
A Little Knowledge Is A Dangerous Thing:

Model Specification, Data History, and

CDO (Mis)Pricing∗

Dan Luo†

Dragon Yongjun Tang‡

Sarah Qian Wang§

December 15, 2008

Abstract

The ongoing credit crisis is largely caused by the revaluation of collateralized
debt obligations (CDOs). CDOs are one of the most successful innovations in fi-
nancial history. In order to meet investor demand for credit products at different
risk levels, CDO structurers pool credit instruments into collateral portfolio and
tranching the portfolio cash flows into different seniority classes. This financial
engineering process is proved to be flawed. Extreme default losses are severely un-
derestimated by CDO evaluators. Simulating the frailty correlated default model
of Duffie, Eckner, Horel, and Saita (2008), we show that CDO mis-pricing can
be partly attributed to the limited availability of historical CDO data and, to a
larger extent, model misspecification. This finding is supported by empirical evi-
dence from historical CDO data. Our study addresses practical issues on financial
innovations and provides underpinnings of the current financial crisis.

JEL Classification: G12; G13; E43; E44
Keywords: CDO; Model Specification; Data History; Default Correlation; Frailty

∗We thank Wing Suen for useful comments.
†School of Economic and Finance, University of Hong Kong. Phone: (+852) 28578637. Email:

luodan35@hku.hk
‡School of Economic and Finance, University of Hong Kong. Phone: (+852) 22194321. Email:

yjtang@hku.hk
§School of Economic and Finance, University of Hong Kong. Phone: (+852) 28578637. Email:

sarawang@hku.hk



A Little Knowledge Is A Dangerous Thing:

Model Specification, Data History, and CDO
(Mis)Pricing

Abstract

The ongoing credit crisis is largely caused by the revaluation of collateralized
debt obligations (CDOs). CDOs are one of the most successful innovations in fi-
nancial history. In order to meet investor demand for credit products at different
risk levels, CDO structurers pool credit instruments into collateral portfolio and
tranching the portfolio cash flows into different seniority classes. This financial
engineering process is proved to be flawed. Extreme default losses are severely un-
derestimated by CDO evaluators. Simulating the frailty correlated default model
of Duffie, Eckner, Horel, and Saita (2008), we show that CDO mis-pricing can
be partly attributed to the limited availability of historical CDO data and, to a
larger extent, model misspecification. This finding is supported by empirical evi-
dence from historical CDO data. Our study addresses practical issues on financial
innovations and provides underpinnings of the current financial crisis.

JEL Classification: G12; G13; E43; E44

Keywords: CDO; Model Specification; Data History; Default Correlation; Frailty



1 Introduction

The ongoing 2007/2008 credit crisis has claimed unprecedented casualties. Investment

banks almost disappeared in September 2008.1 Billions of dollars were written down

from financial balance sheets. Hundreds of thousands of corporate employees are being

laid off. At the center of this crisis is the previously little known financial innovation

called collateralized debt obligations (CDOs). CDOs are one of the most widely issued

structured finance instruments. The payoffs of CDOs depend on the performance of

pools of collateral. The most significant feature of CDO, however, is that it allows

its originator to issue a prioritized capital structure of derivative claims against the

underlying collateral pool. Based on the prioritizing scheme, senior tranche CDO suffers

only after the principal of the subordinate tranches has been exhausted, which in turn

generally can gain higher credit ratings. Although boasting the most successful financial

innovation in recent decades and growing exponentially until the burst of the crisis,

CDOs turned out to be severely mispriced.2 This study examines the causes of CDO

mispricing.

The innovative nature of CDOs makes it difficult to pin down the exact reasons for

this valuation failure. On one hand, given the short history of the product and modeling

difficulties, Duffie (2007) doubted anyone could have evaluated CDOs with comfortable

accuracy. On the other hand, some regulators and media have rushed to cry fouls

pointing to parties, such as underwriters and rating agencies, who brought CDOs to

the marketplace. While it is possible that conflicts of interests could have played some

role in underwriters and rating agencies misleading investors, “careful research is needed

to distinguish the relative importance of the bad incentives view and the mispricing

view” as these two views have distinctly different implications for regulation and risk

management going forward (Allen (2008)).

Given the limitation of data availability and modeling techniques, large losses do

not automatically imply risk management failures (Stulz (2008)). This argument is

particularly relevant for the current setting of CDOs which are collateralized on pool of

default-risky assets. Accurate valuation of CDOs requires modeling the joint distribution

1Among the top five Wall Street investment banks, one declared bankruptcy, two were acquired, and
the other two converted into commercial banks.

2For instance, in May 2008, Merrill Lynch sold some CDOs to a Texas hedge fund at 22 cents on a
dollar.
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of those assets, especially the default correlation. Defaults are rare events. Hence, default

correlation is hard to measure. Furthermore, even single-obligor credit risk analysis

proves to be difficult, there is little consensus on the best practices on portfolio credit

risk modeling. In this paper, we examine the impact of data limitation and model

uncertainty on portfolio credit risk evaluation and CDO mispricing.3

Traditional portfolio credit risk models such as Vasicek (1987) assume that default

correlation is driven only by observable common factors. However, recent studies show

that such approach significantly under-estimate the actual default correlation (Das,

Duffie, Kapadia, and Saita (2007)). Based on this observation, Duffie, Eckner, Horel

and Saita (DEHS, 2008) propose a frailty correlated default model, in which the la-

tent “frailty” factor is unobservable and time-varying. The frailty approach is popular

for modeling mortality rates in acturial science (see, e.g., Wang and Brown (1998)).

Duffie, Eckner, Horel and Saita (2008) show that their model performs well in matching

historical default patterns.

We first show, via simulations, that the DEHS frailty model indeed is a good modeling

approach. It can accurately identify the true default process with or without actual

frailty. After verify the DEHS model, we use it to conduct Markov Chain Monte Carlo

(MCMC) analysis on the effect of data history and model uncertainty on portfolio credit

risk valuation and CDO mispricing. Because defaults are rare and credit cycles take long

time to materialize, we demonstrate that short data history, say, five years of month

observations, will significantly underestimate the tail distribution of the credit portfolio

and default correlation. Consequently, the most senior tranches of CDOs, which are often

rated AAA, are actually much risker than model outcome based only on recent data.

Subsequent realization of more default scenarios then triggers downward adjustments

of those initially highly rated CDO tranches, as experienced in the unfolding of current

crisis.

Short data history also implies that the sample realization will be unpredictable and

unrepresentative. In other words, there will be too many defaults when the economy is

doing poorly, but there will be too few defaults when the economy is doing well, just

like the 2003-2007 period. We show that this random realization of data history can

also significantly affect the accuracy of portfolio credit risk. The most senior tranche

3The issues on conflicts of interest and CDO security design are left for other research, e.g., Griffin
and Tang (2008), Nicolo and Pelizzon (2008).
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of a CDO (such as the 30%-100% tranche of the popular credit index CDX.NA.IG)

with AAA rating will essentially have zero default probability if evaluated in a good

economy. However, the default probability can increase to 0.7%, which is significant

enough to bring down the rating to A.

The large scale of CDO rating failure is potentially consistent with our simulation

finding. To verify this conjecture, we apply the frailty model to a real CDO structured by

Lehman Brothers in March 2008. Our empirical analysis supports the simulation results

that model specification and and data history are critical to accurate CDO valuation.

Our simulation exercises demonstrate an even more important role for model uncer-

tainty. The basic construct of CDO is the diversification benefit of credit portfolio. This

premise is fundamental for producing AAA tranches from lower rated collateral assets.

