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Multi-agent based beam search for intelligent production 

planning and scheduling 

 

Abstract 

Production planning and scheduling is a long standing research area of great practical value, while 

industrial demand for production planning and scheduling systems is acute. Regretfully, most research 

results are seldom applied in industry because existing planning and scheduling methods can barely 

meet the requirements for practical applications. This paper identifies four major requirements, 

namely generality, solution quality, computation efficiency, and implementation difficulty, for 

practical production planning and scheduling methods. Based on these requirements, method, multi-

agent based beam search (MABBS), is developed. It seamlessly integrates the multi-agent system 

(MAS) method and beam search (BS) method into a generic multi-stage multi-level decision making 

(MSMLDM) model to systematically address all the four requirements within a unified framework. A 

script language, called EXASL, and an open software platform are developed to simplify the 

implementation of the MABBS method. For solving complex real-world problems, an MABBS-based 

prototype production planning, scheduling and execution system is developed. The feasibility and 

effectiveness of this study is demonstrated with the prototype system and computation experiments.   

 

Keywords: production planning, scheduling, multi-agent systems, beam search, decision making, 

knowledge representation. 

 

1. Introduction 

Production planning and scheduling are long-standing research problems, which are critical to the 

efficiency of manufacturing systems (Pinedo 2002). Planning determines which activities to perform, 

while scheduling allocates resources over time to these activities, so that production tasks can be 

accomplished timely and cost-effectively (Smith 2003). Despite the tremendous effort made on 

production planning and scheduling, their application to real-world problems remains very limited 

(Jacobs and Weston 2007). Therefore, further effort is needed to narrow the gap between research and 

application in this area.   The major research challenges include the following aspects. 

 The NP-hard property of planning and scheduling 

 Complex constraints, preferences and objectives 

 Changes 

 Integration of planning and scheduling 

 

Firstly, planning and scheduling generally belong to a class of NP-hard problems, to which the 
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optimal solutions usually cannot be found efficiently (Jain and Meeran 1999). They are often studied 

as typical combinatorial optimization problems. Various exact or approximate optimization algorithms 

have been developed to calculate optimal or near optimal solutions, such as branch and bound 

(Lageweg and Rinnooy 1977), beam search (Lowerre 1976) (Ow and Morton 1988) (Sabuncuoglu 

and Bayiz 1999), tabu search (Amico and Trubian 1993), simulated annealing (Van Laarhoven et al. 

1992), genetic algorithms (Kobayashi 1995) (Jensen 2003), shift bottleneck procedure (Adams et al. 

1988), machine order space search (Yang 2003), etc.  In order to measure and compare the 

performance of different algorithms, some benchmark problems have been developed (Jain and 

Meeran 1999). 

 

Secondly, manufacturing systems are complex. As a result, real-world production planning and 

scheduling problems often involve many constraints, preferences, and multiple conflicting 

optimization objectives (Smith 2003). However, most optimization algorithms tend to focus on 

tackling the NP-hard property with idealized problems, which often overlook the complex practical 

factors. Therefore, these algorithms usually cannot be applied directly to real-world problems, which 

are difficult to model in a rigorous mathematical approach. In this connection, other approaches have 

been developed, such as simulation-based approach (Marcus 1990) (Harmonosky 1995) (Musselman 

et al. 2002), expert system based approach (Bruno et al. 1986; Bruno and Morisio 1987), multi-agent 

based approach (Shen 2002; Shen et al. 2006) (Caridi and Cavalieri 2004), etc. These approaches 

consider some practical factors, but they often cannot effectively address the NP-hard property and 

cannot provide high quality solutions (Smith 1992) (Shen 2002) (Caridi and Cavalieri 2004). Indeed, 

to solve practical production planning and scheduling problems, it is necessary to consider their 

combinatorial, explosive nature (NP-hard property) and the complex practical factors (constraints, 

preferences, and objectives) simultaneously. 

