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Abstract 

A semi-analytical method for bending, global buckling and free vibration analyses of 

sandwich panels with square honeycomb cores is presented.  The discrete geometric nature 

of the square honeycomb core is taken into account by treating the core sheets as thin beams 

and the sandwich panel as composite structure of plates and beams with proper displacement 

compatibility.  Based on the classical model of sandwich panels, the governing equations of 

motion of the discrete structure are derived using Hamilton’s principle.  Closed-form 

solutions are developed for bending, global buckling and free vibration of simply supported 

square-honeycomb sandwich panels by employing Fourier series and the Galerkin approach.  

Results from the proposed method agree well with available results in the literature and those 

from detailed finite element analysis.  The effects of various geometric parameters of the 

sandwich panel on its behaviour are investigated.  The present method provides an efficient 

way of analysis and optimization of sandwich panels with square honeycomb cores. 

Keywords: bending, free vibration, global buckling, Hamilton’s principle, sandwich panels 

with square honeycomb cores 

 

1. Introduction 

Sandwich panels have been widely used in marine, aviation and civil engineering.  They 

have received much attention due to their light weight and higher stiffness to weight ratio than 

the solid plates of equal mass.  A sandwich panel consists of two face sheets and a core.  

Commonly-used cores can be classified macroscopically into two groups, namely continuous 

(e.g. wood or metallic foam) and discrete (e.g. truss-core, honeycomb-core or corrugated-core 

of different geometry).  The mechanical behaviour of sandwich panels has been extensively 

investigated in the past few decades.  Many computational models for sandwich panels with 

continuous cores have been proposed.1,2

 Compared with sandwich panels with continuous cores, the analysis of sandwich panels 

with discrete cores is more complicated due to the variation of geometrical forms of the cores.  

A lot of publications have been devoted to the analyses of sandwich panels with discrete cores.  

Libove and Hubka3 gave in 1951 the formulae for evaluating the equivalent elastic constants 

of sandwich plates with corrugated core.  Sandwich panels with other types of core were also 
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extensively investigated.4,5  Grediac6 used the finite element method to obtain the transverse 

shear moduli of honeycomb sandwich panels and evaluated the effect of cell geometries.  

Subsequently to reduce the computations associated with the bending analysis of sandwich 

panels with Z-core, the equivalent elastic constants were derived by Fung et al.7  Recently 

Aimmanee and Vinson8 carried out the analysis and optimization of sandwich plates simply 

supported on all four edges with foam-reinforced web core subjected to in-plane compressive 

loads taking into account the overall instability of the sandwich, face wrinkling, and 

instability of the webs and face plates.  Jayachandran et al.9 later investigated the buckling of 

sandwich plates by modelling sandwich plates as thin plates resting on elastic media.  

Romanoff and Varsta10,11 analyzed the bending response of web-core sandwich beams and 

plates respectively by transforming an originally discrete core into an equivalent homogenous 

continuum.  Zok et al.12 and Rabczuk et al.13 carried out structural analysis of sandwich 

plates with pyramidal truss and tetrahedral truss cores, respectively.  According to the finite 

element static analysis of sandwich panels with square honeycomb core performed by 

Kapania et al.14 in conjunction with the classical laminated plate theory (CLPT), the 

first-order shear deformation theory (FSDT) and the higher-order shear deformation theory 

(HSDT), as well as the equivalent single layer (ESL), the displacements predicted by the ESL 

finite element method are more accurate than those obtained by other methods.  The 

homogenization theory has been employed by Buannic et al.15 to compute the effective 

properties of corrugated core sandwich panels.  The shock resistance of sandwich plates with 

square honeycomb core has been extensively investigated.16,17  The experiments conducted 

by Cote et al.18 to analyze the elastic and plastic buckling of metallic square-honeycombs 

have indicated that the metallic square-honeycombs out-perform some other cores.  To study 

core behaviour, various constitutive models of the equivalent continuum of square honeycomb 

have been established through theoretical analysis and numerical simulation by Xue and 

Hutchinson,19 Xue et al.20 and Zok et al.21  

 As the discrete nature of cores complicates the analysis, various researchers22,23,24 often 

either replace the discrete core by an equivalent continuum or treat the whole sandwich plate 

as an equivalent orthotropic plate for approximate analysis.  The static, buckling and free 

vibration responses of sandwich panels are highly sensitive to variations of some effective 
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material properties, such as the transverse shear stiffness of the core.25  Errors in the 

calculation of properties of the equivalent continuum are unavoidable.  For example, in the 

evaluation of in-plane elastic properties of honeycomb with standard beam theory, the 

interaction between the face plates and the core is not considered.26

 A semi-analytical method for analyzing bending, global buckling and free vibration 

responses of square-honeycomb sandwich panels is proposed in this paper, in which the 

sandwich panel is regarded as a composite structure of plates and beams with the core sheets 

taken as thin beams to consider transverse flexural and shear deformations.  Using the 

classical sandwich panel theory with displacement compatibility conditions, the governing 

equations of the sandwich panel with square honeycomb core are obtained by Hamilton’s 

principle.  The closed-form solutions for bending, global buckling and free vibration 

responses of simply supported square-honeycomb sandwich panels are derived by using 

Fourier series and the Galerkin approach.  Validation of the proposed method is carried out 

by comparing the present results with available solutions in the literature and those obtained 

from three-dimensional (3D) finite element analyses.  The effects of various geometric 

parameters of the sandwich panel on its behaviour will also be investigated. 

 

2. Theoretical background 

Figure 1 shows a typical square-honeycomb sandwich panel with the key dimensions, namely 

the face sheet thickness ft , the core sheet thickness , the core height , the total panel 

height h (h = +2

ct ch

ch ft ), and the core sheet spacing .  The present analysis is based on the 

linear elastic small deformation theory.  In particular, Kirchhoff thin plate theory is used for 

the face sheets.  The core is assumed to be incompressible

cL

2 in the thickness direction.  The 

core sheets are treated as thin beams, which are considered in terms of transverse flexural and 

shear deformations, with the torsional deformation ignored. 