Not until recently did we learn about the frailty factor and under-estimation of default

correlation. If we ignore the frailty factor in the data generating process, portfolio credit

risk will be severely underestimated even if long data history is available. Data availabil-

ity helps little in attenuating the model uncertainty effect. Our finding indicates that no

matter how long the market practices the CDO investment vehicle, our understanding

of the pricing dynamics will prove little if we employ a mis-specified model.

We make three contributions to the literature. First, we provide the underpinning of

CDO mispricing which largely caused the ongoing credit crisis. Rating agencies might

not have done a good job evaluating CDOs, but their constraints on data availability and

accurate modeling limited their capability to do better. Second, although model uncer-

tainty is well studied in equity markets and portfolio allocation (e.g., Garlappi, Uppal,

and Wang (2007)), we take it to the credit derivatives market and present its strong im-

pact. Model error was probably the biggest single factor for the CDO valuation failure.

Third, our study provides a good framework for analyzing financial innovations, which

will surely continue and same issues will appear repeatedly. Therefore, our research sets

up a guideline for future financial practice.

Our study is built upon Duffie, Eckner, Horel and Saita (2008). We add to existing

studies in the following ways. While Longstaff and Rajan (2008) argue that historical

CDO prices are well explained, Brennan, Hein, and Poon (2008) and Coval, Jurek,

and Stafford (2008) show that substantial mispricing can arise in the CDO structuring

process. Our finding of systematic mispricing due to limited data availability and model
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uncertainty provides a justification for above seemingly conflicting findings. Fender,

Tarashev, and Zhu (2008) also show that CDO can be overvalued relative to equivalent

corporate bonds. Eckner (2008), Feldhtter (2008) and Heitfield (2008) use MCMC for

CDO pricing. Our study differs by the economic motivation. Finally, our paper makes

similar points to the commentary paper by Coval, Jurek, and Stafford (2009).

The rest of this paper is organized as follows. Section 2 reviews the setting of our

study and relevant literature in greater detail. Section 3 describes the latent frailty

default model and our simulation method. Our main findings on the effects of data

history, model uncertainty and their interaction are presented and discussed in Sections

4. We provide a case study using real CDO in Section 5. Section 6 concludes the paper.

2 CDO Market and Literature Review

The CDO market experienced explosive growth in recent years. Annual issuances of

CDOs have grown from about $17 billion in 1997 to above $500 billion in 2006 and

2007. CDOs are a type of asset-backed securities (ABS)4 Major asset types include

corporate loans and bonds but other types include credit card debt and credit derivative

contracts. Most CDOs have multiple tranches where parts of the tranches are sold to dif-

ferent investors. However, single-tranche CDOs (“bespoke” CDOs) are often structured

specifically for a particular investor need.

Credit risk portfolio valuation is difficult due to non-normal distributions. Closed-

form solutions can only be obtained under strong assumptions. In practice, simulations

are run to determine future portfolio value. All three major rating agencies (S&P,

Moody’s, and Fitch) employ simulation approaches when rating CDOs. Two different

approaches are often used to derive credit portfolio value from individual credit assets.

The structural approach (or “copula” approach, used especially by S&P) assumes asset

value processes are correlated. Asset value is simulated sequentially with correlations

imposed on each subsequent asset of assets already simulated. Credit portfolio value

is determined after all assets are simulated. Repeating the simulation multiple times

result in a distribution of the portfolio value. Probability of default is determined by the

4CDOs are distinguishable from traditional ABS in two aspects. First, CDO assets are held in
a bankruptcy-remote special purpose vehicle with the CDO being its only purpose. Second, CDO
structure and underlying assets are much more diverse than traditional ABS.
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tranching. An “idealized” mapping converts probability of default to a credit rating.

2.1 Portfolio Credit Risk and CDO Valuation

CDOs are constructed from underlying portfolio characterized by collateral credit qual-

ity, maturity and correlation. The cash flows are tranched into different classes. The

credit quality of each class depends on the recovery rate as well as credit enhancements.

The valuation of CDO, therefore, starts with and depends heavily on the accurate as-

sessment of the credit risk of the underlying portfolio. With the derived probability

distribution of default for a given CDO underlying portfolio, the ratings of tranches are

determined by referring to the Scenario default rate (SDR) as employed by Standard

&Poor’s in its CDO evaluator system.

As to the first and critical step of portfolio default probability estimating, various

models could be used. As mentioned above, the classic Merton DD model could be

modified(may be in various ways) to incorporate the default correlation in the asset

portfolio. Based on the Merton (1974), Merton DD model regards the equity value as a

call option on the firm’s underlying value with the strike price set at the face value of

debt. To get the model implied default probability, the firms’ underlying value and its

volatility et al are inferred from the firm’s equity value. An iterative procedure is used

for the value calculation. Then the Merton DD Probability is the normal cumulative

density function of a Z-score depending on the above calculated variables. However,

the accuracy of the model is restricted tightly by the underlying strong assumptions.

Therefore the base Merton DD model for single firm default estimation is modified

to improve the estimation accuracy which gives rise to various forms of following up

structural models.

Eom, Helwege and Huang (2004) compare the structural models for corporate bonds

spread from the empirical perspective. While the implied bond spreads from the Merton

model tend to underestimate the spreads realized in the market, other structural models,

however, seem to on average suffer from the overestimation problem. Moreover, given

the generally over prediction, especially for the high leveraged firm, some structural

models are even more likely to underestimate the relatively safety bonds at the same

time. Then for the accurate consideration, an ideal structural model should be able to

produce justified spread without bias. Andreou and Ghysels (2008) emphasize the effect
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of structural shifts to the credit risk structural model. Instead of fixing the structural

model parameter at some points, they point out that it is necessary taking into account

of the structural parameter variation. Failed to incorporate this effects may results in

biased inferences based on the credit model. An optimal sequential quality control pro-

cedural with minimum detecting time for monitoring the structural breaks is suggested,

which is extremely useful for monitoring the corporation stability in financial distress

period. Moreover, with a good finite sample behavior as indicated in their simulation,

the suggested procedure could be used for the quality control of the credit models.

Coval, Jurek, and Stafford (2008) explicit modified the Merton (1974) for the CDO

underlying portfolio risk estimation. In their paper, a factor structure was added to the

Merton(1974) structural model of debt. Under this setting, firm asset values are exposed

to a common market factor, and therefore the default correlation are introduced. Other

models, such as various reduced form models, are widely used in assessing portfolio risk

as well. As many as the choice are, model uncertainty problem are widely accepted.

This uncertainty problem undoubtedly will affect the CDO valuation accuracy.

2.2 CDO Pricing and Rating

To get a certain tranche rating, the default probability of this tranche must withstand

that indicated by its SDR. The SDR for a target rating tranche can be determined by

calculate the portfolio default rate by referring to the corresponding rated corporate

bond, as well as making some adjustment according to the default experience. Note

that the portfolio default rate in the SDR calculating is assumed to capture the like-

lihood of default for a target tranche rating, which is determined in such a way that

the “probability of default in the portfolio exceeding this default rate is no greater than

default probability of” corresponding corporate bonds with the same rating. Then the

SDR can be got by adjusting the portfolio default rate with an adjustment factor for

specific tranche raring, which will incorporate the eventual default experience of that

asset class.

CDO pricing difficulty comes not only from Model uncertainty and Limited data

history, as addressed apparently in this paper, but also from the local thinking which

exacerbates the problem. Gennaiolio and Shleifer (2008) discuss the local thinking prob-

lem in detail, and present a nearly Bayesian Model of decision making. Following the
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work by Daniel Kahnman and Amos Tversky (1972, 1974, 1983, 2002), they suggest

that decision makers, evaluating the probability based on the representativeness, are

likely to be mislead and therefore make a mistake. The mistake comes from the fact

that, generally, the representativeness is consisted of the more frequent and common

evens, and moderate mistake is witnessed for the probability estimation. When there is

a mismatch between the representative and frequency, however, for a local thinker with

limited memory, the probabilities of the rare events tend to be severely underestimated.

