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Fast Computation of the Dyadic Green’s Function for
Layered Media via Interpolation

Phillip Russell Atkins and Weng Cho Chew, Fellow, IEEE

Abstract—The use of a dyadic layered-medium Green’s func-
tion as the kernel in a method of moments (MoM) modeling
problem greatly reduces the complexity of modeling a stratified
medium. Compared to the free-space Green’s function, there is an
additional cost of having to compute a semi-infinite Sommerfeld
integral for each call to calculate the dyadic layered-medium
Green’s function. This letter discusses a method to tabulate and
interpolate the Green’s function as a method of reducing the
impedance matrix filling time. This method can be used in con-
junction with existing methods for increasing the computational
speed of the Green’s functions.

Index Terms—Galerkin method, Green’s function, inhomoge-
neous media, interpolation.

I. INTRODUCTION

OMPUTATIONAL electromagnetics has evolved a

myriad of different techniques to be used in order to
model the behavior of complex structures, one of the more
widely used being the method of moments (MoM) [1]. The
formulation for the integral equations used in the MoM varies,
but centers around the evaluation of the Green’s function. When
the modeling problem includes an infinite layered medium, the
Green’s function can account for the layering in the form of
a dyadic Green’s function for layered medium (DGLM). The
evaluation of the DGLM is costly, as it involves the computation
of semi-infinite Sommerfeld integrals. Various techniques have
been used in the past for decreasing the computation time of
these integrals such as steepest descent [2] and discrete complex
images [3], [4]. This letter, however, will evaluate the DGLM
using interpolation techniques in order to decrease the overall
matrix filling time for the MoM. While this technique has been
used in many previous layered-medium problems, previous
works have not presented a comprehensive discussion on the
implementation, considerations, and results of interpolation for
a generalized multilayered problem.

Some works have only focused upon specific cases for
interpolation. In [5] and [6], interpolation was applied for the
case of planar structures. In papers discussing more general
applications, like [7] and [8], the case of three-dimensional
(3D) scatterers that penetrate an interface are confined to a
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half-space problem, ignoring the additional terms that arise
when embedded between layers. Other papers only deal with
the interpolation in a cursory manner [9], [10] or lack a highly
customizable scheme [11]. This letter will deal with a gen-
eralized interpolation scheme for planar and 3D scatterers
that lie in a multilayered medium. We will briefly discuss an
interpolation scheme used for a matrix-friendly formulation
[12], while saving details such as error control considerations
for a more comprehensive report [13]. Our implementation
differs from previous ones in that we have reduced the inner
products for the impedance matrix into integrals dependent
upon two Sommerfeld integrals and their derivatives. Instead of
calculating, storing, and interpolating the terms of the DGLM
itself, we will only store these two basic Sommerfeld integrals
and interpolate their values and their derivatives and use them
to evaluate the DGLM.

II. DYADIC GREEN’S FUNCTION FOR LAYERED MEDIA
The interpolation technique is formulated based upon a previ-
ously proposed matrix-friendly formulation [12]. The resulting
DGLM is formulated as

G(r,r') =(V x 2)(V' x 2)g""(r,x') + 5—(V x V x %)
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function terms gT¥(r,r’) and g r'), respectively relating
to the transverse electric (TE) and transverse magnetic (TM)
modes, can be expressed in cylindrical coordinates.
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where 15 = \/(:17 —a/)? 4 (y — y)°. The function F describes

the response of a point source potential embedded in the layered
medium [14], [15]. The pole existing at k, = 0 in the integrand
is fictitious, and it can be shown that it would be canceled out
in the terms described in (6)—(10). In solving a MoM problem,
the resulting impedance matrix problem becomes
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Expanding out the inner product and shifting around the
derivatives

(JI7i(r), G(r,r"),J;(r"))
= (V- JIri(r),gs(r,r"), V' - J;(x"))
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with the terms defined as follows:
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Thus, the DGLM that is used for the calculation of the
impedance matrix for the electric field integral equation can
be decomposed into the summation of gT¥, g™ and their
derivatives with respect to z and 2’. In addition, by taking
into consideration special cases, ¢*F and g™ can be made
dependent upon one or two independent variables, allowing
for faster and more accurate interpolation. When the source
and observation points lie in the same layer, that is n = m,
the function F' can be decomposed into the summation of two

functions as follows:
F(kp,2,2") =Fi (rs,|z = 2|) + Fa(rs, 2 + 2')
Fy (ky, |z — 2']) = e*m=12="1 L 2.cos (k|2 — 2'))
‘ e?ikmz (dm_dmil)ém m—l-ém m+1Mm
(12)

(1)

F2<k'p72 + Z,> = [e_ikm(Z+Z,+211W171)Rm,m71
+eikm(z+z/+2d”)ém,m+l] My, (13)

Here, R represents the generalized reflection coefficients. The
function F; contains the direct contribution from the source, and
this contribution can be ignored since it can be calculated in
closed form. We will henceforth refer to g, whether TE or TM,
as g = g1 + g2, where gy is the integral containing F; and g5 is
the integral containing F5. Specifically
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Fig. 1. Three 1D grids that contain the interactions of the scatterers in a typical
layered-medium problem.