 

Thirdly, most manufacturing systems are dynamic, in which planning and scheduling are ongoing 

processes of responding to unexpected and evolving circumstances (Smith 2003). In daily operation 

of manufacturing systems, there are indeed no pure planning and scheduling problems, but re-

planning and rescheduling ones. How to response promptly to changes and avoid “nervousness” 

caused by frequent and drastic schedule changes is critical to practical production planning and 

scheduling. This remains a research challenge. 

 

Finally, although planning and scheduling are traditionally studied separately, they are indeed not 

clearly separable in practice. The classical “waterfall” approach of planning and scheduling leads to 

lengthy and inefficient problem-solving cycles (Smith 2003). It is desirable to integrate planning and 

scheduling into a unified problem-solving framework, as pointed out by Myers (Myers and Smith 

1999) and Tan (Tan and Khoshnevis 2000). 
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Take in 

Figure 1: Traditional research methodology 

 

 

From the discussion above, it is apparent that a lot of research has been done to tackle the challenges 

in production planning and scheduling. However, industrial application of planning and scheduling 

research remains very limited, and most results cannot be applied directly to real-world problems. 

Such a situation seems to be the consequence of the traditional research methodology, as illustrated in 

figure 1. Real-world problems are usually complex, but most research tends to focus on certain 

aspects of challenges and ignore the others. Although this methodology may address some specific 

challenges, it cannot effectively lead to practical solutions. This explains why research results usually 

alienate the industrial practices of planning and scheduling (Jacobs and Weston 2007). 

 

In order to develop methods and tools that can be directly applicable to complex real-world problems, 

we should improve the methodology to systematically study the challenges within a unified 

framework. Accordingly, the philosophies and techniques in different research approaches should be 

effectively integrated into such a common framework. 

 

Based on the above observation, a knowledge-directed opportunistic search method, called the multi-

agent based beam search (MABBS), is developed to provide a generic approach that can seamlessly 

incorporate knowledge and search together, and can trade off between solution quality and 

computation efficiency. Thus, it provides a promising approach to complex real-world production 

planning and scheduling.  

 

This paper is organized as follows. The next section briefly reviews multi-agent based planning and 

scheduling, which is closely related to this study. Section 3 analyzes the production planning and 

scheduling problems, and identifies four major requirements for practical production planning and 

scheduling methods. Section 4 describes the MABBS method in detail. Section 5 describes the 

software implementation of the MABBS method. Section 6 discusses the MABBS-based prototype 

production planning and scheduling system and the computation experiments. Section 7 concludes 

this paper and discusses further research directions. 

 

2. Literature Review 

This section briefly reviews MAS-based production planning and scheduling, and identifies research 

opportunities for this study. 
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Over the past two decades, there has been a substantial amount of research work on adoption of multi-

agent system (MAS) (Caridi and Cavalieri 2004). A multi-agent system contains multiple intelligent 

agents which communicate and cooperate with each other to solve complex problems in a distributed 

manner. It is a natural abstraction of a complex manufacturing system and has been investigated in 

recent years as a promising approach to production planning, scheduling and control. 

 

Communication and collaboration among intelligent agents is a central problem in MAS. Accordingly, 

MAS communication and collaboration methods, standards, and software platforms, such as contract 

net protocol (Smith 1980), FIPA specifications (O'Brien and Nicol 1998), and JADE (Bellifemine et al. 

2001), have been developed to facilitate construction of multi-agent systems.  Based on these 

techniques, some prototype MAS-based production planning and scheduling systems have been 

developed for FMS (Kouiss  et al. 1997) (Wang et al. 2008), wafer fabs (Mönch et al. 2006), and 

supply chain coordination (Fox et al. 2000) (Dangelmaier et al. 2005), etc. Detailed reviews of multi-

agent system based production planning and scheduling can be found in (Caridi and Cavalieri 2004) 

and (Shen 2002; Shen et al. 2006). 

