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Abstract 

Visual word recognition in alphabetic languages such as 
English has been shown to have left hemisphere (LH) 
lateralization and argued to be linked to the LH superiority in 
language processing. Nevertheless, Chinese character 
recognition has been shown to be more bilateral or right 
hemisphere (RH) lateralized and thus is a counterexample of 
this claim. LH processing has been shown to have a high 
spatial frequency (HSF) bias, whereas RH processing has a 
low spatial frequency bias. Through computational modeling, 
here we test the hypothesis that English word recognition is 
lateralized to the LH and Chinese to the RH due to visual 
characteristics of words instead of language lateralization. We 
show that at least two factors may account for this dichotomy: 
(1) Visual similarity among words: The smaller the alphabet 
size is, the more similar the words in the lexicon are, and the 
more the model relies on HSFs to distinguish words. (2) The 
requirement to decompose words into letters in order to map 
to phonemes during learning to read English: Mapping word 
input to its constituent letters requires more HSF information 
compared with mapping to its word identity. English has a 
large lexicon size but only 26 letters, whereas Chinese has a 
much smaller lexicon with a much larger “alphabet” (stroke 
patterns). In addition, Chinese is a logographic system: stroke 
patterns do not map to phonemes and thus no decomposition 
is required. Hence, the lateralization of visual word 
recognition in different languages may depend on visual 
characteristics of words instead of the LH language 
lateralization as previously thought. 

Keywords: Connectionist modeling; visual word recognition; 
hemispheric lateralization. 

Introduction 

Lateralization in face and visual word recognition 
Faces are a type of visual stimuli that we have extensive 
exposure to from birth. The processes of face recognition 
have been extensively studied. For example, fMRI studies 
have shown that an area inside the fusiform gyrus (fusiform 
face area, FFA) responds selectively to faces, with larger 
activation in the right hemisphere (RH) compared with the 
left hemisphere (LH) (e.g. Kanwisher, McDermott, & Chun, 
1997). Behaviorally, a left side bias in face perception has 
been consistently reported: a chimeric face made from two 
left half faces from the viewer’s perspective (left chimeric 
face) is usually judged more similar to the original face than 
one made from two right half faces (e.g., Gilbert & Bakan, 

1973). Faces elicit a larger Event Related Potential (ERP) 
N170 than other types of objects, especially in the RH (e.g., 
Rossion et al., 2003). Neuropsychological data also suggest 
a link between RH damage and deficits in face processing 
(e.g., Evans et al., 1995). In short, the RH lateralization in 
face processing has been consistently reported. 

Words are another type of visual stimuli that we have a 
biased exposure to since our childhood, although slightly 
later than faces. In contrast to faces, the processes of visual 
word recognition in alphabetic languages such as English 
have been shown to be lateralized to the LH. Data from 
fMRI studies show a region inside the left fusiform area 
(visual word form area, VWFA) responding selectively to 
words (e.g., McCandliss, Cohen, & Dehaene, 2003). ERP 
studies also showed that words elicit a larger N170 in the 
LH than the RH (Rossion et al., 2003). A classical right 
visual field (RVF)/LH advantage in reading English words 
has been consistently reported, demonstrated first in 
tachistoscopic recognition (e.g., Bryden & Rainey, 1963) 
and subsequently in other word recognition tasks, including 
lexical decision (Faust, Babkoff, & Kravetz, 1995) and word 
naming (Brysbaert & d'Ydewalle, 1990). This phenomenon 
has been argued to be linked to the LH superiority in 
language processing, in particular phonological processing 
(e.g., Voyer, 1996).  