Inspiring by this logic, the rare extremely default probability, which is undoubtedly a

rare event may severely underestimated by the local thinker.

2.3 Frailty and Default Correlation

Although agency conflicts may arise during the security design (Mehran and Stulz (2007),

SEC (2008)), structured finance instruments, CDOs in particular, can be useful invest-

ment tools as long as the default correlation is low, as shown by DeMarzo (2005) and

Leland (2007). However, default correlation is hard to measure and this part contributed

mostly to the failure of CDO valuation (Brunnermeier (2008), BIS (2008), Crouhy, Jar-

row, and Turnbull (2008), Hull (2008), Plosser (2008), S&P (2008)). For such low

occurrence events, Bayesian approach is particularly appealing (Kiefer (2008), McNeil

and Wendin (2007), Glasserman and Li (2005), Loffler (2003)).

In a standard structural model, a firm is assumed to default when its terminal value

of asset falls below the face value of debt. Merton (1974) is a good case in point. In

many of these models, firm-specific distance to default has been used as the sole default-

prediction covariate. Nevertheless, as shown by Duffie and Lando (2001) undue precision

of distance to default will result in filtering problems in default probability estimation.

Depart from the structural models of default, Duffie, Saita and Wang (2007) employs

another modeling approach. The main difference between these two approach are the

nature of the event that triggers default, as well as the model fitting with the empirical

data. While the structural models identify default when distance to default falls be-

low certain barrier, Duffie, Saita and Wang (2007)’s model assumes that defaults occur

randomly at each small time period with a probability determined by not only the cur-

rent distance to default, but also other covariates including firm’s trailing stock return,

interest rates and market-wide stock returns.
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For the structured finance instruments such as CDO, however, to assess the de-

fault and risk, it is necessary to consider both the firm specific default predictors, and

more importantly, the default correlation among assets in the underlying pool. Bonfim

(2008), Koopman, Kraussl, Lucas, and Monteiro (2008), Jimenez and Mencia (2008),

Berd, Engle, and Voronov (2007) all stress the importance of not only the observable

correlation, but also the unobservable correlation. Model uncertainty is also discussed

by Cont (2006) and Rajna (2000).

A conventional portfolio-loss risk model assumes that default correlation comes only

from the observable factors. Even with the benefit of these various of firm-specific and

macroeconomic observable covariates, however, Das, Duffie, Kapadia, and Saita (2007)

finds empirical evidence that defaults are more clustering than suggested by conventional

models based merely on observable factors. With roughly the same data, Duffie, Eckner,

Horel and Saita (2008) provides a new model for corporate default intensity with a

time varying common latent factor, and in the presence of a firm specific unobservable

covariate. They find that the prediction power of a general credit model will be increased

dramatically by incorporating an common unobservable covariate. Compared with the

traditional method, this model is especially good for the default clustering estimation.

If the model parameters are tied to the maximum likelihood estimators, however, they

showed that this model is still suffered from parameter uncertainty . To solve this

problem, Bayesian approach has been used as a robustness check, and result in dramatic

improvement in the tail default estimation.

Traditionally, CDO credit risk has been assessed through models including only ob-

servable covariates. Duffie, Eckner, Horel and Saita (2008), however, suggests a new

dynamic frailty model with a common unobservable factor. Although compared with

the traditional model, the dynamic frailty model avoids a significant downward omitted-

variable bias, the estimation still suffers from parameter uncertainty. Limited data

history further deteriorates the estimation accuracy. While Bayesian approach is em-

ployed to solve the parameter uncertainty, no research has been done for the effect of

limited data history.

In the spirit of Duffie, Eckner, Horel and Saita (2008), we use dynamic frailty model

as the benchmark model for portfolio loss estimating. To assess the data history effect,

we further develop various scenarios for firm specific observable covariates. This can be

achieved by controlling the data generating process. We would expect to see significant
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change in the default estimation, especially for the tails, by varying the hypothetical

data scenarios. This finding has an important implication for assessing the credit risk

of senior CDO, which confines its loss to tail default distribution of the underlying

collaterals.

As to the CDO pricing, Coval, Jurek and Stafford (2008) find that CDO and many

other structured finance instruments behave similar to the Economic Catastrophe Bonds

which defaults only under extreme bad economic states. This feature indicates that the

dramatically increased probability of default in bad economic states with severe default

clustering actually is an extra source of risk for the high rated CDO tranches. CDO

credit ratings provided by high prestige rating agency are in fact not reliable for their

ignoring of economic states effects. To correct the pricing failure, in this paper, they

further develop a state contingent frame work for CDO pricing. State contingent default

probability is calculated based on the modified Merton(1974)’s model. By comparing the

model implied premium with the actual market premium, they conclude by saying that

CDO senior tranches are inaccurately priced, and relative senior tranche investors should

have required higher risk premium than that indicated by the simple credit rating.

Coval, Jurek and Stafford (2009) examine the economics of the structured finance

products as a whole, and attribute the current failure of the market to the special feature

of the structured finance products. CDO has been taken as a representative example.

Specifically, while rating agency has achieved dramatic success in creditworthiness as-

sessment of single name securities, the minor model’s failure of the rating agency tends

to be greatly magnified for the structured finance products rating. This might accounts

for some of the severely downward correction of the previous relatively high ratings.

Recognized this negative feature of the structured finance, Bayesian approach, for ex-

ample, has been applied in the model to fix the mistake called parameter uncertainty.

The other dramatic feature of structured finance products, however, indicates that even

with the most accurate model, rating agency cannot derive a reliable rating without

considering the economic states, especially for the senior CDO tranche. As discussed

in Coval, Jurek and Stafford (2008), the economic catastrophe feature makes the se-

nior tranche investment extremely dangerous in bad economic states, and therefore this

seeming 100% safety tranche should not have been assigned as AAA. Last but not least,

it is worth to note that the low interest rate environment also facilitates the past vast

popularity of structured finance products. Compared with the low risk free rate, the
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seemingly AAA guarantee and relatively higher promised spreads did attract investors

around the world, even if they do not fully understand this complex financial derivative.

With the continuous refinements in the pricing model, problem arises again, never-

theless, when considering the limited data history. With the limited 25 years data in

Duffie, Eckner, Horel and Saita (2008)’s paper, it seems not enough to tie down the

model parameters. The model parameters may be sensitive to different data structure,

which in turn may generate different default estimation.

In this paper, we depart from Duffie, Eckner, Horel and Saita (2008) by assuming

different scenarios of data structure. Bayesian approach has been used to modify part

of the parameter uncertainty. If the data history matters, then we would expect to see

the portfolio-loss estimation result affected dramatically by different data structures.

3 Frailty Correlated Default Model and Simulation

Method

One firm default status may have impact on another firm’s default probability. Acharya,

Schaefer, and Zhang (2008) clearly documents the impact of GM and Ford downgrade

on the entire market constituents, even though some of them are completely unrelated to

GM and Ford. Jorion and Zhang (2007) conduct a larger scale analysis over bankruptcies

and find similar results. The reason for this seemingly unrelated firms sharing default

factor can be learning, as argued by Collin-Dufresne, Goldstein, and Helwege (2003) and

Giesecke (2004) or market structure as argued by Allen and Carletti (2006).