 

Despite the promising prospect of MAS-based production planning and scheduling, more research 

effort is needed to make it practicable (Mönch and Stehli 2006). Firstly, the MAS-based production 

scheduling systems are developed based on the belief that multiple intelligent agents can 

communicate and collaborate toward global optimal solutions. However, how this can be achieved 

remains obscure (Shen 2002) (Caridi and Cavalieri 2004). Secondly, the computation efficiency of 

MAS-based systems is often unpredictable, and the communication overload becomes very heavy 

when the number of agents is large (Caridi and Cavalieri 2004). Thirdly, it is indeed a non-trivial task 

to implement an MAS-based production planning and scheduling system, even with the existing MAS 

tools and techniques (Mönch and Stehli 2006). 

 

Recently, some researchers have attempted to tackle these issues. For example, Shen (2002) pointed 

out that effective integration of the traditional centralized approach with MAS is a promising research 

area of great potential. Based on this notion, Wang developed a prototype MAS system and combined 

the MAS method with the beam search method to improve the solution quality (Wang et al. 2008). 

Mönch pointed out that the generic MAS techniques usually cannot provide enough support for 

developing complicated production planning and scheduling systems, and proposed a framework, 

called ManufAg (Mönch and Stehli 2006), to go beyond the generic MAS techniques. 

 

Based on the observation above, this study attempts to develop an effective method to take advantage 

of the strength of MAS and to improve its solution quality and computation efficiency through a 

“system level” beam search.  The proposed method is subsequently implemented into a generic and 
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reusable software platform to facilitate development of complex practical production planning and 

scheduling systems. 

 

3. Problem analysis 

Production planning and scheduling are dynamic, complex decision-making processes, which usually 

lead to numerous possible solutions. The purpose of a production planning and scheduling method is 

to find a feasible and high quality solution in the huge solution space effectively.  

 

In order to analyze the production planning and scheduling problems, a set of formulations are 

introduced in this paper. These formulations are not strictly in mathematical equations, but in a similar 

form which can help explain some abstract ideas. Firstly, let’s formulate a production planning and/or 

scheduling method as follows.   

  CWMWM ,0  (1) 

 

In formula 1, M denotes a planning and/or scheduling method. W0 denotes the input of M, WM denotes 

the output of M, and C denotes the constraints. The meaning of formula (1) is that given the input W0 

and constraints C, a planning and/or scheduling method M generates the output WM. This can be 

illustrated in figure 2.  

 

 

Take in 

 Figure 2: Illustration of a planning and/or scheduling method 

 

 

Formula 1 can be rewritten in another form, as shown in formula 1’. It means WM is the result of W0 

going through a process prescribed by M and C. 

 CMWWM ,0   (1’) 

W0 includes two parts, P0 and S0.  P0 denotes the problem, and S0 the initial solution. This can be 

represented by formula (2). Similarly, WM can be represented by formula (3).  

 000 SPW   (2) 

 MMM SPW   (3) 

For WM, it should satisfy the following conditions:  

 0MP  (4) 

   0 MScCc  (5) 
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Formula 4 means that all the problems from the input have been solved, while formula 5 implies that 

the final solution SM satisfies all the given constraints. In formula 5,   0MSc means constraint c is 

satisfied, while   1MSc  means constraint c is violated. 

 

In this paper, production planning refers to production process planning, and scheduling refers to the 

low-level shop floor control functions. They can be defined with the generic formulation above, as 

shown in table 1.  

 

 

 Take in 

Table 1: Definition of planning and scheduling problems with the generic framework  

 

 

 

Let   denotes all the possible solutions, i.e.  MS . Due to the combinatorial, explosive nature of 

production planning and scheduling problems,  grows exponentially with the problem size, and it 

can be extremely large. It is indeed a big challenge to find the optimal solution from the huge solution 

space . This can be formulated as follows. 

    MSoSoSFind min**   (6) 

In formula (6),  S* denotes the optimal solution, and o denotes some performance measures. 

  

Traditionally, scheduling is studied as an optimization problem, and a lot of optimization methods 

were developed. Various optimization algorithms compete with each other on solution quality and 

computation speed. Due to the NP hard property of the production planning and scheduling problems, 

it is usually very difficult to find the optimal solution and to prove a solution is optimal. For example, 

it took 25 years to find the optimal solution for the famous 1010  job shop scheduling problem in 

the scheduling research history (Jain and Meeran 1999). When the problem size becomes larger, no 

method can effectively get the optimal solution. Indeed, some large benchmark problems created 

many years ago have not yet been solved optimally.   

