let A be a finite Abelian group and let A∗ = Hom(A,U(1)),

the group of characters. The Fourier transform of a function f : A → C is f̂ : A∗ → C given by

f̂(χ) =
∑

a∈A χ(a)f(a), χ ∈ A∗. The inverse transform is f = 1
|A|

∑
χ∈A∗ f̂(χ)χ. In particular,

f(0) = 1
|A|

∑
χ∈A∗ f̂(χ). For any subgroup B of A, we have the (discrete) Poisson summation formula

[18, Theorem 4.11]
1

|B|
∑

a∈B

f(a) =
1

|A|
∑

χ∈(A∗)B

f̂(χ), (3.10)

where (A∗)B ∼= (A/B)∗ is the set of characters of A that are trivial on B. To apply to our situation,

let A = Λ∗/Λ, B = ℓ/Λ ∼= M(LG). A∗ can be identified with A by u 7→ χu, where χu(v) = e2π
√
−1 (u|v)

(u, v ∈ A). Then (A∗)B = ℓ∗/Λ ∼= M(G). If f(u) = eπ
√
−1 (u|u) (u ∈ A), then by (3.5), for any v ∈ A,

f̂(χv) =
∑

u∈Λ∗/Λ

eπ
√
−1 (u|u)τ+2π

√
−1 (u|v) = |Z(G̃)| e−π

√
−1 (v|v) eπ

√
−1 r

4 . (3.11)

Hence (3.4) follows from (3.10).

We now explain the relation of Theorem 3.1 with modular invariance. Recall that the modular

group Γ = SL(2, Z) is generated by S =
(
0 −1
1 0

)
and T =

(
1 1
0 1

)
satisfying the relations

S2 = (ST )3 ∈ Z(Γ ), S4 = I. (3.12)

5



Thus Γ̄ = PSL(2, Z) = Z2 ∗Z3 is the free product of Z2 and Z3. We construct a representation of Γ on

the group algebra C[M(g)] = spanC{|u〉 |u ∈ Λ∗/Λ}, where S and T act as (using the same notations)

S|u〉 = 1√
|Z(G̃)|

∑
v∈M(g)

e−2π
√
−1 (u|v)|v〉,

T |u〉 = e−
π
√

−1
12

r+π
√
−1 (u|u)|u〉.

(3.13)

The matrix of S is a discrete Fourier transform, that of T is diagonal, and both are unitary under

the basis {|u〉}. The definition (3.13) is motivated by the S-duality transformations in the N = 4

supersymmetric gauge theory [20]. It also coincides with the modular transformations on the characters

of affine Lie algebras at level 1 [11, 8], where r plays the role of the central charge.

One way to show that (3.13) defines a representation of Γ is to check that the relations in (3.12)

are satisfied. It is easy to show that S2|u〉 = |−u〉 for any u ∈ Λ∗/Λ. Hence S2 commutes with T and

S4 = id. A straightforward calculation yields that, for any u ∈ Λ∗/Λ,

T−1S−1T−1|u〉 = e
π
√−1
6 r√

|Z(G̃)|

∑
v∈Λ∗/Λ

e−π
√
−1 (u−v|u−v)|v〉,

STS|u〉 = e−
π
√

−1
12 r

|Z(G̃)|
∑

w∈Λ∗/Λ

eπ
√
−1 (w|w)

∑
v∈Λ∗/Λ

e−π
√
−1 (u+v|u+v)|v〉.

(3.14)

So (3.13) satisfies (ST )3 = S2 if and only if (3.5) holds [20].

For the Lie group G whose Lie algebra is g, we can define a vector

|G〉 =
1√

|π1(G)|
∑

u∈π1(G)

|u〉 ∈ C[Λ∗/Λ]. (3.15)

Then we have the following

Proposition 3.2 Under the above notations, we have

S|G〉 = |LG〉, S|LG〉 = |G〉. (3.16)

For example, |G̃〉 = |0〉 and

S|0〉 =
1√

|Z(G̃)|

∑

u∈M(g)

|u〉 = |Gad〉. (3.17)

The proof of (3.16) is a similar but more general calculation.