 

2.1 Displacement model 

The computational model of sandwich panels adopted is based on compatibility and the 

assumption that the planes of the core section and the faces remain plane after deformation 
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but not with the same slope.2  The transverse shear strains in the face sheets are neglected 

while that of the core is included on the basis of first-order shear deformable theory.  Thus 

the displacement field may be expressed as follows: 

(a) Face sheets 

 ,( , , , ) ( , , ) ( , , )k k ok k xu x y z t u x y t z w x y t= −  (1a) 

 ,( , , , ) ( , , ) ( , , )k k ok k yv x y z t v x y t z w x y t= −  (1b) 

 ( , , , ) ( , , )k kw x y z t w x y t=     (k = t or b) (1c) 

(b) Entire core 

 ( , , , ) ( , , ) ( , , )c c oc c xcu x y z t u x y t z x y tφ= +  (2a) 

 ( , , , ) ( , , ) ( , , )c c oc c ycv x y z t v x y t z x y tφ= +  (2b) 

 ( , , , ) ( , , )c cw x y z t w x y t=  (2c) 

where the notation is elaborated with reference to Figure 2.  The dummy subscript k below 

may be one of t and b that stand for the top and bottom face sheets respectively (i.e. k = t or b), 

and  is the vertical coordinate of each face sheet measured downwards from its mid-plane.  

The displacements at  of each face sheet consist of the in-plane displacements 

 and  along x and y directions respectively and the transverse 

displacement .  In particular, the in-plane displacements of each face sheet can 

be expressed in terms of the mid-plane displacements  and  along x 

and y directions respectively.  Similarly, the displacements at 

kz

kz z=

( , , , )k ku x y z t ( , , , )k kv x y z t

( , , , )k kw x y z t

( , , )oku x y t ( , , )okv x y t

cz z=  of the core consist of 

the in-plane displacements  and  along x and y directions 

respectively and the transverse displacement , where  is the vertical 

coordinate of the core measured downwards from the mid-plane of the core.  The 

displacements of the core are characterized by the mid-plane displacements  and 

 along x and y directions respectively, rotations of the normal 

( , , , )c cu x y z t ( , , , )c cv x y z t

( , , , )c cw x y z t cz

( , , )ocu x y t

( , , )ocv x y t ( , , )xc x y tφ  and 

( , , )yc x y tφ  of yz and zx-planes respectively and the transverse mid-plane displacement 

 that is also the vertical mid-plane displacement of the face sheets due to the 

incompressible core assumption.  As usual, the variable t denotes time. 

( , , )w x y t
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 The in-plane displacements of the mid-plane of the face sheets,  and 

, are determined through the compatibility of deformation at face-core interfaces, 

namely 

( , , )oku x y t

( , , )okv x y t

(a) Upper face-core interface 

 ,( , , ) ( , , ) ( , , ) ( , , )
2 2
c t

ot oc xc x
h tu x y t u x y t x y t w x y tφ= − +  (3a) 

 ,( , , ) ( , , ) ( , , ) ( , , )
2 2
c t

ot oc yc y
h tv x y t v x y t x y t w x y tφ= − +  (3b) 

(b) Lower face-core interface 

 ,( , , ) ( , , ) ( , , ) ( , , )
2 2
c b

ob oc xc x
h tu x y t u x y t x y t w x y tφ= + −  (4a) 

 ,( , , ) ( , , ) ( , , ) ( , , )
2 2
c b

ob oc yc y
h tv x y t v x y t x y t w x y tφ= + −  (4b) 

Since the core sheets are thin, they are treated as thin beams.  The approximate displacement 

relationships between the discrete core sheets and the whole core can be written as: 

(a) Core sheets spanning along x- axis 

 ( , , ) ( , , , ) ( , , ) ( , , )ci c c i c oc i c xc iu x z t u x y z t u x y t z x y tφ= = +  (5a) 

 ( , , ) ( , , , ) ( , , ) ( , , )ci c c i c oc i c yc iv x z t v x y z t v x y t z x y tφ= = +  (5b) 

 ( , ) ( , , )ci iw x t w x y t=  (5c) 

(b) Core sheets spanning along y- axis                                                  

 ( , , ) ( , , , ) ( , , ) ( , , )cj c c j c oc j c xc ju y z t u x y z t u x y t z x y tφ= = +  (6a) 

 ( , , ) ( , , , ) ( , , ) ( , , )cj c c j c oc j c yc jv y z t v x y z t v x y t z x y tφ= = +  (6b) 

 ( , ) ( , , )cj jw y t w x y t=  (6c) 

where ,  and  are the displacements along x-, y- and z-axes 

respectively of the ith core sheet spanning along x-axis and y

( , , )ci cu x z t ( , , )ci cv x z t ( , )ciw x t

i is the y-coordinate of the core 

sheet.  Similarly, ,  and  denote the displacements along x-, 

y- and z-axes respectively of the jth core sheet spanning along y-axis and x

( , , )cj cu y z t ( , , )cj cv y z t ( , )cjw y t

j is the x-coordinate 

of the core sheet. 

 Substituting the displacement relations given by Equations (1) to (6) into the 

strain-displacement equations of the classical theory of elasticity, the following relations for 

the face sheets are obtained. 
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2

2
k k ok
xx k

u u wz
x x x

ε ∂ ∂ ∂
= = −
∂ ∂ ∂

 (7a) 

 
2

2
k k ok
yy k

v v wz
y y y

ε ∂ ∂ ∂
= = −
∂ ∂ ∂

 (7b) 

 
2

2k k k ok ok
xy k

u v u v wz
y x y x x

γ ∂ ∂ ∂ ∂
y

∂
= + = + −
∂ ∂ ∂ ∂ ∂ ∂

    (k = t or b) (7c) 

where k
xxε , k

yyε  and k
xyγ  (k = t or b) are respectively the normal strains along x and y 

directions and the in-plane shear strain of the face sheets.  In the present analysis, only the 

normal strains and transverse shear strains are taken into account for the core sheets.  The 

normal strain xi
xxε  and shear strain xi

xzγ  of the ith core sheet along the x-axis can be expressed 

respectively as 

 ( , , ) ( , , ) ( , , )xi ci c oc i xc i
xx c

u x z t u x y t x y tz
x x x

φε ∂ ∂ ∂
= = +

∂ ∂ ∂
 (8a) 