In contrast, the recognition of Chinese characters, a 
logographic writing system, shows a left visual field 
(LVF)/RH advantage in tachistoscopic recognition; this 
effect has been argued to reflect the RH superiority in 
handling holistic pattern recognition (e.g., Tzeng et al., 
1979; however, a recent study shows a decreased holistic 
processing effect in Chinese character expertise, Hsiao & 
Cottrell, 2009). In addition, similar to face perception, 
experts in Chinese character recognition have a left side bias 
in Chinese character perception, whereas novices do not 
have this bias (Hsiao & Cottrell, 2009), suggesting the RH 
involvement in Chinese character processing. As for 
phonological processing, Weekes and Zhang (1999) 
reported phonological priming effects on phonetic 
compound recognition when the characters were presented 
in the RVF but not LVF. In short, research in Chinese 
character recognition has usually exhibited a LVF 
advantage/bias for orthographic processing/perception and a 
RVF advantage for phonological processing. fMRI and ERP 
studies of Chinese character recognition have also exhibited 
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a more bilateral or RH-lateralized activation in the visual 
system compared with English word recognition (e.g., Tan 
et al., 2000; Liu & Perfetti, 2003). 

Hemispheric modeling in face recognition 
Why does the processing of faces, English words, and 
Chinese characters involve different lateralization? This is a 
fundamental question that goes to the heart of how and why 
brain areas are recruited for different tasks. Hence it is of 
great interest to examine how these stimuli, and the 
computational processes that must be carried out upon them, 
are similar and different. Because of the partial decussation 
of the optic nerves, our visual system is initially vertically 
split, and the two visual hemifields project contralaterally to 
different hemispheres. To examine at which processing 
stage this split information converges, we created a 
hemispheric model of face recognition, aiming to account 
for the left side bias in face perception  (Hsiao, Shieh, & 
Cottrell, 2008). In the model we incorporated several known 
observations about visual anatomy and neural computation: 
we used Gabor responses over the input image to simulate 
neural responses of complex cells in the early visual system 
(Lades et al., 1993). We then reduced the dimension of this 
representation with Principal Component Analysis (PCA), a 
biologically plausible linear compression technique (Sanger, 
1989). With this level of abstraction, convergence of the 
initial split may happen at three different stages: early, after 
the Gabor filters at the input layer; intermediate, after 
information extraction through PCA at the hidden layer; and 
late, at the output layer (Figure 1). The task of the model 
was to map each face image to its identity; in the output 
layer each node corresponds to a face identity (i.e. a localist 
representation). We also implemented a theory of 
hemispheric asymmetry in perception in the model, Double 
Filtering by Frequency (DFF, Ivry & Robertson, 1998), 
which argues that information coming into the brain goes 
through two frequency filtering stages: the first stage 
involves attentional selection of task-relevant frequency 
range, and at the second stage the LH amplifies high 
frequency information, whereas the RH amplifies low 
frequency information (cf. Monaghan & Shillcock, 2004).  

Our results showed that the early convergence model 
failed to show the left side bias, whereas the intermediate 
and late convergence models showed the effect when the 
DFF was applied. Thus, the combination of the spatial 
frequency biases and the separate information extraction 
(PCA) is sufficient to show the left side bias, but neither 
alone can show the effect. This is consistent with the low 
spatial frequency (LSF) bias in face identification, both in 
humans and computational models (e.g. Schyns & Oliva, 
1999; Dailey & Cottrell, 1999). The failure of the early 
convergence model suggests that the initially split visual 
input may converge at an intermediate or late stage, at 
which at least a certain type of information extraction has 
been applied separately in each hemisphere, either at or after 
the lateral occipital area (Hsiao et al., 2008). We also 
applied the model to Greeble recognition; similar to face 

recognition, the results showed a left side bias in both the 
intermediate and late convergence models when the DFF 
was applied, but not in the early convergence model. This 
provides a testable prediction that a left side bias may also 
be observed in object recognition once expertise is acquired 
(cf. Hsiao & Cottrell, 2009).  
 

 
Figure 1: Hemispheric models with different timing of 

convergence (Hsiao et al., 2008). 