3.1 Dynamic Frailty Model

Motivated by the definitive finding of excessive default correlation by Das, Duffie, Kapa-

dia, and Saita (2007), Duffie, Eckner, Horel and Saita (2008) proposed a frailty correlated

default model. In such a reduced-form model, default intensity

λit = Λ(Si(Xt); θ)

= eα+β·Vt+ϑ·Uit+Yt+Zi (1)
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is driven by three types of factors: (1) observable market factors (Vt) such as market

stock returns and risk free rate. Demchuk and Gibson (2006) argue that stock market

performance is an important credit spread determinant. (2) observable firm specific

factors (Uit) such as distance-to-default and stock returns, Duffie, Saita, and Wang

(2007) specifically examine the performance of distance-to-default. (3) unobservable

“frailty” factors (market-wide Yt and firm specific Zi). Details of this model is provided

in Appendix A.

While long enough data history can help to tie down the model parameters, for rela-

tively dynamic covariates, Bayesian approach must be used to incorporate progressively

new information. That is to say, in this circumstance, the seemingly long data history

is still limited to fix the parameters at certain points. Parameter uncertainty can be

partially solved via Bayesian method. In default intensity estimation, Duffie, Eckner,

Horel and Saita (2008) claims that the 25-year data set contains relatively few recorded

defaults since public firms rarely go bankruptcy. Thus instead of Maximum Likelihood

Estimation, we employ Bayesian Method in the model parameter estimation.

3.2 Simulation Approach

Historical data plays a critical role in the empirical investigation. With relatively limited

data history, the model estimation may be sensitive to the data structures. To assess

the data structure effect on the model estimation results, we simulate a series of data

structures, each of which accompanies with a specific economic scenarios.

Specifically, different pattern of default may account for different data structures.

During economic recession, there might be more insolvency bankruptcy and during some

financial crisis (like the 2007-2008 credit crisis), there might be more liquidity defaults.

Different types of defaults correspond to different data structure of distance to default

and trailing stock return, which are the main observable firm-specific default-prediction

covariates in the model. Then for insolvency default, the firm tends to have lower Trail-

ing return and lower Distance to default. But for liquidity default, Trailing Return and

Distance to default seem to be higher.

To generate the various scenarios, we assume that all observable factors follow the
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one stage autoregressive and Gaussian process, that is AR(1). The frailty factor is as-

sumed to follow an Ornstein-Uhlenbeck (OU) process. This assumption is consistent

with that of Duffie, Eckner, Horel and Saita (2008).

Before generating, however, it is worthy to remind the correlation among the data

series. Although we have assumed that the time series of the observable factors is in-

dependent with the dynamic frailty process, there are correlation among some of the

observable covariates. Then when simulating data, instead of generating AR(1) time se-

ries data independently, it is necessary to taking into account these potential correlations.

Specifically, for the observable factors we assume that they are modeled by the AR(1)

process as follows. For the S&P 500 return and the 3-month Treasury rates, we have

(SPt − usp) = Φsp(SPt−1 − usp) + δspεsp,t, (2)

(TRt − utr) = Φtr(TRt−1 − utr) + δtrεtr,t. (3)

where u stands for the long run mean of the time series process, and δ is the volatility

of the normal distributed errors in each period. Both u and δ are constants in the for-

mula, that is they are of the same value for each periods. Φ represents the first order

autocorrelation coefficient. ε follows the standard Brownian Motion. Following Duffie,

Saita and Wang (2007) and Duffie, Eckner, Horel and Saita (2008), we assume that the

Brownian Motion part of these two process are independent.

The firm’s trailing 1-year stock return and Distance to default (DD) are modeled by

(Rit − uri) = Φri(Ri,t−1 − uri) + δriεri,t, (4)

(DDit − uddi
) = Φddi

(DDi,t−1 − uddi
) + δddi

εddi,t. (5)

where the u, δ, Φ, andε represent the same meaning as that in formula (1) and (2) for

the time series process.

To incorporate the data correlation, the Brownian Motion parts of firm’s trailing
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1-year stock return and Distance to default are modeled as

εri,t = ρr,spεsp,t +
√

1− ρ2
r,spνt (6)

εddi,t = ρdd,rεri,t +
√

1− ρ2
dd,rζt (7)

where ρr,sp are the correlation coefficient between the Brownian Motion process of

εri,tandεsp,t, and ρdd,r represent the correlation coefficient between εdd,tandεri,t. Based

on the historical data, we set ρr,sp = 0.3 and ρdd,r=0.5 in our simulating. νt, ζt are

independent Brownian Motion.The details for the estimation is provided in the appendix.

This completes the correlation structure of our model.

3.3 Data Generating Process

In this part, we specify how the correlation coefficients, long run means, mean-reverting

speeds, volatilities and initial values of the observable factors are loaded. We setup a

relative simple whereas reasonable covariate time series structure in light of Duffie, Saita

and Wang (2005). 3-month treasury rate is regarded as a monetary shock to the econ-

omy and is of some arbitrary nature. Although common wisdom would impose positive

correlation between 3-month treasury rate and some macroeconomic condition factor,

say, the S&P 500 index, we assume these two covariates to be independent. The reason

for this is that we actually use the 1-year SP 500 index trailing return which refers to a

longer time horizon as to 3-month treasury rate and thus blurs the correlation structure.

In addition, individual firm equity trailing return is correlated with the market index and

distance to default is even more highly correlated with the firm equity return. Without

much loss of sensibility, we define the correlation between 1-year S&P 500 trailing return

and individual firm 1-year trailing equity return to be 0.3 and the correlation between

1-year trailing equity return and distance to default to be 0.5.

In Duffie, Saita and Wang (2005), distance to default across firms shares the same

positive mean-reverting speed which captures the leverage targeting, and the same

volatility which is implied in the Merton theory. However, we have no reason to as-

sume homogeneous long run mean among all firms. The way to load this long run mean

for each firm is to draw from a uniform interval, which is the interquartile range esti-
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mated as (1.4,4.8). The rough range of 1-year distance to default for investment grade

bonds (BBB-AAA) is (5.5,10.7) and for junk bonds (CC-BB) is (0.6,3.3). For economic

state comparison, we shift the lower bound of the quartile to 0.6 and the upper bound

to 10.7, respectively for bad and good macroeconomic condition. The long run means

of S&P 500 trailing return, 3-month treasury rate and firm-specific equity return are

assumed to be lower in bad economic state and higher in good economic state. For the

normal situation, we set the values to be near their estimated counterparts from the

historic real data.

For 1-year S&P 500 index trailing return and equity 1-year trailing return, we can

show that the one step autocorrelation is roughly 11/12 on condition that indice and

stock prices follow GBM. Therefore, the mean-reverting speeds are unanimously taken

to be 1-11/12=1/12 across all sectors and for both of the trailing returns. The deriving

of the one step autocorrelation is as follows. For the correlation between Rt and Rt+1,

since

Rt = rt + rt+1 + · · ·+ rt+11

Rt+1 = rt+1 + rt+2 + · · ·+ rt+12

where rt follows a standard Geometric Brownian Motion, with

E(rt) = u, V ar(rt) = σ2, E(r2
t ) = u2 + σ2

then

E(Rt) = 12u, V ar(Rt) = 12σ2

Cov(Rt, Rt+1)

= E(Rt ·Rt+1)− E(Rt)E(Rt+1)

= 11(u2 + σ2) + 133u2 − 144u2

= 11σ2
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With this result, the correlation between Rt and Rt+1 can be written as

ρRt,Rt+1

=
Cov(Rt, Rt+1)√

12σ2 ·
√

12σ2

=
11σ2

12σ2
=

11

12

From historic data, mean-reverting speed and volatility of 3-month treasury rate,

and volatility of S&P 500 index trailing return are estimated to be 0.0145, 0.47 and

0.0653, respectively. Volatilities of firms are drawn from a uniform interval (20%, 50%).

The mean-reverting speed and volatility of distance to default suggested in Duffie etc.

is 0.0355 and 0.346, respectively. The initial values of these four observable factors are

fixed at their long run means. Table 1 summarizes the specification for long run means.