 ( , , ) ( , ) ( , , )( , , )xi ci c ci i
xz xc i

c

u x z t w x t w x y tx y t
z x

γ φ∂ ∂ ∂
= + = +

∂ ∂ ∂x
 (8b) 

while the normal strain yj
yyε  and shear strain yj

yzγ  of the jth core sheet along the y-axis appear 

respectively as 

 
( , , ) ( , , ) ( , , )cj c oc j yc jyj

yy c

v y z t v x y t x y t
z

y y y
φ

ε
∂ ∂ ∂

= = +
∂ ∂ ∂

 (9a) 

 
( , , ) ( , ) ( , , )

( , , )cj c cj jyj
yz yc j

c

v y z t w y t w x y t
x y t

z y y
γ φ

∂ ∂ ∂
= + = +

∂ ∂ ∂
 (9b) 

 

2.2 Constitutive relationship 

The materials of face sheets and core sheets are assumed to be isotropic. The constitutive 

relations for the face sheets can be written as 

 2 (
1

k k )k
xx xx

E
yyσ ε με

μ
= +

−
 (10a) 

 2 (
1

k k
yy yy xx

E )kσ ε με
μ

= +
−

 (10b) 
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2(1 )

k k
xy

E
xyτ γ

μ
=

+
    (k = t or b) (10c) 

where k
xxσ , k

yyσ  and k
xyτ  are respectively the normal stresses along x and y directions and 

the in-plane shear stress of the face sheets, and E and μ  are Young’s modulus and Poisson’s 

ratio respectively.  Treating the core sheets as one-dimensional thin beams, the stresses can 

be worked out easily.  The normal stress  and shear stress  of the ith core sheet 

along the x-axis can be expressed respectively as 

xi
xxσ xi

xzτ

 xi xi
xx cE xxσ ε=  (11a) 

 
2(1 )

xi c xi
xz

c

E
xzτ γ

μ
=

+
 (11b) 

while the normal stress  and shear stress  of the jth core sheet along the y-axis 

appear respectively as 

yj
yyσ yj

yzτ

 yj yj
yy c yyEσ ε=  (12a) 

 
2(1 )

yj yjc
yz yz

c

Eτ γ
μ

=
+

 (12b) 

where  and cE cμ  are Young’s modulus and Poisson’s ratio of the material for the core 

respectively. 

 

2.3 Hamilton’s principle 

Hamilton’s principle is employed to obtain the governing equations of the sandwich panels, 

namely 

 2

1

[ ( )]
t

t
K U W dtδ 0− + =∫  (13) 

where K is the kinetic energy, U is the total strain energy due to deformations, W is the 

potential energy of the external loads and δ  is the variation symbol.  The variation of total 

strain energy can be expressed in terms of the strains and stresses as 

  (14) 

1 1

( ) ( )

( ) ( )

t b

xi yj

t t t t t t b b b b b b
xx xx yy yy xy xy xx xx yy yy xy xyV V

m n
xi xi xi xi yj yj yj yj
xx xx xz xz yy yy yz yzV V

i j

U dv

dv dv

δ σ δε σ δε τ δγ σ δε σ δε τ δγ

σ δε τ δγ σ δε τ δγ
= =

= + + + + +

+ + +

∫ ∫

∑ ∑∫ ∫

dv +
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where the first two terms are the strain energy of the top and bottom face sheets respectively, 

the last two terms are the strain energy of the core sheets spanning in x- and y-axes 

respectively, m and n are the numbers of the core sheets along x- and y-axes respectively, and 

dv is the differential volume.  The variation of the kinetic energy of the sandwich panel can 

be written as 

 

2 2 2 2 2 2

2 2 2 2 2 2

1 1

1 1[ ( ) ( )
2 2

1 1( ) (
2 2

t b

xi yj

t t t b b bV V

m n

c ci ci ci c cj cj cjV V
i j

K u v w dv u v w

u v w dv u v w dv

δ δ ρ ρ

ρ ρ
= =

) ]

dv= + + + + + +

+ + + + +

∫ ∫

∑ ∑∫ ∫

& & & & & &

& & & & & &
 (15) 

where the first two terms denote the kinetic energy of the top and bottom face sheets 

respectively, the last two terms denote the kinetic energy of the core sheets spanning in x- and 

y-axes respectively, ρ  and cρ  are the mass densities of materials of the face sheets and 

core sheets respectively, and the dot denotes differentiation with respect to time t. 

 The sandwich panel is acted upon by a transverse distributed load P(x, y, t) and external 

in-plane forces, which result in mid-plane normal forces xN  and  in x- and y- directions 

respectively and in-plane shear force 

yN

xyN  in the xy-plane.  The variation of potential energy 

of the external load Wδ  can be written in terms of the differential area ds along each 

component sheet as 

 
221( , , ) ( , ) 2

2 x xy yS S

w w w wW P x y t w x y ds N N N ds
x x y y

δ δ δ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= + + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫  (16) 

By substituting the corresponding equations into Equation (13), integrating the resulting 

expression by parts, and collecting the coefficients of ocuδ , ocvδ , xcδφ , ycδφ  and wδ , the 

following equations of motion are obtained: 

 

2

2
1

2 2 2

2 2 2

2 2 2

2 2 2
1 1

( )
2

1 1 1

2 ( )

m
oc

c c i
i

f f foc oc oc
c D

m n
oc oc oc ( )f c c c D i c c c D j

i j

u
E y

x

Et Et Etu u v h t
x y x y
u u ut h t y y h t
t t t

δ
μ μ μ

ρ ρ δ ρ δ

=

= =

∂
−

∂

∂ ∂ ∂
+ + +

− ∂ + ∂ − ∂ ∂

∂ ∂ ∂
= + − +

∂ ∂ ∂

∑

∑ ∑

y

x x−

 (17a) 

 

2

2
1

2 2 2

2 2 2

2 2 2

2 2 2
1 1

( )
2

1 1 1

2 ( )

n
oc

c c j
j

f f foc oc oc
c D

n n
oc oc oc ( )f c c c D j c c c D j

j j

v
E x x

y

Et Et Etv v u h t
x y x y

v v vt h t x x h t x
t t t

δ
μ μ μ

ρ ρ δ ρ δ

=

= =

∂
−

∂

∂ ∂ ∂
+ + +

+ ∂ − ∂ − ∂ ∂

∂ ∂ ∂
= + − +

∂ ∂ ∂

∑

∑ ∑ x−
 (17b) 
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2 2 2 2 2 22 23 3

2 2 2 3 2 2 2

3 2 2
2

2 2
1 1

2( 1 ) 2(1 ) 4( 1) 2(1 ) 4(1 )
1( ) ( )