///////

To facilitate the fast evaluation of the above integrals, we in-
corporated singularity-subtraction of the pole at £, = 0 and
quasi-static subtraction to promote fast convergence of the in-
tegrand [13]. In addition, the quasi-static subtraction was nec-
essary to improve the interpolation error by smoothing out the
resulting Green’s functions.

III. TABULATION AND INTERPOLATION SCHEME

The Green'’s function terms g T and g™ are dependent upon
the spatial position of the source and observation points 75, 2,
and z’. Normally, the two functions require a 3D interpolation
and tabulation due to the separation of the three variables. This
separation is seen when we take into consideration the function
F(z,2') when used in (2) and (3). As shown above, however,
when the source and observation points are located in the same
layer, the interpolation and tabulation can be defined in one or
two dimensions by splitting ¢ ™™ into the summation of the
functions g; = "™ (r,, |z — 2|) and g3 =M (ry, 2 4 2).

The proposed tabulation scheme is to precompute over a
grid space all combinations of possible source and observation
points that encompass the physical volume of the scatterer.
When the source and observation points lie across different
layers of inhomegeneity, the values of ¢™™ will need to be
calculated using a 3D interpolation. When the source and ob-
servation points lie in the same layer, then they are mapped onto
two-dimensional (2D) grids for the interpolation of ngE’TM
and ngE,TM

Problems where the scatterer lies solely in one or more planes
parallel to the layer boundaries allow us to use one-dimensional
(1D) grids and interpolation. For example, one would need three
1D grids to model a microstrip line and a stripline. As shown
in Fig. 1, we assume a three-layered medium of air, FR4, and
copper cladding. The microstrip and stripline are assumed to
be 2D strips confined to the vertical displacements of z; and
zo. Thus, one grid will contain all the source and observation
points for the interaction of currents on the microstrip line itself,
another grid will be the interactions within the stripline, and the
final grid will contain the interactions between the microstrip
and stripline. These correspond to the possible combinations of
z+ 2 and |z — 2/|.

The actual interpolation was performed using Lagrangian
polynomial interpolation with the derivatives estimated by
taking the derivative of the Lagrangian coefficients. A naive
approach to this would require that the interpolations be O(N?)
or O(N?), but this can be avoided by careful formulation so
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TABLE 1
(a) RCS RESULTS AND (b) COMPARISON OF RUNTIMES FOR VARIOUS PEC SPHERE SIMULATIONS
Case Direct Result (¢, 0) | Interpolation Result (¢, 0) Case Direct Time Interpolation Time | Tabulation Time
Above (-0.279545, -53.4252) dBsm | (-0.278557, -53.4215) dBsm Above 22min 14.07sec Imin 23.22sec 2.18sec
Embedded | (0.121033, -49.5591) dBsm (0.12051, -49.5636) dBsm Embedded | 70min 53.72sec 2min 45.52sec 36.59sec
Below (-9.30028, -74.4569) dBsm (-9.30136, -74.5169) dBsm Below 30min 1.40sec Imin 29.27sec 2.66sec
(a) (b)
TABLE II
(a) RCS RESULTS AND (b) COMPARISON OF RUNTIMES FOR THE TWO CIRCULAR PATCHES
Frequency Direct Result (¢, 0) | Interpolation Result (¢, §) Frequency | Direct Time | Interpolation Time | Tabulation Time
7.0 GHz | (-43.0374, -111.600) dBsm | (-43.0475, -111.602) dBsm 7.0 GHz | 191min 32.63sec 32.84sec 1.72sec
15.0 GHz | (-46.1329, -89.2315) dBsm | (-46.1507, -89.1973) dBsm 15.0 GHz | 145min 19.64sec 39.75sec 2.16sec
(a) (b)

h (N—2)~'~—-‘ »‘h/3 ’* ’-—h—»‘

o000+ X X4+ ¢+ 4+ X X +0o0o0-+4+

Fig. 2. Example of the sampling of the tabulation grid along one dimension.
Here, N = 6.

that the interpolation of the derivatives will be O(N'). However,
because we cannot interpolate across the boundaries of the tab-
ulation grids, there exist problems interpolating near the bound-
aries. This is because the data points are shifted so that they do
not symmetrically surround the desired point due to the impass-
able boundary, thus increasing the error in the interpolation [16].
To counteract this, we can create a finer mesh for the tabulation
grid and only run the mesh along the boundaries, allowing for
a coarser grid on the interior. An acceptable method was found
by dividing the region between the boundary point and the first
point on the interior such that the number of points added would
be equal to half the number of points used in the interpolating
polynomial. Furthermore, two additional points were added be-
tween the second and third coarse points.