S|G〉 =
1√

|π1(G)|
∑

u∈π1(G)

1√
|Z(G̃)|

∑

v∈M(g)

e−2π
√
−1 (u|v)|v〉

=

√
|π1(G)|
|Z(G̃)|

∑

v∈π1(LG)

|v〉 = |LG〉. (3.18)

To give a more concrete understanding of the consistency of (3.13), we consider the theta functions

[11, 8]

ϑu(z, τ) =
∑

ξ∈Λ+u

eπ
√
−1 (ξ|ξ)τ+2π

√
−1 (ξ|z), (3.19)

6



where u ∈ Λ∗/Λ, z ∈ (
√
−1 t)C and τ is in the upper half plane. As

ϑu(z + λ, τ) = e2π
√
−1 (λ|u) ϑu(z, τ), ∀λ ∈ Λ∗,

ϑu(z + τη, τ) = e−π
√
−1 [(η|η)τ+2(z|η)] ϑu(z, τ), ∀η ∈ Λ,

(3.20)

the theta functions ϑu can be considered either as holomorphic sections of |Z(G̃)| line bundles Lu

(which differ from each other by flat line bundles) over the Abelian variety AG̃ = (
√
−1 t)C/Λ∗ ⊕ τΛ or

as sections of a single line bundle L, which is the pull-back of each Lu from AG̃ to A = (
√
−1 t)C/Λ⊕τΛ.

Moreover, each ϑu spans H0(AG̃,O(Lu)) and {ϑu} is a basis of H0(A,O(L)).

The modular transformation properties of ϑu are

ϑu(z, τ + 1) = eπ
√
−1 (u|u)ϑu(z, τ),

ϑu

(
z
τ ,− 1

τ

)
= 1√

|Z(G̃)|

(
τ√
−1

) r
2
eπ

√
−1 (z|z)

τ
∑

v∈Λ∗/Λ

e−2π
√
−1 (u|v) ϑv(z, τ);

(3.21)

the latter is a consequence of the Poisson summation formula. {ϑu} is an example of vector-valued

modular forms [12]. To reproduce the actions of S and T in (3.13), we define

ϑ̂u(z, τ, δ) = e−2π
√
−1 δη(τ)−rϑu(z, τ), (3.22)

where δ ∈ C and η(τ) = e
π
√

−1 τ
12

∏∞
n=1(1 − e2π

√
−1 nτ ) is the Dedekind eta-function. Then

ϑ̂u(z, τ + 1, δ) = e−
π
√

−1
12

r+π
√
−1 (u|u)ϑ̂u(z, τ, δ),

ϑ̂u

(
z
τ ,− 1

τ , δ + (z|z)
2τ

)
= 1√

|Z(G̃)|

∑
v∈Λ∗/Λ

e−2π
√
−1 (u|v)ϑ̂v(z, τ, δ),

(3.23)

in conformity with (3.13). Notice that the following is an action of Γ on the triple:

(
a b

c d

)
: (z, τ, δ) 7→

(
z

cτ + d
,
aτ + b

cτ + d
, δ +

c(z|z)

2(cτ + d)

)
. (3.24)

We can define, for any compact Lie group G with Lie algebra g,

ϑG(z, τ) =
1√

|π1(G)|
∑

u∈ℓ/Λ

ϑu(z, τ)

=
1√

|π1(G)|
∑

ξ∈ℓ

eπ
√
−1 (ξ|ξ)τ+2π

√
−1 (z|ξ). (3.25)

Then ϑG is a holomorphic section of a line bundle LG over AG = (
√
−1 t)C/(ℓ∗ ⊕ τℓ). For example,

ϑG̃ = ϑ0 ∈ H0(AG̃,O(L0)). In fact, ϑG spans H0(AG,O(LG)). By Poisson summation,

ϑG

(
z

τ
,−1

τ

)
=

(
τ√
−1

) r
2

eπ
√
−1 (z|z)

τ ϑLG(z, τ), (3.26)

which reflects (3.16) in Proposition 3.2.