2(1 ) 12 2

1
2

f c f c f c yc f c f cxc xc

m m
c c c c c c xc xc

xc D i D i f c
i ic

Et h Et h Et h Et h Et hw w
x x x y y x

E h t E h tw y y y y t h
x x

φ
y

t

φ φ
μ μ μ μ μ

φ φφ δ δ ρ
μ= =

∂∂ ∂∂ ∂
+ + + −

− + ∂ − ∂ − ∂ ∂ − ∂ ∂ + ∂

∂ ∂∂⎛ ⎞+ + − − − = −⎜ ⎟+ ∂ ∂ ∂⎝ ⎠

+

∑ ∑
3 2 3 23

2
2 2 2

1 1

( ) ( )
12 12

m n
c c xc c c xc

f c c D i c D j
i j

h t h twt h y y x x
x t t t

φ φρ ρ δ ρ δ
= =

∂ ∂∂
− − − −

∂ ∂ ∂ ∂∑ ∑

 (17c) 

 

2 2 2 2 2 2 22 3 3

2 2 2 2 2 2

2 23
2

2 2
1 1

4( 1) 2(1 ) 4(1 ) 2( 1 ) 2(1 )

1( ) ( )
2(1 ) 12 2

1
2

f c f c f c yc f c yc f cxc

n n
yc ycc c c c c c

yc D j D j f c
j jc

Et h Et h Et h Et h Et hw w
3x y y x x y

E h t E h tw x x x x t h
y y

φ φφ
μ μ μ μ

φ φ
φ δ δ ρ

μ= =

∂ ∂∂ ∂ ∂
+ − + +

− ∂ ∂ − ∂ ∂ + ∂ − + ∂ − ∂

∂ ∂⎛ ⎞∂
+ + − − − = −⎜ ⎟+ ∂ ∂ ∂⎝ ⎠

+

∑ ∑

y

t

μ

2 23 33
2

2 2 2
1 1

( ) ( )
12 12

m n
yc ycc c c c

f c c D i c D j
i j

h t h twt h y y x x
y t t t

φ φ
ρ ρ δ ρ δ

= =

∂ ∂∂
− − − −

∂ ∂ ∂ ∂∑ ∑

 (17d) 

3 2 3 3 2 23 34 4

2 2 2 2 3 2 4 2 2 2 3

3 2 34 2

2 4 2 2 2
1

4 2
3(1 ) 2(1 ) 3(1 ) 2(1 ) 2(1 )

2
( )

3(1 ) 2(1 ) 2(1 )

f f c yc f f c f cxc xc

m
f f c yc c c c xc

D i
i c

c

Et Et h Et Et h Et hw w
x y y y y x x

Et Et h E h tw w y y
x y x x x

E

φ φ φ
μ μ μ μ μ

φ φ δ
μ μ μ=

∂ ∂ ∂∂ ∂
− + − −

− ∂ ∂ − ∂ − ∂ − ∂ ∂ − ∂

∂ ⎛ ⎞∂∂ ∂
+ − − + − −⎜ ⎟− ∂ − ∂ ∂ + ∂ ∂⎝ ⎠

∑
2 2 2

2 2
1

3 33 2 4 4 2
2

2 2 2 2 2 2 2 2
1

2

( ) ( , , ) 2
2(1 )

21 2 (
2 3

n
ycc c

D j x xy y
j c

m
yc fxc

2

2

)f c f c c c
i

c c c

h t w w wx x P x y t N N N
y y x x y y

tw w w wt h t h t y y
x t y t t x t y t t

wh t

φ
δ

μ

φ ρφρ ρ ρ

ρ

=

=

∂⎛ ⎞∂ ∂ ∂
+ − − − − − =⎜ ⎟+ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ⎛ ⎞∂ ∂ ∂ ∂ ∂
− + − + + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∂
−

∑

∑ D i

w

δ

∂

−

2
1

( )
n

D j
j

x x
t
δ

=

−
∂∑

(17e) 

where ( )D ix xδ −  and ( )D jy yδ −  are the Dirac Delta functions at the locations of core 

sheets spanning along x- and y-axes respectively. 

 

3. Analytical solutions 

The present study focuses on the bending, global buckling and free vibration behaviour of 

simply supported sandwich panels with square honeycomb cores.  This can be achieved by 

Equations (17) using the Galerkin approach.  The boundary conditions of a simply supported 

rectangular sandwich panel can be expressed as follows: 

(a) At edges x = 0 and x = a: 0ocv = ; 0ycφ = ; 0w =  (18a) 

 10



(b) At edges y = 0 and y = b: 0ocu = ; 0xcφ = ; 0w =  (18b) 

The displacement variables satisfying the above boundary conditions can be expressed in 

terms of the unknown parameters , , pqU pqV xpqφ , ypqφ  and  as pqW

 
1 1

cos( / )sin( / )
M N

i t
oc pq

p q

u U p x a q y b e ωπ π
= =

=∑∑  (19a) 

 
1 1

sin( / ) cos( / )
M N

i t
oc pq

p q

v V p x a q y b e ωπ π
= =

=∑∑  (19b) 

 
1 1

cos( / )sin( / )
M N

i t
xc xpq

p q

p x a q y b e ωφ φ π π
= =

=∑∑  (19c) 

 
1 1

sin( / ) cos( / )
M N

i t
yc ypq

p q

p x a q y b e ωφ φ π π
= =

=∑∑  (19d) 

 
1 1

sin( / )sin( / )
M N

i t
pq

p q

w W p x a q y b e ωπ π
= =

=∑∑  (19e) 

where ω  is the natural frequency, M and N are the prescribed numbers of modal waves in 

the x- and y-directions. 

 

3.1 Bending analysis 
Setting 0ω =  in Eq. (19), substituting Eq. (19) into Eq. (17) and then using the Galerkin 

approach, one may get a set of algebraic equations in terms of the unknown parameters , 

, 

pqU

pqV xpqφ , ypqφ  and .  These equations can be expressed in matrix form as pqW

 [ ]{ } { }=K Δ F  (20) 

where the generalized displacement vector  and force vector  are given by { }Δ { }F

 ;  (21) T{ } { , , , , }pq pq xpq ypq pqU V Wφ φ=Δ T
1 2 3 4 5{ } { , , , , }F F F F F=F

and the elements of stiffness matrix  and force vector {  are given in Appendix A.  