 

Regretfully, optimization techniques are seldom adopted in industry to solve the real-world problems. 

According to Jacobs (2007), little has changed since the late 1970s in the underling production 

planning and scheduling logic in ERP systems. Most systems are now just executing the old logic 

with much faster hardware and in real-time, although the current ERP technology can provide an 

information rich environment that is ripe for very intelligent planning and scheduling logic. Herrmann 
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(2005) suggested researchers to focus less on the mathematical properties of the combinatorial 

optimization problems and more on the complex production scheduling systems that still need 

improvement.   Based on this observation, we may need to think about the following two problems:  

 Why are the scheduling research results difficult to apply? 

 How to design practical production planning and scheduling methods?  

 

From this perspective, four major requirements are identified for practical production planning and 

scheduling methods.  

 Generality 

 Solution quality 

 Computation efficiency 

 Implementation difficulty 

 

Generality means that a practical production planning or scheduling method can be applied to 

complex real-world problems, instead of being limited to solving some specific idealized problems. In 

the scheduling literatures, scheduling problems are usually classified into various categories, such as 

job shop scheduling problems, flow shop scheduling problems, etc. Each category can be further 

categorized according to some criteria. Different types of problems have different problem structure, 

solution structure, constraints, and optimization objectives. According to formulas (1) to (5), different 

types of scheduling problems may vary on P0, S0, C, SM, and o.  Most scheduling research is based on 

certain types of scheduling problems. However, in industrial practice, the complex manufacturing 

systems call for more complicate problem structure, solution structure, constraints and optimization 

objectives than the theoretical models. Generality is indeed a major obstacle that hinders applications 

of optimization methods in industry. 

 

Solution quality means the solution should be good enough to improve the efficiency of the 

manufacturing systems. Although it is generally not realistic to pursue optimal solutions for practical 

purposes, high solution quality remains a major goal for a production planning and scheduling method.  

 

Computation efficiency means how much computation time is required to get the result. As 

manufacturing systems are dynamic systems that are subject to frequent changes, the planning and 

scheduling functions should be able to produce timely responses to accommodate the changes. This 

requires the production planning and scheduling method to produce results quickly. 

 

Implementation difficulty means how much effort is required to develop a practical system based on 

the production planning and scheduling method. This depends largely on how to develop reusable 
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software packages which can be conveniently applied to complex practical problems.  

 

If a production planning and scheduling method can meet all the above requirements, it is generic 

enough to model the complex real-world production planning and scheduling problems and can 

accommodate the complex constraints.  Moreover, it can produce high quality solutions quickly and is 

convenient and cost-effective to develop practical production planning and scheduling systems with 

reusable software packages or tools. Hence, it would be a practical production planning and 

scheduling method. 

 

However, the existing planning and scheduling methods do not meet all these requirements. Most 

scheduling optimization algorithms pursue solution quality and computation efficiency, but they are 

usually not generic enough to handle the complex real-world problems. The simulation-based 

scheduling methods and multi-agent scheduling methods are more powerful on modelling realistic 

manufacturing systems, but they cannot produce high quality solutions. The expert system based 

scheduling methods also suffer from poor solution quality. This explains why most existing 

scheduling methods are not used to solve real-world problems. 

 

With the understanding above, this paper attempts to systematically consider all the four requirements 

into a unified framework for developing a practical production planning and scheduling method that 

can be directly applied to industrial practice.  

 

4. The Multi-Agent Based Beam Search Method   

The design of the multi-agent based beam search (MABBS) method is based on the four main 

requirements discussed in the previous section. For the first requirement, a multi-stage multi-level 

decision making (MSMLDM) model is developed to provide a generic framework to model complex 

decision making processes by generalization of production planning and scheduling problems. For the 

second and third requirements, a knowledge-directed opportunistic search (KDOS) method is 

developed to achieve a balance between solution quality and computation efficiency. For the fourth 

requirement, an open software platform and a script language, called embedded extensible application 

script language (EXASL), are developed to provide a flexible and reusable computer software tool to 

facilitate quick and cost-effective application of the MABBS method to various complex real-world 

problems. Solutions for the first three requirements are discussed in this section, while the solution for 

the fourth one will be discussed in the next section. 