Hemispheric modeling in visual word recognition 
Here we extend our hemispheric model (Hsiao et al., 2008) 
to visual word recognition and examine under what 
conditions the recognition of visual stimuli relies more on 
high spatial frequencies/LH processing. We examine two 
factors that may account for the LH lateralization in English 
word recognition: (1) visual similarity among words in the 
lexicon: the more letters the words share, the more similar 
the words look visually; for example, to distinguish words 
“talk” and “walk”, the visual system has to examine 
specifically the first letter position, and thus may have to 
rely more on high spatial frequencies. (2) The requirement 
to decompose a word into letters in order to map them into 
corresponding phonemes during learning to read. That is, 
instead of mapping the input to its word identity, the visual 
system has to map the word input to its constituent letter 
identities; this mapping may require more high spatial 
frequency (HSF) /fine-scale information compared with the 
mapping from word input to its word identity.  

Maurer and McCandliss (2007) proposed the 
phonological mapping hypothesis to account for the 
difference in ERP N170 lateralization between faces and 
words: given that phonological processes are typically left-
lateralized (e.g. Rumsey et al., 1997), specialized processing 
of visual words in visual brain areas also becomes left-
lateralized. Accordingly, they pointed out that the LH 
lateralization in English word recognition may be related to 
the influence of grapheme-phoneme conversion established 
during learning to read, and this modulation should be less 
pronounced in logographic scripts such as Chinese. Note 
that in contrast to this hypothesis, here we do not assume the 
lateralization of phonological processes; we simply examine 
whether different mapping tasks require different spatial 
frequency content. In addition, previous models in visual 
word recognition usually use localist representations of 
letters (e.g. Shillcock & Monaghan, 2001) or stroke patterns 
(e.g. Hsiao & Shillcock, 2006a); here we bring the level of 
the modeling closer to the anatomy of the visual pathways 
in order to understand the underlying neural computation. 
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Modeling and Results 
Here we used the same hemispheric model proposed in 
Hsiao et al. (2008) for face recognition, except that the input 
stimuli were word images instead of faces or objects (Figure 
2). In the model, the input image (135 x 100 pixels) was 
first filtered with a grid (16 x 12) of overlapping 2D Gabor 
filters (Daugman, 1985) in quadrature pairs at six scales and 
eight orientations; the six scales corresponded to 2 to 64 
cycles per word. Given the image width of 100 pixels, this 
frequency range can be considered as the task-relevant 
frequency range (the seventh scale would have 128 cycles, 
which exceeded the width of the image). The first stage of 
the DFF is implemented by simply giving this input to the 
model. The paired Gabor responses were combined to 
obtain Gabor magnitudes. Two conditions were created: in 
the baseline condition, Gabor responses in different scales 
were given equal weights; in the DFF condition, to 
implement the second stage of the DFF, a sigmoid-shaped 
weighting function was used to bias the Gabor responses on 
the left half word (RH) to LSFs and those on the right half 
word (LH) to HSFs (Figure 2). Since the early convergence 
model failed in accounting for the left side bias in face 
perception (Hsiao et al., 2008), and the late convergence 
model performed worse than the intermediate convergence 
model in the face tasks (when the DFF was applied), here 
we used the intermediate convergence model. Thus, in the 
input representation, the word image was split into left and 
right halves; the perceptual representation of each half was 
compressed into a 50-element representation (hence in total 
there were 100 elements); this representation can be thought 
of as corresponding to the lateral occipital region (i.e., 
structural representation of visual stimuli; analogous to 
Occipital Face Area in face recognition). After PCA, for 
each principal component, normalization was applied across 
all images to equalize the contribution of each component in 
the model. The hidden layer of the model had 20 units; it 
can be thought of as corresponding to the fusiform area (i.e. 
VWFA; analogous to FFA in face recognition). 

To compare with the modeling of face recognition, here 
we used images of palindrome pseudo-words (such as 
“abccba”) as the stimuli; thus the two sides of the word 
stimuli had the same amount of information towards the 
word identity (like faces). In addition, we were able to make 
“chimeric words” in the same way as “chimeric faces” by 
taking the right and left halves and making mirror images of 
them (see Figure 3). Thus the chimeric stimuli are different 
due to the original left-right orientation of the letters, and 
the left chimeric word matches the original on the left, but 
not the right due to mirror inversion, and vice versa.  