With the concrete representation of Γ on H0(A,O(L)), the consistency of (3.13) is automatic and

can be used to prove (3.5). We give a direct proof of (3.4) from (3.26) using the technique of M.

7



Landsberg (see [1, §29]). Take τ = 1 +
√
−1 ǫ, where ǫ > 0. Then

ϑLG(0, τ) =
1√

|π1(LG)|
∑

λ∈ℓ∗
eπ

√
−1 (ξ|ξ)τ

=
1√

|Z(G)|
∑

µ∈ℓ∗/Λ

eπ
√
−1 (µ|µ)

∑

ξ∈Λ

e−πǫ(ξ+µ|ξ+µ) (3.27)

because (ξ|ξ) ∈ 2Z and (ξ|µ) ∈ Z. As ǫ → 0+, the sum over ξ ∈ Λ, multiplied by ǫ
r
2 , turns to a

Gaussian integral over ξ ∈
√
−1 t∗, whose value is 1√

vol(Λ)
. Therefore to the leading order in ǫ,

ϑLG(0, τ) ∼ 1√
|Z(G)|

∑

µ∈M(G)

eπ
√
−1 (µ|µ) 1

ǫ
r
2

√
vol(Λ)

=
1

ǫ
r
2

√
vol(Λ)

G(G). (3.28)

On the other hand, since − 1
τ ∼ −1 +

√
−1 ǫ, we have

ϑ

(
0,−1

τ

)
∼ 1

ǫ
r
2

√
vol(Λ)

G(LG), (3.29)

and (3.4) follows.

4. Non-simply laced case: the Hecke groups

For a non-simply laced simple Lie algebra g, let ng be the ratio of the square lengths of the long

and short roots. Either ng = 2 (for Br, Cr, F4) or ng = 3 (for G2). Denote by (·|·) the Weyl group

invariant inner product on
√
−1 t∗ such that the square length of the long roots is 2. We continue

to use it to identify
√
−1 t with

√
−1 t∗. The root system of the Langlands dual Lie algebra Lg is

L∆ = 1√
ng

∆̌ ⊂
√
−1 t. The (co)root and (co)weight lattices of Lg are

LΛ =
1

√
ng

Λ̌, (LΛ)ˇ=
√

ng Λ, ((LΛ)̌ )∗ =
1

√
ng

Λ∗, (LΛ)∗ =
√

ng Λ̌∗. (4.1)

If the maximal torus of G is T = t/2π
√
−1 ℓ and that of LG is LT = t∗/2π

√
−1 Lℓ, then Lℓ =

√
ng ℓ∗.

We have the inclusion relations

(LΛ)̌ ⊂ Lℓ ⊂ (LΛ)∗ ⊂
√
−1 t∗, LΛ ⊂ (Lℓ)∗ ⊂ ((LΛ)̌ )∗ ⊂

√
−1 t. (4.2)

We make a digression on Coxeter and dual Coxeter numbers. For every simple Lie algebra g, the

Coxeter number h and the dual Coxeter number ȟ of g are listed as follows.

g Ar Br Cr Dr E6 E7 E8 F4 G2

h r + 1 2r 2r r + 1 12 18 30 12 6

ȟ r + 1 2r − 1 r + 1 2r − 2 12 18 30 9 4

We have ȟ = 1 + 〈ρ, θ̌〉, where ρ is half the sum of positive roots and θ, the highest root. If g is simply

laced, then h = ȟ. If g is non-simply laced, let ρlong, ρshort be half the sums of long, short positive

roots, respectively, and let hlong = 1 + 〈ρlong, θ̌〉, hshort = ng 〈ρshort, θ̌〉. Then h = hlong + hshort and
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ȟ = hlong + n−1
g

hshort. When ∆ is exchanged with ∆̌, or g with Lg, hlong and hshort are also exchanged

[19]. Thus the Coxeter number Lh and the dual Coxeter number Lȟ of the Langlands dual Lg satisfy

Lh = h, ȟ + Lȟ = (1 + n−1
g

)h. (4.3)

It is well known [3, Théorème V.6.2.1(ii), Exer. VI.1.20] that |∆| = r h, |∆long| = rlong h, |∆short| =

rshort h, where ∆long, ∆short are the sets of long, short roots and rlong, rshort are the numbers of long,

short simple roots, respectively. In addition, we have |∆long| = r hlong, |∆short| = r hshort [19].