We simulate the times series for all the factors based on the above parameters gov-

erning the joint distribution of these covariates. To further get the default scenario, we

generate a pre-set latent path with mean-reverting speed 0.03 and volatility 0.15. We

take these values out from the marginal posterior densities in Figure 6 in Duffie, Eck-

ner, Horel and Saita(2008). Now the default intensities for firm i at time t is calculated as

λit = eα+β1DDit+β2Rit+β3TRt+β4SPt+yt (8)

α, β could be chosen with some flexibility. Say (α, β) = (-1, -1.2, -0.65, -0.26, 1.6), which

is close to the real data output reported in Table II in Duffie, Eckner, Horel and Saita

(2008).

Default arrival is identified when intensity times the forecast horizon reaches a ran-

dom threshold. In detail, for each time t and each firm i, we draw a random number

from U(0,1) and then let a firm go default when its intensity times the time window

exceeds the random number.
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3.4 Validation Tests

As shown in Figure 5 of Duffie, Eckner, Horel and Saita (2008), the latent factor plays a

crucial role in the tails of the probability densities of predicted number of defaults in the

future 5 years. Common source of the current level and future shocks of this latent factor

enlarges the risk of heavily clustered defaults remarkably. Thus the filtered-out latent

factor path and the mean-reverting speed, kappa, and volatility, Eta, which govern the

time series of the latent factor, are of the most gravity to assess the modeled correlation

risk. However, we have little knowledge regarding where this latent factor stems from

and what the time series behavior it should present. It is precarious to use this model

before some tests with its actual power to capture the real situation.

The two potential sources of model vulnerability that occur to us firstly in mind are

that the model might over-evaluate the latent path when it is actually not significant

and/or under-evaluate when it does persist. Regarding these two concerns, we conduct

two model fittings to testify the capturability. The observable covariates time series used

here are the same for both tests. The simulated 1-year S&P 500 index trailing return

and 3-month treasury rate are shown in figure 1. We differ when generating two default

scenarios by not adding frailty into one of them. We define the scenario with frailty as

I and the one without scenario as II. Then we apply the frailty model to both of the

two scenarios. The sum of default intensities across firms and actual defaults at each

time point for scenario I are shown in figure 2. The The estimation results are shown in

Table 2, 3, 4 and 5.

For scenario I with frailty, we can see that the filtered latent factor tightly follows

the pre-set path. The parameters estimated are all highly significant. Whereas, as for

scenario II, the estimated kappa and eta are not significant and the latent factor narrows

down to around 0. In both scenarios, the parameters estimated from traditional model

without frailty and the frailty model do not represent large jumps. It is relatively safe

to conclude that the model appropriately pins down the intangible risk embedded in the

unobservable latent factor which has a wide influence on the whole economy.
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4 Simulation Results

Duffie, Eckner, Horel, and Saita (2008) show that the frailty model estimated by the

Gibbs sampler performs well with historical data. In this section, we demonstrate the

effects of model specification and data history using the frailty model.

4.1 Model Uncertainty Effects

4.1.1 Model Mis-specification

Apart from the data history, we still have different estimation results when different

models are fitted to make prediction. This new frailty model enhances our ability to

tie down the latent sources of correlated risk. Whether it does a better work than

the traditional double-stochastic intensity model remains unclear. In this part, we do

a comparison between the traditional model and the frailty model. We estimate the

traditional model with 5, 10 and 30 years’ data history, respectively. The distribution

of the predict default proportion are shown in figure 6. We can see that the traditional

model is not sensitive to the length of data history, in respect to the distribution tail.

And it generate little right fat tail.

Even for single-obligor credit risk modeling, there is no consensus on the best per-

forming model. Model failure has been recorded in nearly all areas. The seminal work

on Vasicek (1987) on portfolio credit risk is also shown to be inaccurate for heterogenous

asset pools (Hanson, Pesaran, and Schuermann (2008)). More seriously, default correla-

tion is assumed to be only driven by observable factors. This counterfactual assumption

is widely adopted until recently. However, we believe existing CDOs are almost all

evaluated based on this low correlation assumption.

In order to understand how much effect this error due to model uncertainty caused

the CDO mispricing, we formally conduct analysis with frailty correlated default process

as the true data generating process. However, the CDO evaluator is unaware of this

feature and only consider the observable default factors such as distance-to-default,

stock returns, and risk free rates. We further augment with different data availability of

5, 10, and 30 years. The results are plotted in Figure 6.

We make two observations from Figure 6. First, data history makes little difference
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when the mis-specified no-frailty model is used. The 5-year and 10-year default pre-

dictions are nearly identical. Even the 30-year data case does not make a significant

difference for the right tail with large defaults. Second, the frailty and no-frailty results

are qualitatively different. The tail of the frailty model predicted default distribution

is much fatter than the tails of the no-frailty predictions. Default at 7% level is almost

impossible for no-frailty case but with 5% probability for frailty model.

Above finding indicates that model uncertainty is much more important than data

availability. While both issues played some roles in the CDO mispricing episode, the lack

of accurate model was much more to be blamed. However, since CDO transactions are

zero such games. Relative sophistication could potentially produce large profits. This

rationale could explain the proliferation of retailed structured products. Essentially,

investors with better credit models gain at others’ losses.

Furthermore, while data history shortage can be mechanically resolved by extending

the market sufficiently long, model uncertainty is arguably much more difficult to im-

prove. Hence, for future financial innovation with complex products, disclosure becomes

important as the learning process for new financial instruments can be slow. The con-

sequence of little understood financial derivatives can indeed be massively destructive.

4.1.2 Structural Breaks

Andreou and Ghysels (2008) emphasize the effect of structural shifts to the credit risk

structural model. Instead of fixing the structural model parameter at some points,

they point out that it is necessary taking into account of the structural parameter

variation. Failed to considering the effects, may results in biased inferences based on the

credit model. An optimal sequential quality control procedural with minimum detecting

time for monitoring the structural breaks is suggested, which is extremely useful for

monitoring the corporation stability in financial distress period. Moreover, with a good

finite sample behavior as indicated in their simulation, the suggested procedure could

be used for the quality control of the credit models.
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4.2 Data History Effects

4.2.1 Length of Data history

High quality data is the first concern when we are doing maximum likelihood estimation.

Data structure might shift from decade to decade, even year by year. Limited historic

data in deficiency of some extreme economic states leads to biased estimation results and

sometimes is detrimental for prediction. The current credit crunch is frequently imputed

to the financial innovations, like CDO and CDS, which are organized from models based

on very short time-horizon data history. We lay out a data history test, exploiting the

dynamic frailty model, to see how the length of data history will affect the tails of the

predicted number of defaults probability density.

We truncate our dataset generated with frailty in the former validation test part to

the last 10 and 5 years. 5-10 years is close to the actual data history of large volume

issuance of CDO or CDS. Then we apply the frailty model to the limited data history.

The parameter estimation results are presented in Table 6, 7 and 8, and the filtered latent

factor is shown in figure 4. We can see that as the data history becomes shorter, more

parameters become insignificant. And the capturability of the model become weaker

as the filtered latent factor deviates the pre-set path further. The most interesting

part lies in the prediction for future default proportion. The tail of the distribution

shrinks as the data history becomes shorter. For 30 years’ data, the 95%, 99% and

99.5% percentile is 7.30%, 9.43% and 10.04%, respectiely. However, for limited 5 years’

data, these percentiles abate to 5.46%, 6.3% and 6.59%, respectively. The CDO 10%-

30% Mezzanine tranche still gets a chance to be reached based on the 30 years’ history,

though not for 10 and 5 years.