The generalized displacement vector  can be obtained by solving Eq. (20). 

[ ]K }F

{ }Δ

 

3.2 Buckling analysis 

To investigate the global buckling of sandwich panels subjected to external in-plane loads, 

one may set P(x,y,t) = 0 in Eq. (17) and 0ω =  in Eq. (19).  Substituting Eq. (19) into Eq. 
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(17) and using the Galerkin method, the global buckling problem can be written in matrix 

form as 

 ([ ] [ ]){ } { }− =K Δ 0Q  (22) 

where the elements of the matrix [Q] are also given in Appendix A.  To obtain the non-trivial 

solution of Eq. (22) and hence the buckling loads, one may equate the determinant of matrix 

in the left hand side to zero, namely 

 [ ] [ ] 0− =K Q  (23) 

 

3.3 Free vibration analysis 

For the free vibration case, one may similarly set P(x,y,t) = 0 in Eq. (17).  Substituting Eq. 

(19) into Eq. (17) and using the Galerkin method, the free vibration problem can be 

formulated as 

  (24) 2([ ] [ ]){ } { }ω−K M Δ 0=

where the elements of mass matrix [M] are given in Appendix A.  To obtain the non-trivial 

solution of Eq. (24) and hence the natural frequencies, one may equate the determinant of 

matrix in the left hand side to zero, namely 

 2[ ] [ ] 0ω− =K M  (25) 

 

4. Numerical results and discussion 

The bending, global buckling and free vibration responses of rectangular sandwich panels 

with square honeycomb cores simply supported on four edges are analyzed by the proposed 

method.  The results are then compared with those obtained from 3D finite element analysis 

and available solutions in the literature.  

 

4.1 Bending problem 

For ease of comparison, the geometric and material parameters of the square-honeycomb 

sandwich panel are taken as those of Kapania et al.14  The sandwich panel dimensions are 

200mm×200mm and the thickness of face sheets ft  is 2mm.  The core height  is 6mm 

and the thickness of core sheets  is 0.8mm.  Three schemes with different core relative 

ch

ct

 12



densities9  are considered, which are 10%, 15% and 20% with the 

corresponding core sheet spacings  of 16mm, 10.67mm and 8mm respectively.  The face 

sheets and honeycomb cores are all made of aluminium with Young’s modulus of 69GPa and 

Poisson’s ratio of 0.25.  An out-of-plane pressure of 1MPa is applied on the one face sheet. 

2 2(2 ) / 2 /r c c c c cL t t L t Lρ = − ≈ c

cL

 In the analysis, transverse bending and shear of the core sheets may be considered or 

ignored.  In order to study the contribution of transverse bending of the core sheets to the 

response of the sandwich panel, analysis is carried out for both cases.  A convergence study 

for bending analysis is carried out by increasing the number of terms in the assumed 

displacement functions expressed by Eq. (19).  The results for the case of 20%rρ =  as 

shown in Table 1 indicate that the results converge fast.  It is accurate enough to use only 

five terms of the displacement function, which implies that the present method is very 

efficient compared with finite element analysis.  Therefore hereafter, only five terms in Eq. 

(19) are used unless otherwise stated.  Closer examination of Table 1 indicates that the even 

terms of the displacement function actually do not contribute to the solution, as both the 

structure and loading are symmetric about the centrelines. 

 Table 2 compares the displacement at the centre (0.5a, 0.5b) of sandwich panel for three 

different core relative densities, i.e. 10%, 15%, and 20%, with those given by Kapania et al.14  

Figure 3 shows the present results for deflection at x=100mm, 50mm, 26mm for 20%rρ =  

compared with those from finite element analysis.  It is observed that the maximum 

deflections obtained from the proposed semi-analytical method are very close to the reference 

for the three core relative densities.  In particular, the semi-analytical results are almost 

identical to the ESL results given by Kapania et al.14  The present results have errors of 6% 

approximately compared with results of the detailed 3D finite element analysis with much 

more degrees of freedom, which can much better model the shear deformation in the 

thickness direction.  Table 2 also shows that the differences between results obtained with 

transverse bending of core sheets considered and neglected are very small, which implies that 

this bending effect has little influence on the response of the sandwich panels.  This is also 

consistent with the conclusions drawn in relevant publications that the core of sandwich 
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panels mainly resists shearing loads.  Hereafter, the transverse bending of core sheets is 

considered unless otherwise stated. 

 

4.2 Global buckling analysis  

The sandwich panel is then subjected to a uniform in-plane pressure on the two opposite sides 

along x-direction.  The geometric parameters of the panel are: a = 1000mm, ft  = 1mm,  

= 10mm,  = 10mm,  = 0.5mm and b is defined by the value of a/b.  The core relative 

density is 10% while the other material properties are the same as those in Section 4.1.  For 

comparison, a 3D finite element analysis is performed by using the software ANSYS.  The 

face and core sheets are modelled using the Shell63 elements and fine meshes (up to two 

elements per cell in x- or y-direction and 4 elements in the thickness direction) are employed 

to ensure convergence of the calculated results.  The critical buckling loads obtained by the 

present method agree well with those from 3D finite element analysis as shown in Table 3, 

with relative errors less than 5%. 

ch

cL ct

 For ease of comparison, the calculated buckling loads are normalized by the 

corresponding minimum buckling load for each case.  Figures 4 and 5 present the 

normalized buckling loads against the ratio of core height to sandwich panel height   

and the ratio of core sheet spacing to core height , respectively, for panels with a/b = 1.  

In Figure 4, only the core height  and the thickness 

/ch h

/c cL h

ch ft  of the face sheet are varied with 

the other parameters unchanged.  Similarly in Figure 5, only the core sheet spacing  is 

varied while the other parameters are fixed and  = 0.8.  As seen in Figure 4, the core 

height has significant effect on the global buckling load.  As the ratio  decreases 

while the total thickness h is kept fixed, which implies an increase in total sandwich panel 

stiffness, the global buckling loads increase.  For example, the global buckling load 

increases more than 4 times when the ratio  reduces from 0.9 to 0.4.  By contrast, the 

core sheet spacing  has different effect on the global buckling loads depending on the 

cL

/ch h

/ch h

/ch h

cL
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total panel height h.  The effect becomes more obvious as the total panel height increases as 

shown in Figure 5.  On the other hand, the global buckling load only increases by 

approximately 5% when the ratio  decreases from 2 to 0.5 for the case of h = 12mm.  