To find the counterpart of the modular group and the correct analog of (3.13) in the non-simply

laced case, we proceed with the theta functions. In fact, we need two sets of such. For each u ∈ Λ∗/Λ̌

and µ ∈ (LΛ)∗/(LΛ)̌ , let

ϑu(z, τ) =
∑

x∈Λ+u

eπ
√
−1 (x|x)τ+2π

√
−1 (x|z),

ϑµ(z, τ) =
∑

λ∈(LΛ)̌ +µ

eπ
√
−1 (λ|λ)τ+2π

√
−1 (λ|z).

(4.4)

Here z ∈ (
√
−1 t)C ∼= (

√
−1 t∗)C, where the identification is via (·|·). As in the simply laced case, the

periodic properties

ϑu(z + λ, τ) = e2π
√
−1 (λ|u)ϑ(z, τ), ∀λ ∈ Λ̌∗,

ϑu(z + τy, τ) = e−π
√
−1 [(y|y)τ+2(z|y)] ϑu(z, τ), ∀y ∈ Λ̌

(4.5)

mean that for each u ∈ Λ∗/Λ̌, ϑu spans H0(A0,O(Lu)), where Lu is a line bundle over AG̃ =

(
√
−1 t)C/Λ̌∗ ⊕ Λ̌τ and that {ϑu} is a basis of H0(A,O(L)), where L is the pull-back of (any) Lu

to A = (
√
−1 t)C/Λ ⊕ Λ̌τ . Similarly, for each µ ∈ (LΛ)∗/(LΛ)̌ , ϑµ spans H0(LAG̃,O(LLµ)) and {ϑµ} is

a basis of H0(LA,O(LL)). Here LL → LA = (
√
−1 t)C/LΛ ⊕ τ(LΛ)̌ is the pull-back of the line bundle

LLµ → LAG̃ = (
√
−1 t)C/((LΛ)̌ )∗ ⊕ τ(LΛ)̌ .

It is easy to see that, using (Λ̌|Λ̌) ⊂ 2Z, (Λ∗|Λ̌) ⊂ Z and similar facts for LΛ, for any u ∈ Λ∗/Λ̌ and

µ ∈ (LΛ)∗/(LΛ)̌ ,

ϑu(z, τ + 1) = eπ
√
−1 (u|u)ϑu(z, τ),

ϑµ(z, τ + 1) = eπ
√
−1 (µ|µ)ϑµ(z, τ).

(4.6)

Poisson summation yields

ϑu

(
z√
ngτ ,− 1

ngτ

)
=

√
n

rlong
g

|Z(G̃)|

(
τ√
−1

) r
2
eπ

√
−1

(z|z)
τ

∑
µ∈(LΛ)∗/(LΛ)ˇ

e
−2π

√
−1 〈µ,u〉√

ng ϑµ(z, τ),

ϑµ

(
z√
ngτ ,− 1

ngτ

)
=

√
n

rshort
g

|Z( fLG)|

(
τ√
−1

) r
2
eπ

√
−1

(z|z)
τ

∑
u∈Λ∗/Λ̌

e
−2π

√
−1 〈µ,u〉√

ng ϑu(z, τ).

(4.7)

Here the factor ng appears in order to convert the sum over Λ̌∗ to (LΛ)∗ =
√

ng Λ̌∗. We define

ϑ̂u(z, τ, δ) = e−2π
√
−1 δ η(τ)−rlong η(ngτ)−rshort ϑu(z, τ),

ϑ̂µ(z, τ, δ) = e−2π
√
−1 δ η(τ)−rshort η(ngτ)−rlong ϑµ(z, τ).