4.2.2 Data Realization of Economic States

Macro economic condition has long been regarded as very important for individual firm

performance. During financial or economic crisis, contagion effect will largely absorb the

liquidity in the market and defaults happen thereafter. Another dimension of bias of

our model estimation comes from the economic state within the history of the dataset.

If we are luckily living in a thriving 30-years, the data for these 30 years will tell us
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nothing about the severe problems encountered in an economic recession. Accordingly,

we apply a economic state analysis with the frailty model. The way to do it is to shift

down the long run means of firm-specific distance to default, firm-specific trailing equity

return, S&P 500 index trailing return, and the 3-month treasury rate to represent a bad

economic state and elevate the long run means to represent a good economic state. The

actual predicted number of defaults in bad, normal and good economic states are 1048,

586 and 196, respectively. The estimation results are reported in Table 9, 10, 11. The

distribution of the predicted number of defaults are shown in figure 5.

As we expect, the both the mean and right tail of the loss distribution increases as

the economic state deteriates. For good economic condition, the 50%, 95%, 99% and

99.5% percentile is 1.3%, 3.0%, 4.1% and 4.5%, respectiely. However, for bad economic

condition, these percentiles bound up to 10.6%, 22.5%, 29.3 and 32%, respectively. The

CDO 15%-30% senior tranche might be wiped out if extreme bad recession happens.

4.2.3 Data Estimation Error

The estimation of distance to default might deviate from the true value since we could

only get periodic and noisy accounting data. Duffie and Lando (2001) provide that

noise in distance to default reshapes the term structure of credit spreads of corporate

bonds. Firms might jump to default even in a very short maturity. Distance to default

estimation error is also a source of the frailty factor. Imperfect information lead to

addtional risk in the firm. Systematic biases in distance to default estimation can be

capture by the frailty path. Here we do not include systematic error in distance to

default estimation, simply because we already add the frailty path to our model. We

want to test whether the filter can work properly if the estimation contains some white

noise. The ususal way to perform noise test is to engage the signal to noise ratio, which

is the proportion of the standard deviation of the signal to that of the noise. We add

a 10% and 20% white noise to the true diatance to default, corresponding to signal to

noise ratio 10 and 5, respectively. And we make adjustment to the distance to default

value to ensure the total standard deviation after adding the noise does not change. The

parameter estimation and predicted default proportion are shown in Table 12 and figure

7 respectively.

We can see that the parameter estimation remains nearly the same as the true model.
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And the predicted default proportion does not change much in shape and position, either.

Therefore, we conclude that unsystematic noise in distance to default estimation is not

an important issue in the frailty model. The frailty model display high robustness to

white noise in distance to default estimation.

5 Empirical Evidence: A CDO Case Study

In this part we will apply the dynamic frailty model for real CDO tranches default

estimation. FREEDOM CCS 2008-1 is selected as a check, with closing date on March

30, 2008 and stated maturity on November 15, 2016. The issuer of this CLO is Lehman

Brother Inc. and the participation counterparty guarantor is Lehman Brother Holdings

Inc. This CDO was amended before May 7, 2008. Its closing date amount is about 2.8

billion, but the amount after amendment is about 1.9 billion. The proportion of the A

tranche remains the same, 80% of the total principal. One mezzanine tranche with B+

rating was added after amendment. Both have arating higher than the weighted average

rating B-. The number of assets after amendment is 28.

We apply the dynamic frailty model and the traditional model without frailty to

this CLO. There is a rough relation between rating and distance to default. We assume

the underlying assets are of the same face value and with the weighted average rating.

Long run mean of Distance to default is chosen to be the one reported in the paper. We

calculate the number of assets before amendment with proportion to CLO amount before

and after amendment. We generate the predicted default probability and percentiles in

Figure 8 and Table 13.

We can see that under the no frailty model, the asset pool before amendment can

just produce 64% A tranche. However, it gives 73% A tranche after amendment. The

frailty model would allow only 51% A tranche even after amendment.

6 Conclusion

Understanding the ongoing credit crisis is important for future regulatory and monitoring

policies as well as risk management strategies. The CDO market was not well equipped
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with sufficient data for back-testing and accurate model. Our study shows that these

two factors, especially the latter, contributed significantly to the poor portfolio credit

risk valuation and CDO mispricing.

Specifically, we employ a frailty correlated default model of Duffie, Eckner, Horel,

and Saita (2008) for MCMC simulation exercises. Knowing the true data generating

dynamics, we can better pin down the casuality of CDO pricing failures. Not only was

data history a problem, the random realization of economic states will also present false

picture of predicted default scenarios. Moreover, lack of accurate model exacerbates

the data limitation and could result in qualitatively different assessment. The often

accoladed AAA rating could actually of single-A quality.

The Bayesian approach used in this study is useful for portfolio credit risk analysis as

data is often scarce. Expert opinion or prior belief then becomes critical. For example,

given our understanding of paucity AAA ratings, it should be obvious that the abundance

of AAA ratings in CDO market is incredible. We plan to take this approach to actual

CDO deals and incorporate the learning feature in CDO valuation.
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Appendices

A Dynamic Frailty Model

Following Duffie, Eckner, Horel, and Saita(2008), our estimation employs the dynamic

frailty model. The model’s objective is to estimate the probability distribution of the

number of defaults among m given firms over any prediction horizon. For a specific firm,

we include a set of observable factors Wit, and a common unobservable latent factor Yt

whose effect is referred as frailty in statistical literature.

Specifically, we include the firm specific distance to default(DD) and the firm’s one

year trailing stock return as the observable firm specific default-prediction covariates,

and use vector Uit denote these factors. For the observable macro-economic default-

prediction covariates, vector Vt, we use the 3-month Treasury bill rate and the trailing

one year return on the S&P 500 index in the model. Additional observable macroeco-

nomic variables can be included for robustness checks. Last but not least, a common

dynamic frailty covariate, Yt, is included to capture the unobservable default correlation

among the firms in the underlying portfolio.

Similar to Duffie, Eckner, Horel, and Saita(2008), we define a Markov state Vector

Xt which include both the firm-specific and macroeconomic covariates Uit, Vt and Yt. If

Xt is absolutely observable, the default intensity λit for a given firm i at time t will be

λit = Λ(Si(Xt); θ)

= eα+β·Vt+ϑ·Uit+Yt+Zi (9)

where Si(Xt) represents the component of Xt that is relevant to the default intensity

of firm i, θ represents the parameter vector for default intensity to be estimated. Note

that Zi in the equation represents firm specific latent factor, and is intended to allowing

for unobserved heterogeneity. As shown in Duffie, Eckner, Horel, and Saita(2008), in

the extended dynamic frailty model with Zi, the estimation results do change much.

23



Therefore, we do not include it in the model estimation.

To involve the frailty effect, however, we assume that Xt is only partially observable.

For simplicity, let Wit = (1, Uit, Vt), that is the vector of all observable covariates for firm

i’s default intensity function. Then Si(Xt) = (Wit, Yt), where Yt represent the common

unobservable frailty factor. Then the default intensity takes the matrix form of

λ = Λ(S(X); θ)

= Λ((w, y) ; θ) = eβ1w1+···+βnwn+ηy (10)

where w represents the vector of observable factors for all companies.