 

This section is organized as follows. Section 4.1 describes the MSMLDM model; section 4.2 

describes the knowledge directed opportunistic search method; and section 4.3 describes the MABBS 
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method. 

 

4.1 The multi-stage multi-level decision making model 

Production planning and scheduling problems are complex decision making problems (Pinedo 2002) 

(Herrmann 2004). Therefore, for each given problem, there is a set of decision variables D={d1, d2, …, 

dn}. If the values of the decision variables are determined, then the final solution is determined. We 

can formulate this as follows. 

 MM DFWW ,0   (7) 

 

In formula 7, W0 means the input, WM the output, and DM a set of values for the decision variables, 

while F is a transformation function, which can deterministically transform W0 into WM according to 

DM. 

 

From formulas 1’ and 7, we can induce formula 8: 

 MM DFWCMWW ,, 00   

 MDFCM ,,   (8) 

Formula 8 indicates that the function of a production planning and scheduling method is equivalent to 

the following two steps: 

 Determine the values of the decision variables DM; 

 Perform a deterministic transformation from W0 to WM according to DM. 

 

A problem may be solved with various methods. For example, for a given problem, W0 and C, there 

are two different methods, M1 and M2. According to formula 8, 

  11 ,, MDFCM   (9) 

 22 ,, MDFCM   (10) 

 

By comparing formulas 9 and 10, we can see for a given problem (W0 and C) that the only difference 

between two solution methods (M1 and M2) is how they determine the values of the decision variables.  

As each decision variable can be assigned with a set of alternative values (for discrete decisions), the 

combination of the decision variables results in enormous possibilities. Let  MD . Then, the 

essential problem of a production planning and scheduling method is to: 

  * , 5 (6)Find D satisfies and optimizes  (11) 

 

Different methods use different strategies to determine DM. This results in different solution qualities, 
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computation efficiencies, as well as different degrees of generality. Some methods, such as the branch 

and bound method, the genetic algorithms, the tabu-search method, and the simulated annealing 

method, search   extensively to find a high quality DM.   These methods usually can find high quality 

solutions, but they are time-consuming and difficult to model complex manufacturing systems. Some 

other methods, including the expert based scheduling and multi-agent based scheduling, rely on 

certain kinds of knowledge. Such methods can accommodate some kinds of human intelligence but 

cannot guarantee solution quality. There are also methods that use some myopic and greedy policies.  

These include dispatching rules and simulation based scheduling, which tend to be simple and 

applicable to complex real-world situations but suffer from poor solution quality.   

 

Based on the observation above, we may need to consider the following problem: How to design a 

method that can produce high quality solutions, accommodate human intelligence, and be generic 

enough to model complex real-world manufacturing systems? 

 

From this perspective, a generic multi-stage multi-level decision making (MSMLDM) model is 

developed to provide a framework for complex decision making processes. MSMLDM model is 

based on two types of decompositions: 

 Parallel decomposition 

 Sequential decomposition 

 

Parallel decomposition means to decompose a complex decision making method into several 

alternative methods, each of which leads to a different solution. For example, a decision making 

method M is decomposed into two alternative methods M1 and M2. M1 leads to solution WM1 and M2 to 

solution WM2, as illustrated in figure 3. 

 

 

Take in 

Figure 3: Parallel decomposition 

 

 

 

This can be represented as follows. 

 






CM

CM
WCMWWM

,

,
,

2

1

00  (12) 

 

From formula 12, we can infer formula 13: 
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




CM

CM
CM

,

,
,

2

1
 (13) 

By combining formula 8 and formula 13, we can get formula 14: 

 











2

1

2

1

,

,

,

,
,,

M

M

M
DF

DF

CM

CM
CMDF  (14) 

From formula 14, we can get formula 15: 

 
 
 





usedisMD

usedisMD
D

M

M

M

22

11
 (15) 

 

Formula 15 indicates that the values of the decision variables DM in the final solution depend on 

which method is used. In other words, by choosing alternative methods, we can control the values of 

the decision variables. In general, we can represent the parallel decomposition as follows. 