For the following simulations, we ran the model 80 
times and analyzed its behavior with ANOVA after 100 
epochs of training (their performance on the training set all 
reached 100% accuracy). The training algorithm was 
discrete back-propagation through time (Rumelhart, Hinton 
& Williams, 1986), and the learning rate was 0.1. As in our 
previous work, after training, the size of left side bias was 
measured as the difference between the activation of the 

output node for the original word when the left chimeric 
word was presented and when the right chimeric word was 
presented (note that output activation ranged from 0 to 1).  

 

 
Figure 2: Hemispheric model for visual word recognition. 

 

 
Figure 3: Chimeric faces used in Hsiao et al. (2008), and 

chimeric words used in the current study. 

Visual similarity among words in the lexicon 
We first examined how visual similarity among words in the 
lexicon influences lateralization of visual word recognition. 
To control for the differences between English and Chinese 
orthographies, here we used only English letters and created 
artificial lexicons with different alphabet sizes. We 
controlled for the issue of the unbalanced nature of the 
location of information in a word (see Hsiao & Shillcock, 
2006a) by using 6-letter palindrome words. Each lexicon 
had 27 words. In the first lexicon, the alphabet contained 3 
letters: a, b, and c; thus, the 27 words in the first lexicon 
were all possible combinations of the three letters (aaaaaa, 
aabbaa, … , ccbbcc, cccccc). In this lexicon, words were 
extremely similar to one another: each half of a palindrome 
word only differed in one letter position from that of the 
other palindrome words. If we increased the alphabet size to 
4 (a-d), and randomly selected 27 words out of 64 possible 
words, the words in the lexicon would be less similar to one 
another compared with those in the first lexicon, since some 
words may differ in more than two letter positions. If we 
further increased the alphabet size and randomly selected 27 
words out of all possible words, it would further decrease 
the similarity among words in the lexicon. Thus, the larger 
the alphabet size was, the less similar the words in the 
lexicon were, leading to a greater reliance on word shape 
than on letter identity. English has a large lexicon size 
(about 20,000 base words for a university-educated native 
speaker; Nation & Waring, 1997) but a small alphabet size: 
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only 26 letters, whereas Chinese has a much smaller lexicon 
(about 4,500 characters for an adult native speaker) with a 
much larger “alphabet” (i.e., more than 1,000 stroke 
patterns; Hsiao & Shillcock, 2006b). Thus, compared with 
Chinese characters, words in the English lexicon are 
visually more similar to each other. Here we started from 
the first lexicon, gradually increased the alphabet size to 
make the artificial lexicon more Chinese-like, and examined 
how this manipulation changed lateralization of the model.  

For each simulation with a different lexicon, the 
materials consisted of images of 27 different words (so there 
were 27 output nodes). Two datasets were created: one for 
training and the other for testing; the order of being the 
training or the test set was counterbalanced across the 
simulation runs. In either dataset, each word had four 
images in different fonts (Figure 4), for a total of 108 
training and 108 test images. In half of the simulation runs 
the mirror images of the original images were used. 
  

 
Figure 4: Word images in different fonts 
 

Figure 5 shows the results1. We defined the model’s 
RH/LSF preference as the difference in left side bias size 
between the DFF condition (i.e. when RH/LH were biased 
to LSF/HSF) and the baseline condition (i.e. when no 
frequency bias was applied2); this difference reflected the 
real preference over LSF/HSF biased representation due to 
the application of the DFF. The results showed that, when 
the visual similarity among the words in the lexicon was 
high, such as the lexicon that had only 3 letters (a-c), the 
model showed a strong LH/HSF preference (F(1, 158) = 
36.338, p << 0.001, ηp

2 = 0.187). When we increased the 
alphabet size to 6 (a-f), the model had a weaker LH/HSF 
preference (F(1, 158) = 12.653, p < 0.001, ηp