However for the case of h = 50mm, the global buckling load increases by more than 60% for 

the same change in the ratio .  This is because as the core height increases, the shear 

of core sheets becomes more significant, thereby contributing more to the stiffness of the 

sandwich panels.  These results indicate that the core height has more infuence on the global 

stiffness of the sandwich panels than the core sheet spacing. 

/c cL h

/c cL h

 

4.3 Free vibration analysis 

The example used in Section 4.2 is further analyzed for its free vibration.  The material 

density of the face and core sheets is 2770 kg/m3.  Table 4 compares the first 5 natural 

frequencies of sandwich panels of different dimensions obtained from the proposed method 

with those from 3D finite element analysis using the same arrangements as in Section 4.2.  

Good agreement is observed.  In order to investigate the effects of the core height and core 

sheet spacing on the first natural frequency of the sandwich panel, further calculations are 

carried out for the case a/b = 1 with different sandwich panel heights.  For ease of 

comparison, the calculated frequencies are normalized by the corresponding maximum 

frequency for each case. 

 Figures 6 and 7 present the normalized first natural frequencies against the ratio of core 

height to sandwich panel height   and the ratio of core sheet spacing to core height 

, respectively, for panels with a/b = 1.  Figure 6 shows all the curves have roughly the 

same summit shape as the ratio  increases, with the first natural frequency reaching a 

maximum around  ≅ 0.75 to 0.78.  As the ratio  of core height to total panel 

height increases, the face sheet thickness decreases resulting in a decrease in stiffness and 

hence tending to lower the natural frequency.  However at the same time, the sandwich panel 

is also getting lighter which tends to increase the natural frequency.  Summit curves have 

therefore resulted from the combined effects of two opposing trends.  Figure 7 shows that, 

/ch h

/c cL h

/ch h

/ch h /ch h
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for the common range of ratio  from 0.4 to 2.0, the core sheet spacing  has 

different effects on the first natural frequencies for different total panel heights.  As seen in 

the variation of the first frequency of the sandwich panel against  in Figure 7, the 

cases of h = 12mm and h = 20mm show a monotonic increasing trend, the case of h = 50mm 

displays a monotonic decreasing trend and the cases of h = 30mm and h = 40mm are of 

summit shapes.  As the core sheet spacing increases, the effect of the sandwich panel mass 

on the frequencies is predominant for those with small total panel height, such as the case of h 

= 12mm.  When the total panel height increases, the effects of the sandwich panel stiffness 

due to variation of the core sheet spacing on the frequencies is predominant, such as the case 

of h = 50mm.  Between the two extremes, both the effects of sandwich panel mass and 

stiffness on the frequencies are significant, as seen in Figure 7 for the cases of h = 30mm and 

h = 40mm. 

/c cL h cL

/c cL h

 

5. Conclusions 

A semi-analytical method has been developed for the bending, global buckling and free 

vibration analyses of sandwich panels with square honeycomb cores.  Using Hamilton’s 

principle for formulation of the governing equations and the Galerkin approach for solution, 

close-form solutions for the simply supported condition are obtained.  Comparison with the 

results of 3D finite element analysis and available results in the literature confirms that the 

assumptions made are reasonable and the accuracy of the proposed method is very good. 

 The present method accounts for the discrete nature of the core by treating the 

square-honeycomb sandwich panels as composite structures of plates and beams so that all 

the geometric and material parameters are included in the analysis.  The method not only 

provides an accurate and efficient tool for predicting the global performance of sandwich 

panels with square-honeycomb core such as bending, global buckling and free vibration, but 

also enables optimal design of sandwich panels to be carried out conveniently. 

 The parameter study shows that the core height has more influence on the stiffness of 

the panels than the core sheet spacing.  The effect of core sheet spacing on the stiffness of 

sandwich panels is different for different core heights.  The bigger the core height is, the 
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bigger is the influence on stiffness.  Both the stiffness and mass of the sandwich panel 

change with variation of the core height and core sheet spacing.  It implies that, where the 

natural frequencies of sandwich panels are at stake, more attention should be paid to the 

effects of the core height and core sheet spacing. 
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Appendix A 

Let M and N be the numbers of trigonometric functions used to define the displacement 

functions in Eq. (19).  The matrix [K] can be written as 

 [ ]

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ]

[ ]

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55.

MN MN MN MN MN MN MN MN MN MN

MN MN MN MN MN MN MN MN

MN MN MN MN MN MN

MN MN MN MN

MN MN
symm

× × × ×

× × ×

× ×

× ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K K K K K
K K K K

K K KK
K K

K

×

×

×
 (A1) 

where MN denotes the product of M and N, and ij⎡ ⎤⎣ ⎦K  is an MN MN×  submatrix.  The 

elements  of submatrix [  are given by ( , )ijK I J ]ijK

 

11
2 2 2 2

2 2 20 0

2 2

20 0
1

(( 1) , ( 1) )
2

[( )cos( / )sin( / )][cos( / )sin( / )]
1 1

[ cos( / )sin( / ) ( )][cos( / )sin( / )]

b a f f

mb a

c c c D i
i

K r N s p N q
Et Etp q p x a q y b r x a s y b dxdy

a b
pE h t p x a q y b y y r x a s y b dxdy
a

π π π π π π
μ μ

π π π δ π π
=

− ⋅ + − ⋅ + =

+ +
− +

−

∫ ∫

∑∫ ∫

  

 ( , 1, 2,3... , 1, 2,3...p r M q s N= = ) 
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12

2

0 0

(( 1) , ( 1) )

[ cos( / )sin( / )][cos( / )sin( / )]
1

b a f

K r N s p N q
Et pq p x a q y b r x a s y b dxdy

ab
π π π π π

μ

− ⋅ + − ⋅ + =

−∫ ∫
  

   13(( 1) , ( 1) ) 0K r N s p N q− ⋅ + − ⋅ + =

   14 (( 1) , ( 1) ) 0K r N s p N q− ⋅ + − ⋅ + =

   15 (( 1) , ( 1) ) 0K r N s p N q− ⋅ + − ⋅ + =

 