(4.8)
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Then

ϑ̂u(z, τ + 1, δ) = e−
π
√

−1
12

ng

Lȟ
h

r+π
√
−1 (u|u)ϑ̂u(z, τ, δ),

ϑ̂µ(z, τ + 1, δ) = e−
π
√−1
12

ng
ȟ
h

r+π
√
−1 (µ|µ)ϑ̂µ(z, τ, δ),

ϑ̂u

(
z√
ngτ ,− 1

ngτ , δ + (z|z)
2τ

)
= 1√

|Z(G̃)|

∑
µ∈(LΛ)∗/(LΛ)ˇ

e
−2π

√
−1

〈µ,u〉√
ng ϑ̂µ(z, τ, δ),

ϑ̂µ

(
z√
ngτ ,− 1

ngτ , δ + (z|z)
2τ

)
= 1√

|Z(G̃)|

∑
u∈Λ∗/Λ̌

e
−2π

√
−1

〈µ,u〉√
ng ϑ̂u(z, τ, δ).

(4.9)

We can also define the theta functions

ϑG(z, τ) = 1√
|π1(G)|

∑
u∈ℓ/Λ̌

ϑu(z, τ)

= 1√
|π1(G)|

∑
x∈ℓ

eπ
√
−1 (x|x)τ+2π

√
−1 (z|x),

ϑLG(z, τ) = 1√
|π1(LG)|

∑
µ∈Lℓ/(LΛ)ˇ

ϑµ(z, τ)

= 1√
|π1(LG)|

∑
λ∈Lℓ

eπ
√
−1 (λ|λ)τ+2π

√
−1 (z|λ).

(4.10)

Poisson summation yields

ϑG

(
z

√
ngτ

,− 1

ngτ

)
=

√
n

rlong
g

(
τ√
−1

) r
2

eπ
√
−1

(z|z)
τ ϑLG(z, τ). (4.11)

ϑG is a holomorphic section of a line bundle LG → AG = (
√
−1 t)C/ℓ∗ ⊕ τℓ while ϑLG is that of a line

bundle LLG → ALG = (
√
−1 t)C/(Lℓ)∗ ⊕ τLℓ. It is curious to observe that, for both simply laced and

non-simply laced cases, the Abelian variety ALG for τ is dual to AG for − 1
ngτ and that LLG is the

Fourier-Mukai transform [17] of LG.

The transformations τ 7→ τ +1, τ 7→ − 1
ngτ generate what is called the Hecke group [10]. Recall that

the Hecke group G(λm) (3 ≤ m ≤ +∞) is the subgroup of SL(2, R) generated by S and T̃ =
(1 λm

0 1

)
,

where λn = 2cos π
m , satisfying the relations

S2 = (ST̃ )m ∈ Z(G(λm)), S4 = 1. (4.12)

The image Ḡ(λm) in PSL(2, R) is the free product of Z2 and Zm. When m = 3, we have the classical

modular group Γ = SL(2, Z). When m = 4, 6, the groups are G(
√

2), G(
√

3), respectively. Consider

also the subgroup Γ ∗(n) of SL(2, R) generated by S̃ =
( 0 −1/

√
n√

n 0

)
and T , which define the desired

fractional linear transformations τ 7→ τ + 1, τ 7→ − 1
nτ on τ . The group Γ ∗(n) contains Γ0(n) =

{
(a b
c d

)
| c = 0 mod n} as a subgroup of index 2. When n is prime, Γ ∗(n) is the normaliser of Γ0(n) in

SL(2, R) [13]. When n = ng = 2, 3, Γ ∗(ng) is isomorphic to G(
√

ng) by a conjugation with the matrix(1 0
0
√

ng

)
, under which the generators S, T̃ of G(

√
ng) are mapped to S̃ and T , respectively. Hence S̃

and T satisfy the same relations

S̃2 = (S̃T )2ng ∈ Z(Γ ∗(ng)), S̃4 = 1. (4.13)