2 = 0.074). 
When we increased the alphabet size to 7 (a-g) or 8 (a-h), 
this preference disappeared. When we further increased the 
alphabet size to 10 (a-j), the model started to have a weak 
RH/LSF preference (F(1, 158) = 7.631, p < 0.01, ηp

2 = 
0.046; Figure 5). In another simulation, we further increased 
the alphabet size to 26 letters, the model had a strong 
RH/LSF preference (F(1, 158) = 24.810, p << 0.001, ηp

2 = 
0.136). Thus, the results showed that with decreasing visual 
similarity among words in the lexicon, the model relied 

                                                           
1 Here we focus on examining the models’ preference over LSF or 
HSF representations; we report and discuss the models’ 
generalization performance on the test set in different conditions 
elsewhere. In general, the model generalized better with increasing 
alphabet size (Word identity mapping average accuracy: a-c: 32%; 
a-f: 84%; a-j: 90%; chance level was 1/27 =3.7%. Letter identity 
mapping average accuracy: a-c: 54%; a-f: 79%; a-j: 89%). 
2  In the baseline condition, none of the models showed any 
significant left or right side bias. 

more and more on RH/LSF information. That is, the smaller 
the alphabet size is, the more similar the words in the 
lexicon are, and the more the model relies on high spatial 
frequencies (i.e. LH lateralization) to distinguish words3. 

 
Figure 5: RH/LSF preference in the models trained with 
lexicons of different alphabet sizes and for different 
mapping tasks. In word identity mapping, it showed that 
the larger the alphabet size was, the more dissimilar the 
words in the lexicon were, and the stronger the RH/LSF 
preference the model had; after switching to letter 
identity mapping, all the models showed strong LH/HSF 
preference (*p < 0.01; **p < 0.001; ***p << 0.001). 
 
Requirement to decompose a word into letters  
Another major difference between English and Chinese is 
that there is a quasi-regular letter-sound correspondence in 
English, leading to phonics approaches to teaching reading, 
whereas there is no such correspondence in Chinese. In 
other words, instead of recognizing visual input of an 
English word as a whole, we have learned to decompose 
visual input of a word into its constituent letters/graphemes 
and then map them to corresponding phonemes when 
learning to read4. Here we explored the role of requiring the 
networks to map a word image to letter identities instead of 
to its whole-word identity. Compared with the mapping 
from word images to word identities, this mapping to letter 
identities may rely relatively more on HSF information/fine 
details and thus may result in LH lateralization. The same 
lexicons as the last section were used. To implement letter 
identity mapping, in the output layer, instead of having each 
node representing each word, we divided the output layer 
into three slots: the first slot corresponded to the letter 
identity in the first letter position (and the last since they 
were palindrome words), the second slot was for the letter 
identity in the second position, and the third slot was for the 
third position (Figure 6).  

                                                           
3 In a separate simulation, we trained the model to recognize the 30 
mirror-symmetric Chinese characters used in Hsiao & Cottrell 
(2009). The results showed that the model had a strong RH/LSF 
preference (p << 0.001). See Conclusion and Discussion. 
4  Although Chinese phonetic compounds do have a phonetic 
component that has partial information about the character 
pronunciation, this decomposition, if any, is still much coarser than 
that in English word recognition, since each phonetic compound 
has only one phonetic component. 
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Figure 6: Output representation for the letter identity 

mapping task. 
 

The results showed that, in all simulations, the model 
exhibited a strong LH/HSF preference (a-c, F(1, 158) = 
24.486, p << 0.001, ηp

2 = 0.134; a-f, F(1, 158) = 23.516, p 
<< 0.001, ηp

2 = 0.130; a-g, F(1, 158) = 52.353, p << 0.001, 
ηp

2 = 0.249; a-h, F(1, 158) = 58.945, p << 0.001, ηp
2 = 

0.272; a-j, F(1, 158) = 69.274, p << 0.001, ηp
2 = 0.305; 

Figure 5). The effect size measured by partial Eta squared 
(ηp

2) increased with the alphabet size of the lexicon. Thus, 
compared with the word identity task, switching the task to 
the letter identity mapping task significantly made the 
model rely more on LH/HSF information. 