22
2 2 2 2

2 2 20 0

2 2

20 0
1

(( 1) , ( 1) )
2

[( )sin( / ) cos( / )][sin( / ) cos( / )]
1 1

[ sin( / ) cos( / ) ( )][sin( / ) cos( / )]

b a f f

nb a

c c c D j
j

K r N s p N q
Et Etq p p x a q y b r x a s y b dxdy

b a
qE h t p x a q y b x x r x a s y b dxdy
b

π π π π π π
μ μ

π π π δ π π
=

− ⋅ + − ⋅ + =

+ +
− +

−

∫ ∫

∑∫ ∫

  

   23 (( 1) , ( 1) ) 0K r N s p N q− ⋅ + − ⋅ + =

   24 (( 1) , ( 1) ) 0K r N s p N q− ⋅ + − ⋅ + =

   25 (( 1) , ( 1) ) 0K r N s p N q− ⋅ + − ⋅ + =

 

33
2 22 2 2 2

2 2 20 0

3 2 2

20 0
1

(( 1) , ( 1) )

[( ) cos( / )sin( / )][cos( / )sin( / )]
2(1 ) 4(1 )

[ ( )cos( / )sin( / ) ( )][cos(
2(1 ) 12

b a f c f c

mb a c c c c c c
D i

i c

K r N s p N q

Et h Et hp q p x a q y b r x a s y b dxdy
a b

E h t E h t p p x a q y b y y r x
a

π π π π π π
μ μ

π π π δ π
μ=

− ⋅ + − ⋅ + =

+ +
− +

+ −
+

∫ ∫

∑∫ ∫ / ) sin( / )]a s y b dxdπ y

  

 
34

2 2

0 0

(( 1) , ( 1) )

[ cos( / )sin( / )][cos( / )sin( / )]
4(1 )

b a f c

K r N s p N q

Et h pq p x a q y b r x a s y b dxdy
ab
π π π π π

μ

− ⋅ + − ⋅ + =

−∫ ∫
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2 3 20 0

0 0
1

(( 1) , ( 1) )

[ ( ) cos( / )sin( / )][cos( / )sin( / )]
2(1 )

[ cos( / )sin( / ) ( )][cos( / )sin( / )]
2(1 )

b a f c
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D i

i c

K r N s p N q

Et h p pq p x a q y b r x a s y b dxdy
a ab

E h t m p x a q y b y y r x a s y b dxdy
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π π π π π π
μ

π π π δ π π
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−
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+
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2 2 20 0

3 2 2

20 0
1

(( 1) , ( 1) )

[( )sin( / ) cos( / )][sin( / ) cos( / )]
2(1 ) 4(1 )

[ ( )sin( / ) cos( / ) ( )][sin(
2(1 ) 12

b a f c f c

nb a c c c c c c
D j

j c

K r N s p N q

Et h Et hq p p x a q y b r x a s y b dxdy
b a
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2 3 20 0

0 0
1
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[ ( )sin( / ) cos( / )][sin( / ) cos( / )]
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The force vector [F] can be written as  

  (A2) [ ] [ ] [ ] [ ] [ ] [ ] T

1 2 3 4 51 1 1 1 1MN MN MN MN MN× × × × ×
⎡ ⎤= ⎣ ⎦F F F F F F

where the elements of the row vector [ ]iF  are given below 

 1(1, ( 1) ) 0F r N s− ⋅ + =   

 2 (1, ( 1) ) 0F r N s− ⋅ + =   

 3 (1, ( 1) ) 0F r N s− ⋅ + =   

 4 (1, ( 1) ) 0F r N s− ⋅ + =   

   5 0 0
(1, ( 1) ) ( , )sin( / )sin( / )

b a
F r N s P x y r x a s y b dxdπ π− ⋅ + = ∫ ∫ y

The matrix [Q] is written as 
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[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ]

[ ]

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55.
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MN MN MN MN MN MN MN MN

MN MN MN MN MN MN

MN MN MN MN
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symm

× × × ×

× × ×

× ×

× ×

×

⎡ ⎤
⎢ ⎥
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⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q Q Q Q Q
Q Q Q Q

Q Q QQ
Q Q

Q

×

×

×
 (A3) 

where the elements  of sub-matrix ( , )ijQ I J ij⎡ ⎤⎣ ⎦Q  are zero except for sub-matrix [ ]55Q , 

which has elements given as 
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The mass matrix [M] is written as  
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33 34 35

44 45

55.

MN MN MN MN MN MN MN MN MN MN

MN MN MN MN MN MN MN MN

MN MN MN MN MN MN

MN MN MN MN

MN MN
symm

× × × ×

× × ×

× ×

× ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M M M M M
M M M M

M M MM
M M

M

×

×

×
 (A4) 

with the sub-matrix ijM⎡⎣ ⎤⎦  having elements ( , )ijM I J  given as 
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0 0

0 0
1

0 0
1

(( 1) , ( 1) )

[2 cos( / )sin( / )][cos( / )sin( / )]

[ cos( / )sin( / ) ( )][cos( / )sin( / )]

[ cos( / )sin( / ) (

b a

f

mb a

c c c D i
i

nb a

c c c D
j

M r N s p N q

t p x a q y b r x a s y b dxdy

h t p x a q y b y y r x a s y b dxdy

h t p x a q y b x

ρ π π π π

ρ π π δ π π

ρ π π δ

=

=

− ⋅ + − ⋅ + =

+

−

+

∫ ∫

∑∫ ∫

∑∫ ∫ )][cos( / )sin( / )]jx r x a s y b dxdyπ π−

  

 12 (( 1) , ( 1) ) 0M r N s p N q− ⋅ + − ⋅ + =   

 13 (( 1) , ( 1) ) 0M r N s p N q− ⋅ + − ⋅ + =   

 14 (( 1) , ( 1) ) 0M r N s p N q− ⋅ + − ⋅ + =   

 15 (( 1) , ( 1) ) 0M r N s p N q− ⋅ + − ⋅ + =   
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0 0

0 0
1

0 0
1

(( 1) , ( 1) )

[2 sin( / ) cos( / )][sin( / ) cos( / )]

[ sin( / ) cos( / ) ( )][sin( / ) cos( / )]