These two groups, together with G(1) = Γ and G(2) = Γ (2), are the only Hecke groups G(λm) that

are commensurable with the modular group [14].
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By the transformations (4.9), the Hecke group Γ ∗(ng) acts on the direct sum H0(A,O(L)) ⊕
H0(LA,O(LL)). The subgroup Γ0(ng) of index 2 acts within the spaces H0(A,O(L)) and H0(LA,O(LL))

while S̃ exchanges them. More abstractly, we define a representation of Γ ∗(ng) on

C[Λ∗/Λ̌]⊕C[(LΛ)∗/(LΛ)̌ ] = spanC{|u〉, |µ〉 |u ∈ Λ∗/Λ̌, µ ∈ (LΛ)∗/(LΛ)̌ } such that S̃ and T act as (using

the same notations)

T |u〉 = e−
π
√−1
12

ng

Lȟ
h

r+π
√
−1 (u|u)|u〉,

T |µ〉 = e−
π
√−1
12

ng
ȟ
h

r+π
√
−1 (µ|µ)|µ〉,

S̃|u〉 = 1√
|Z(G̃)|

∑
µ∈(LΛ)∗/(LΛ)̌

e
−2π

√
−1

〈µ,u〉√
ng |µ〉,

S̃|µ〉 = 1√
|Z(G̃)|

∑
u∈Λ∗/Λ̌

e
−2π

√
−1

〈µ,u〉√
ng |u〉.

(4.14)

It is easy to see that S̃ and T are unitary and that S̃2|u〉 = |−u〉, S̃2|µ〉 = |−µ〉. Because of the concrete

realisation by the theta functions, the above formulae are consistent with the relations (4.13). We can

check (S̃T )2ng = id explicitly in all non-simply laced cases. Since the centre is either Z2 or trivial, the

action of S2 is the identity. The contribution of the new phase factors e−
π
√

−1
12

ng

Lȟ
h

r and e−
π
√

−1
12

ng
ȟ
h

r

to (S̃T )2ng is (
e−

π
√

−1
12

ng

Lȟ
h

r e−
π
√

−1
12

ng
ȟ
h

r

)ng

= e−
π
√

−1
12

ng(ng+1)r (4.15)

by using (4.3). Thus (S̃T )2ng can be calculated as follows.

Br or Cr (S̃T )4 = e−
π
√−1
12

2·3·r(eπ
√
−1 r

2

eπ
√
−1 r

2

)
=

(1
1

)

F4 (S̃T )4 = e−
π
√

−1
12

2·3·4 = 1

G2 (S̃T )6 = e−
π
√−1
12

3·4·2 = 1

If we define
|G〉 = 1√

|π1(G)|
∑

u∈π1(G)

|u〉 ∈ C[Λ∗/Λ̌],

|LG〉 = 1√
|π1(LG)|

∑
µ∈π1(LG)

|µ〉 ∈ C[(LΛ)∗/(LΛ)̌ ],
(4.16)

then S̃|G〉 = |LG〉 and S̃|LG〉 = G〉 as before.

We summarize the results in the following

Theorem 4.1 If g is non-simply laced, (4.14) defines a unitary representation of the Hecke group

Γ ∗(ng) ∼= G(
√

ng) on C[Λ∗/Λ̌] ⊕ C[(LΛ)∗/(LΛ)̌ ]. Moreover S̃ interchanges |G〉 and |LG〉 in (4.16).

Finally, we note some new features of the non-simply laced case. The transformations (4.9) of the

theta functions do not coincide with those of the character of affine Lie algebras. It would be interesting

to find an alternative relation and to establish an analog of the vector-valued modular forms [12] for

Hecke groups. Unlike the simply laced case, the new phase factors in the transformation of T do not

come from the central charges of conformal field theory. In a forthcoming work, we will explore the

consequences of this in S-duality.
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