To complete the model construction, following Duffie, Saita and Wang (2007) and

Duffie, Eckner, Horel, and Saita (2008), we specify a set of time-series model for the

covariates in the state vector Xt. For covariates in Wit, we opt for a one stage autore-

gressive and Gaussian process. The parameter vector of these time series is denoted as

γ, which can be estimated through traditional maximum likelihood method as detailed

in Duffie, Saita and Wang (2007). For the frailty factor Yt, we suppose it follows a simple

Ornstein-Uhlenbeck (OU) process with a non-negative constant mean reversion rate κ

and standard Brownian motion B. That is

dYt = −κYtdt+ dBt, Y0 = 0. (11)

The reason why Yt is assumed to follow the OU process, as suggested by Duffie,

Eckner, Horel, and Saita (2008), lies in the fact that it can capture the decaying but

accumulative effect of various types of unobservable common shocks to the default in-

tensities over time. However, it is worth to note that given the unobservable historical

sample path of Yt, even with the relatively long data set, such as 25 years in Duffie,

Eckner, Horel, and Saita (2008), it is still too limited to be used to tie down its time

series parameter. Besides, as shown in the formula, the original value as well as the

long-run mean of Yt is assumed to be zero. The underlying logic is again similar to that

of Duffie, Eckner, Horel, and Saita (2008).
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The question left is the estimation of model parameters (γ, θ). As specified above, γ is

the parameter vector determining the time-series behavior of the observable covariates. θ

represents the parameter vector for default intensity, where θ = (β, η, κ) . The likelihood

of the data at the parameters (γ, θ) is given by

L(γ, θ|W,Y,D)

= L(γ|W )L(θ|W,Y,D)

= L(γ|W )
m∏
i=1

(e−
∑Ti

t=ti
λit∆t

Ti∏
t=ti

[Ditλit∆t+ (1−Dit)]). (12)

By implementing the independent hypothesis for W and Y process, the likelihood can

be rewrote as

L(γ, θ|W,D)

=

∫
L(γ, θ|W, y,D)pY (y)dy

= L(γ|W )

∫
L(θ|W, y,D)pY (y)dy

= L(γ|W )E[
m∏
i=1

(e−
∑Ti

t=ti
λit∆t

Ti∏
t=ti

[Ditλit∆t+ (1−Dit)])|W,D]. (13)

where D is the vector of default indicators. That is, for company i, Di = 0 before default,

and 1 if default occurs and thereafter. pY (y) represents the unconditional probability

density of the unobservable common factor Y.

Considering the unobservable sample process for Y, the model parameters are esti-

mated through a combination of EM algorithm and the Gibbs sampler, similar to that

employed by Duffie, Eckner, Horel, and Saita (2008). Appendix B provides some de-

tailed explanation.
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B Parameter Estimation

The dynamic frailty model parameters (γ, θ) are estimated in the similar way as Duffie,

Saita and Wang (2007) and Duffie, Eckner, Horel and Saita (2008). Specifically, vector

γ, which determines the dynamic process of observable covariates as described above, is

estimated by maximum likelihood estimation.

For estimating the default intensity parameter θ = (β, η, κ), a combination of Markov

chain Monte Carlo (MCMC) and the expectation-maximization (EM) algorithm is em-

ployed. This combination has advantage for the Maximum likelihood parameter estima-

tion in the model with incomplete information. The detailed steps include

Step 1. Get the maximum likelihood estimator of the intensity model with only

observable covariates β̂. That is the MLE from equation (10) without considering the

effect of unobservable covariate Y.

Step 2. Assign an initial estimate value for θ, as suggested by Duffie, Eckner, Horel

and Saita (2008), at θ(0) = (β̂, 0.05, 0).

Step 3. Draw n independent sample path for the frailty factor Y (1), . . . , Y (n) from

pY (·|W,D, θl), that is the conditional density of Y’s OU process. This can be down with

MCMC, specifically Gibbs sampler, while taking the lth estimate value for θl as well as

the observable covariates W and D as given.

Step 4. Maximization step. Define the intermediate quality

Q(θ, θ(l)) = Eθ(l)(logL(θ|W,Y,D)) (14)

=

∫
logL(θ|W, y,D)pY (y|W,D, θ(l)) dy (15)
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Based on the sample path for Y drawn in step 3, Q(θ, θ(l)) can be approximated by

Q̂(θ, θ(l)) =
1

n

n∑
j=1

logL(θ|W,Y (j), D) (16)

Then the new parameter estimate θ(l+1) can be get by

Max Q̂(θ, θ(l)) = Max
1

n

n∑
j=1

logL(θ|W,Y (j), D) (17)

Step 5. Back to step 3, and replace θ(l) with the new estimator θ(l+1). Proceed to step

4 to get θ(l+2). Repeating step 3, 4, until the estimation of θ reasonable convergence.

The asymptotic standard errors for the parameter estimators can be calculate from

the Hessian matrix of the expected complete-data likelihood in equation (13).

C Correlation Structure of Observable Factors

This appendix explains details of how we simulating the time series data for observable

factors including S&P 500 stock return, 3-month Treasury bill rate, firm’s distance to

default and 1-year trailing stock return. It is worth to note the formal definition of

Distance to default, that is for firm i at time t we have

DDit =
ln( Vit

Lit
) + (µiA − 1

2
σ2
iA)T

σiA
√
T

(18)

where T is the forecast horizon, Vit and Lit are the firm i’s asset value and liability at

time t, respectively. µiA and sigmaiA represent the firm’s asset growth rate and volatility.

For the correlated time series generating, it can be shown that for any Brownian

motion ε1, ε2, define ε3 = ρε1 +
√

1− ρ2ε2. Then we have ε3 also follows a Brownian
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motion, with

ρ(ε1, ε3)

= E[(ε1 − E(ε1)) · (ε3 − E(ε3))]

= E(ε1 · ε3)

= ρE(ε21) + (1− ρ2)E(ε1ε2)

= ρ

For two stationary time series process at, bt we have

(at − ua) = Φa(at−1 − ua) + δaεa,t

(bt − ub) = Φb(bt−1 − ub) + δbεb,t

where u stands for the long run mean of the time series process, and δ is the volatility

of the normal distributed errors in each period. Both u and δ are constants in the for-

mula, that is they are of the same value for each periods. Φ represents the first order

autocorrelation coefficient, and lies between 0 and 1. ε follows the standard Brownian

Motion. However, we assume that εa,t and εb,t are correlated with ρ(εa,t, εb,t) = ρ.

For the correlation between at and bt, it can be shown that

ρ(at, bt) =
cov(at, bt)

δat · δbt
=
cov(at − ua, bt − ub)

δat · δbt
(19)

where δat = δa√
1−Φ2

a

, δbt = δb√
1−Φ2

b

cov(at − ua, bt − ub)

= E((at − ua) · (bt − ub))− E(at − ua) · E(bt − ub)

= ΦaΦbE((at−1 − ua) · (bt−1 − ub)) + δaδbE(εa,tεb,t)

= ΦaΦbE((at−1 − ua) · (bt−1 − ub)) + δaδbρ (20)
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Since at, bt are stationary, so are(at − ua), (bt − ub) and [(at − ua) · (bt − ub)],then

E[(at−1 − ua) · (bt−1 − ub)]

= E[(at − ua) · (bt − ub)]

= cov(at − ua, bt − ub) (21)

Use this result in equation (14)

cov(at − ua, bt − ub) =
ρδaδb

1− φaφb
(22)

Incorporate this result together with δat, δbt in equation (13), we have

ρ(at, bt) =

√
(1− φ2

a)(1− φ2
b)

1− φaφb
· ρ (23)

Given φa and φb, that is the speed of mean reverting, we can change ρ to control the

correlation between at and bt. For φ approaches to one, the correlation between at and

bt can be approximated by ρ.
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S&P TR DD Ri

Good Economy 18% 6 U(1.4, 10.7) U(13%, 21%)

Normal Economy 9% 4 U(1.4, 4.8) U(5%, 13%)

Bad Economy 0% 2 U(0.6, 4.8) U(-4%, 4%)

Table 1: Long run mean for the observable factors, (a) 1-year S&P trailing return (S&P), (b)
3 month treasury rate (TR), (c) firm’s distance to default (DD), and (d) 1-year individual firm
trailing stock return (Ri).