Conclusion and Discussion 
Here we applied our hemispheric model of face/object 
recognition (Hsiao et al., 2008) to visual word recognition, 
in order to examine the factors that may account for the 
differences in lateralization in the processing of different 
languages. Visual word recognition in alphabetic languages 
such as English has been reported to lateralize to the LH, 
and argued to be due to the LH lateralization of language 
processes. Nevertheless, in Chinese character recognition, a 
RH/LVF advantage is usually reported for orthographic 
processing tasks (while a LH/RVF is shown for 
phonological tasks). This thus provides a counter example 
of this claim. Here we aimed to examine factors that may 
influence lateralization in visual word recognition other than 
the LH lateralization of language processes; specifically, the 
influence of visual characteristics of the words in a lexicon. 

We first examined the influence of visual similarity 
among words in a lexicon. We created artificial lexicons 
with the same number of words of the same length, but with 
different alphabet sizes. We then trained the model to 
differentiate words in the lexicons (word identity mapping). 
We show that the smaller the alphabet size is, the more 
similar the words in the lexicon are, and the more the model 
relies on HSF/LH representations to distinguish words. We 
then examined the influence of the requirement to 
decompose words into letters/graphemes in order to perform 
grapheme-phoneme conversion during learning to read. We 
used the same artificial lexicons but changed the task from 
word identity mapping to letter identity mapping. We show 
that the letter identity mapping task requires more HSF 
information compared with the word identity mapping task. 
In contrast to the phonological mapping hypothesis (Maurer 
& McCandliss, 2007), which argues that visual word 
processing becomes LH lateralized due to the left-lateralized 
phonological processes, our model did not use/assume any 
phonological processes/representations; the task of the 

model was purely visual – to recognize constituent letters of 
the word input. 

The two visual factors we identified here are able to 
account for the difference in lateralization between visual 
word recognition in English and Chinese. English has a 
large lexicon size (about 20,000 base words for a native 
speaker) but a small alphabet size: only 26 letters, whereas 
Chinese has a much smaller lexicon (about 4,500 characters 
for a native speaker) with a much larger “alphabet” (more 
than 1,000 stroke patterns). Thus, compared with Chinese 
characters, words in the English lexicon are visually more 
similar to each other; our results suggest that distinguishing 
English words may require more HSF information 
compared with distinguishing Chinese characters. In 
addition, Chinese is a logographic system, in which stroke 
patterns do not map to phonemes. Unlike English readers, 
Chinese readers do not rely on grapheme-phoneme 
conversion during learning to read, and thus there is no 
requirement to decompose a character into its constituent 
stroke patterns in order to read. Our results thus suggest that 
English word recognition requires more HSF information 
compared with Chinese character recognition due to its task 
characteristics during learning to read. We are currently 
working on the modeling with English and Chinese lexicons 
in a realistic scale and examining their lateralization. 

Note that our results do not rule out the possibility of the 
influence of LH lateralized phonological processes on the 
lateralization of visual word recognition. In an ERP study, 
Hsiao, Shillcock, and Lee (2007) examined N170 amplitude 
elicited by characters with their phonetic component on the 
left or right. They showed that characters with their phonetic 
component on the left (which is initially projected to the RH 
when the character was centrally presented) elicited N170 
with similar amplitude in the two hemispheres, whereas 
characters with their phonetic component on the right 
(which is initially projected to the LH) elicited larger N170 
amplitude in the LH than that in the RH.  This phenomenon 
suggests that the LH lateralized phonological processing 
may also influence the lateralization of visual word 
recognition. 

In summary, here we show that the lateralization of 
visual word recognition in different languages may depend 
on visual characteristics of words instead of the LH 
language lateralization as previously thought; specifically, it 
can be influenced by (1) visual similarity among words in 
the lexicon, and (2) the requirement to decompose a word 
input into its constituent letters/graphemes for grapheme-
phoneme conversion during learning to read. 
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