An example of the sampling of the tabulation grid along a
single dimension can be seen in Fig. 2, where we are assuming
that the number of points used for the interpolating polynomial
is N = 6. The vertical crosses represent the coarse grid points.
The circles represent the fine grid created along the boundary,
while the X’s were placed in between the second and third
coarse grid points to decrease the maximum error in that region.
By spacing the grid points in terms of wavelength, it was found
that the performance of the interpolation remains consistent
across varying frequencies. This invariance is due to the fact
that the spatial dimensions are scaled by the wavenumber in the
DGLM integrals.

IV. VALIDATION AND RESULTS

The validity of the original DGLM has been previously pre-
sented, and the interpolation and tabulation method was checked
against the results of directly integrating the DGLM as in [12]. A
comparison was made in the bistatic radar cross section (RCS)
produced by the scattering off a perfectly electrically conducting
(PEC) sphere constructed with 420 edges. This was done with
the sphere located completely above a half-space, embedded in
the middle of a three-layer medium and placed in the bottom

layer of a three-layer geometry. The direct integration results
were calculated using an adaptive Simpson’s integration rou-
tine, while an adaptive quadrature routine from QUADPACK
[17] was used to calculate the values in the tabulation grids for
the interpolation. The tabulation grids used six points for the in-
terpolating polynomials and a coarse grid spacing of A/25.

The results, generated on a laptop equipped with a 2.53-GHz
Intel Core2 Duo processor, can be seen in Table I(a) and I(b).
The reported times to fill the impedance matrix demonstrate
an appreciable speedup, on the order of a factor of 10, when
the scatterer is confined to the top or bottom layer. Placing the
sphere in an embedded layer increases the interpolation and tab-
ulation time because an additional set of integrals, g1, needs to
be tabulated and interpolated.

Another set of tests were run to verify the use of 1D interpo-
lations using planar structures. Here, two circular PEC patches
of 272 interior edges each were placed on top of and inside of
the middle layer. This allows the interpolation code to create
three sets of tabulation grids using 1D interpolations. The results
are shown in Table II(a) and II(b). Once again the interpolation
results compare very favorably with the direct integration, but
have an appreciable speedup on the order of 100.

Finally, a comparison was made with interpolating the orig-
inal five Green’s function terms. The original formulation only
used quasi-static subtraction for the TM term in g, as that was
the only term that allowed for a subtraction of a Sommerfeld in-
tegral. For the PEC sphere case, the tabulation times were 1.7,
2.3, and 27.4 s for the above, below, and embedded case, while
the interpolation times were 63, 64, and 106 s. The interpolation
times were quicker for the original formulation as it does not re-
quire the interpolation of derivatives and it uses slightly fewer
interpolations. In addition, under some circumstances, the tab-
ulation time of the five terms was faster as well, which can be
accounted for by the fact that cancellation occurs between terms
that aid convergence. However, because the quasi-static subtrac-
tion was not uniformly applied to all of the five terms as in the
newer formulation, the tabulation time suffers greatly when tab-
ulating near boundaries. This can be seen in Fig. 3, where we
compare the tabulation times when we place the PEC sphere
in the embedded layer and vary the gap distance between the
sphere and the adjacent boundaries. The tabulation time for the
original formulation increases exponentially as the tabulation
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Fig. 3. Comparison between the tabulation times for the proposed and original
five-term interpolations.

grids move to encompass points closer to the boundaries. The
accuracy of the interpolation for near-field terms also suffers
due to the presence of the weak singularity. The new quasi-static
subtraction technique prevents such penalties from occurring.
We can see that the tabulation time remains fairly constant in
Fig. 3, and the quasi-static subtraction has been shown to im-
prove the error resulting from the interpolation.

V. CONCLUSION

While interpolation has been used previously in many
layered-medium MoM problems, this letter presents a new
implementation. The DGLM used has five Green’s function
terms, shown in (6)—(10), that need to be evaluated for each
inner product for each impedance matrix entry. However, at
the cost of one or two additional interpolations, our method
only requires the storage and evaluation of two integrals in-
stead of five. This comes at the cost of having to increase the
density of the tabulation grids in order to compensate for the
decreased accuracy of interpolating the derivatives and the
effects of cancellation. Despite this, our formulation allows us
to have a predictable matrix filling time that is much faster than
traditional integration and is still computationally comparable
to traditional interpolation. In addition, our new quasi-static
subtraction technique allows us to have better accuracy and
tabulation times over the direct interpolation of the five terms.

The speed up obtained by the interpolation varies due to the
fact that the integration time is dependent upon the geometry
of the background layers and the scatterer. However, we ex-
perience vast improvements for using one- or two-dimensional
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interpolation in planar structures and structures confined to a
single layer. This makes the method ideal for 1D or 2D interpo-
lations where the quasi-static image terms are prominent. This
can apply to thin-layered problems or situations where objects
penetrate the boundaries between layers. For any 3D interpola-
tions, the more traditional interpolations can be used at a slight
cost of increased memory. This can be done independent of the
impedance matrix entries for interactions within the same layer,
which can be handled as discussed in this letter.
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