Coefficient Std. Error t-statistic
constant -1.599 0.121 -13.19
distance to default -1.146 0.034 -33.99
trailing stock return -0.942 0.144 -6.55
3-month T-bill rate -0.221 0.029 -7.65
trailing S&P 500 return 0.833 0.270 3.08
latent-factor volatility η 0.138 0.018 7.47
latent-factor mean reversion κ 0.025 0.008 3.20

Table 2: Maximum likelihood estimates of intensity-model parameters with frailty

Coefficient Std. Error t-statistic
constant -1.494 0.090 -16.65
distance to default -1.150 0.031 -36.79
trailing stock return -0.930 0.137 -6.76
3-month T-bill rate -0.218 0.023 -9.47
trailing S&P 500 return 0.907 0.258 3.51

Table 3: Maximum likelihood estimates of intensity-model parameters without frailty
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Coefficient Std. Error t-statistic
constant -1.006 0.099 -10.15
distance to default -1.222 0.031 -38.90
trailing stock return -0.543 0.131 -4.16
3-month T-bill rate -0.282 0.023 -12.41
trailing S&P 500 return 1.949 0.248 7.88
latent-factor volatility η 0.023 0.014 1.60
latent-factor mean reversion κ 0.000 0.009 0.00

Table 4: Maximum likelihood estimates of intensity-model parameters with frailty (data
without frailty)

Coefficient Std. Error t-statistic
constant -0.990 0.083 -11.85
distance to default -1.223 0.029 -42.73
trailing stock return -0.544 0.115 -4.74
3-month T-bill rate -0.282 0.020 -13.90
trailing S&P 500 return 1.982 0.234 8.48

Table 5: Maximum likelihood estimates of intensity-model parameters without frailty (data
without frailty)
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30 year 10 year 5 year

constant
-1.599 -1.220 -1.592

(-13.19) (-3.49) (-3.18)

distance to default
-1.146 -1.134 -1.145

(-33.99) (-16.97) (-12.24)

trailing stock return
-0.942 -0.990 -0.821
(-6.55) (-3.32) (-1.88)

3-month T-bill rate
-0.221 -0.299 -0.217
(-7.65) (-3.90) (-2.07)

trailing S&P 500 return
0.833 -0.012 0.165

( 3.08) ( -0.02) (0.17)

latent-factor volatility η
0.138 0.160 0.039
(7.47) (2.94) (0.39)

latent-factor mean re-
version κ

0.025 0.146 0.370
(3.20) (2.08) (0.33)

Table 6: Maximum likelihood estimates of intensity-model parameters with frailty for 5, 10,
and 30 years of historical data
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30 year 10 year 5 year

constant
-1.494 -1.701 -1.605

(-16.65) (-5.57) ( -3.30)

distance to default
-1.150 -1.138 -1.149

(-36.79) (-17.73) (-12.10)

trailing stock return
-0.930 -0.977 -0.822
(-6.76) (-3.49) (-1.89)

3-month T-bill rate
-0.218 -0.210 -0.219

( -9.47) (-3.01) ( -2.12)

trailing S&P 500 return
0.907 0.277 0.440
(3.51) (0.47) (0.48)

Table 7: Maximum likelihood estimates of intensity-model parameters without frailty for 5,
10, and 30 years of historical data

99.5% 99% 95% 90% 75% 50%

5 year 6.59% 6.31% 5.46% 5.03% 4.47% 3.76%

10 year 8.01% 7.44% 6.31% 5.6% 4.75% 3.9%

30 year 10.04% 9.43% 7.30% 6.31% 5.03% 3.76%

Table 8: Quantiles of predicted number of defaults distribution data history comparison
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Bad State Normal State Good State

constant
-1.012 -1.599 -1.868

(-15.13) (-13.19) (-5.87)

distance to default
-1.180 -1.146 -1.214

(-47.87) (-33.99) (-24.03)

trailing stock return
-0.717 -0.942 -0.856
(-6.41) (-6.55) (-3.45)

3-month T-bill rate
-0.426 -0.221 -0.142

(-16.44) (-7.65) (-3.00)

trailing S&P 500 return
1.726 0.833 2.173
(7.62) (3.08) (3.69)

latent-factor volatility η
0.192 0.138 0.177

(17.50) (7.47) (6.55)
latent-factor mean re-
version κ

0.021 0.025 0.025
(6.96) (3.20) (3.23)

Table 9: Maximum likelihood estimates of intensity-model parameters with frailty for eco-
nomic states comparison

99.5% 99% 95% 90% 75% 50%

Good Economy 4.5% 4.1% 3.0% 2.6% 1.9% 1.3%

Normal Economy 10.04% 9.43% 7.30% 6.31% 5.03% 3.76%

Bad Economy 32.0% 29.3% 22.5% 19.3% 14.7% 10.6%

Table 10: Quantiles of predicted number of defaults distribution -economic states comparison

38



> 3% > 7% > 10% > 30%

Good Economy 5.0% 0.018% 0 0

Normal Economy 5.66% 0.59% 0 0

Bad Economy 99.2% 79.2% 53.5% 0.72%

Table 11: Quantiles of predicted defaults distribution -economic states comparison

S/N 5 S/N 10 No Noise

constant
-1.710 -1.658 -1.599

(-22.24) (-22.30) (-13.19)

distance to default
-1.183 -1.185 -1.146

(-37.23) (-37.46) (-33.99)

trailing stock return
-0.499 -0.503 -0.942
(-3.74) (-3.73) (-6.55)

3-month T-bill rate
-0.311 -0.329 -0.221

(-13.87) (-14.75) (-7.65)

trailing S&P 500 return
1.959 2.020 0.833
(5.50) (5.81) (3.08)

latent-factor volatility η
0.158 0.160 0.138
(9.03) (9.61) (7.47)

latent-factor mean re-
version κ

0.036 0.034 0.025
(4.55) (4.69) (3.20)

Table 12: Data estimation error effect in 3 different scenarios, with (a) signal to noise ratio
(S-to-N ratio) equals 10, (b) S-to-N ratio equals 5, (c) no noise.

> 90% > 95% > 99%

Original ($3.1B) 28.4% 30.9% 35.8%

Amended ($1.8B) 20.0% 23.6% 27.2%

Amended ($1.8B) w/ frailty 38.1% 41.8% 49.0%

Table 13: Predicted Default Distribution: application with a Lehman CDO (Freedom CCS
2008-1).
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Figure 1: Simulated Treasury Rate and S&P 500 Return for Validation Test.
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Figure 2: Intensity and defaults. The total across firms of estimated default intensities (line),
and the number of defaults in each year (bar).
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Figure 3: Latent without frailty.
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Figure 4: 5 years, 10 years and 30 years latent factor
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Figure 5: In year 30th, the conditional probability density of the total number of defaults
within five years with different economic states (a) Bad economic states, (b) Good economic
states, and (c) Normal economic states. Gaussian kernel smoother with bandwidth 5 applied
to a Monte-Carlo generated empirical distribution is used to generate the density estimates.
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Figure 6: In year 30th, the conditional probability density of the total number of defaults
within five years with (a) 5 years data history in a model without frailty, (b) 10 years data
history in a model with frailty, (c) 30 years data history in a model without frailty, and (d) 30
years data history in a model with frailty. Gaussian kernel smoother with bandwidth 5 applied
to a Monte-Carlo generated empirical distribution is used to generate the density estimates.
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Figure 7: Data estimation error effect in 3 different scenarios, with (a) signal to noise ratio
(S-to-N ratio) equals 10, (b) S-to-N ratio equals 5, (c) no noise.

Figure 8: CDO rating outputs: application with a Lehman CDO (Freedom CCS 2008-1).
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