[ sin( / ) cos( / ) (

b a

f

nb a

c c c D j
j

mb a

c c c D
i

M r N s p N q

t p x a q y b r x a s y b dxdy

h t p x a q y b x x r x a s y b dxdy

h t p x a q y b y

ρ π π π π

ρ π π δ π π

ρ π π δ

=

=

− ⋅ + − ⋅ + =

+

−

+

∫ ∫

∑∫ ∫

∑∫ ∫ )][sin( / ) cos( / )]iy r x a s y b dxdyπ π−

  

 23(( 1) , ( 1) ) 0M r N s p N q− ⋅ + − ⋅ + =   
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 24 (( 1) , ( 1) ) 0M r N s p N q− ⋅ + − ⋅ + =   

 25 (( 1) , ( 1) ) 0M r N s p N q− ⋅ + − ⋅ + =   
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2

0 0

3

0 0
1

3

0 0
1

(( 1) , ( 1) )
1[ cos( / )sin( / )][cos( / )sin( / )]
2

[ cos( / )sin( / ) ( )][cos( / )sin( / )]
12

[ cos( / )sin(
12

b a

f c

mb a c
c c D i

i

nb a c
c c

j

M r N s p N q

t h p x a q y b r x a s y b dxdy

h t p x a q y b y y r x a s y b dxdy

h t p x a

ρ π π π π

ρ π π δ π π

ρ π

=

=

− ⋅ + − ⋅ + =

+

−

+

∫ ∫

∑∫ ∫

∑∫ ∫ / ) ( )][cos( / )sin( / )]D jq y b x x r x a s y b dxdyπ δ π π−

  

 34 (( 1) , ( 1) ) 0M r N s p N q− ⋅ + − ⋅ + =   
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2

0 0

(( 1) , ( 1) )
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f c

M r N s p N q
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a
πρ π π π π

− ⋅ + − ⋅ + =

−∫ ∫
  

 

44

2

0 0

3

0 0
1

3

0 0
1

(( 1) , ( 1) )
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[ sin( / ) cos( / ) ( )][sin( / ) cos( / )]
12

[ sin( / ) cos(
12

b a

f c

nb a c
c c D j

j

mb a c
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i

M r N s p N q

t h p x a q y b r x a s y b dxdy

h t p x a q y b x x r x a s y b dxdy

h t p x a

ρ π π π π

ρ π π δ π π

ρ π

=

=

− ⋅ + − ⋅ + =

+

−

+

∫ ∫

∑∫ ∫

∑∫ ∫ / ) ( )][sin( / ) cos( / )]D iq y b y y r x a s y b dxdyπ δ π π−
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0 0

(( 1) , ( 1) )
1[ sin( / ) cos( / )][sin( / ) cos( / )]
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b a

f c

M r N s p N q
qt h p x a q y b r x a s y b dxdy
b
πρ π π π π

− ⋅ + − ⋅ + =

−∫ ∫
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2 2 2 2

2 20 0
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1
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1

(( 1) , ( 1) )

[2 (1 )sin( / )sin( / )][sin( / )sin( / )]
3 3

[ sin( / )sin( / ) ( )][sin( / )sin( / )]

[ sin(

b a

f

mb a

c c c D i
i
nb a

c c c
j

M r N s p N q

p qt p x a q y b r x a s y
a b

h t p x a q y b y y r x a s y b dxdy

h t p

π πρ π π π π

ρ π π δ π π

ρ

=

=

− ⋅ + − ⋅ + =

+ +

− +

∫ ∫

∑∫ ∫

∑∫ ∫ / ) sin( / ) ( )][sin( / )sin( / )]D jx a q y b x x r x a s y b dxdyπ π δ π π−

b dxdy +
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Table 1.  Convergence study for the displacements at centre of sandwich panel 

Displacement (mm) 
Case  

No. 

No. of terms in Eq. (19) 

(M×N) 
Transverse bending of 

core sheets considered 

Transverse bending of 

core sheets not considered

1 1×1 1.475 1.491 

2 2×2 1.475 1.491 

3 3×3 1.427 1.443 

4 4×4 1.427 1.443 

5 5×5  1.433 1.449 

6 6×6 1.433 1.449 

7 7×7 1.431 1.447 

8 8×8 1.431 1.447 

9 9×9 1.432 1.448 

10 10×10 1.432 1.448 
 

Table 2.  Displacement at centre of sandwich panel using different methods 

Displacement (mm) 
Kapania et al.14Present method 

 

Table 3.  Global buckling loads (MPa) of sandwich panel using different methods 

 

 

Equivalent plate theory rρ  Bending of 
core sheets 
considered 

Bending of 
core sheets not 

considered 

ABAQUS 
detailed 
model 

ESL 
CLPT FSDT HSDT 

10% 1.538 1.545 1.625 1.540 — — — 
15% 1.469 1.481 1.560 1.472 — — — 
20% 1.433 1.449 1.528 1.435 1.291 1.295 1.412 

a/b Present method Finite element method Error (%) 

1.0 16.2 16.5 1.9 

1.25 26.6 27.0 1.5 

2.0 63.5 66.1 4.1 

 24



Table 4.  Natural frequencies of sandwich panels using different methods 

Natural frequencies (Hz) 
a/b  

First Second Third Fourth Fifth 

Present method 73.8 184.6 184.6 292.5 368.1 

 

 

Finite element 72.2 181.7 181.7 286.1 363.3 1.0 

Error (%) 2.2 1.6 1.6 2.2 1.3 

Present method 93.9 203.6 262.5 367.4 385.9 

Finite element 92.5 200.7 263.6 365.4 381.6 1.25 

Error (%) 1.5 1.4 0.4 0.5 1.1 

Present method 171.3 273.7 447.1 575.3 671.9 

Finite element 181.1 284.8 461.6 612.4 707.3 2.0 

Error (%) 5.4 3.9 3.1 6.1 5.0 
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Figure 2.  Coordinate system for square honeycomb panel 
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Figure 1.  Key dimensions of a square honeycomb panel. 
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Figure 3. Deflection at x = 100mm, 50mm, 26mm for rρ  = 20% 
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Figure 4.  Effect of core height on buckling load of sandwich panels with 
square-honeycomb core 
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Figure 6.  Effect of core height on the first natural frequency of sandwich 
panels with square-honeycomb core 
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Figure 5.  Effect of core sheet spacing on buckling load of sandwich 
panels with square-honeycomb core 
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Figure 7.  Effect of core sheet spacing on the first natural frequency of 
sandwich panels with square-honeycomb core of hc/h = 0.8 
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