   2,,
1




nCMCM i

n

i
 (16) 

 

 

 

 

Take in 

Figure 4: Sequential decomposition  

 

 

 

Sequential decomposition means to decompose a decision making problem into a sequence of steps. 

For example, a decision making method M is decomposed into two steps M1 and M2. M1 leads to 

solution WM1, which is used by M2 for the subsequent the decision making process to produce the final 

solution WM, as illustrated in figure 4. 

 

This can be formulated as follows. 

 221102210 ,,,, CMCMWCMWCMWWM   (17) 

From formula 17 we can infer formula 18: 

 2211 ,,, CMCMCM   (18) 

By combining formulas 8 and 18, we get formula 19: 

 21212211 ,,,,,,, MMMMM DDFDFDFCMCMCMDF   (19) 

From formula 19, we can get formula 20: 

 21 MMM DDD   (20) 
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Formula 20 indicates that method M1 determines the values of part of the decision variables (assigned 

in DM1), while method M2 determines the values of the other decision variables (assigned in DM2). 

They work together to determine all the values of the decision variables (DM).  

 

In general, sequential decomposition can be represented by formula 21. It can indeed transform a 

complex decision making problem into a sequence of simpler decision making problems, i.e., a multi-

stage decision making process. 

  2,,
1




nCMCM
n

i

ii  (21) 

 

For each Mi in formulas 16 and 21, it can be further decomposed with formulas 16 and 21. In other 

words, parallel decomposition and sequential decomposition can be used recursively. With such a 

framework, a very complex decision making problem can be decomposed into a number of simple 

problems. This can be illustrated with the following example. Suppose a method M can be 

sequentially decomposed into three methods, M1, M2 and M3. M1 can be further parallel decomposed 

into two methods M11 and M12. M11 can be further sequentially decomposed into M111 and M112. M111 

can be further parallel decomposed into M1111 and M1112. M2 can be further parallel decomposed into 

M21, M22, and M23. M3 can be further sequentially decomposed into M31, M32. M31 can be further 

parallel decomposed into M311, M312, M313 and M314. This can be represented as follows. 
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
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


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
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




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
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
















 (22) 

 

Parallel decompositions can lead to multiple solution paths. In the above example, there are  

  364312   different solution paths, each of which leads to a solution. The 36 solutions paths 

are listed below. 

1. 
13232313112211121121111111 ,,,,,, PDFCMCMCMCMCM   

2. 
23232313122211121121111111 ,,,,,, PDFCMCMCMCMCM   

3. 
33232313132211121121111111 ,,,,,, PDFCMCMCMCMCM   
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4. 
43232313142211121121111111 ,,,,,, PDFCMCMCMCMCM   

5. 
53232313112221121121111111 ,,,,,, PDFCMCMCMCMCM   

6. 
63232313122221121121111111 ,,,,,, PDFCMCMCMCMCM   

7. 
73232313132221121121111111 ,,,,,, PDFCMCMCMCMCM   

8. 
83232313142221121121111111 ,,,,,, PDFCMCMCMCMCM   

9. 
93232313112231121121111111 ,,,,,, PDFCMCMCMCMCM   

10. 
103232313122231121121111111 ,,,,,, PDFCMCMCMCMCM   

11. 
113232313132231121121111111 ,,,,,, PDFCMCMCMCMCM   

12. 
123232313142231121121111112 ,,,,,, PDFCMCMCMCMCM   

13. 
133232313112211121121111112 ,,,,,, PDFCMCMCMCMCM   

14. 
143232313122211121121111112 ,,,,,, PDFCMCMCMCMCM   

15. 
153232313132211121121111112 ,,,,,, PDFCMCMCMCMCM   

16. 
163232313142211121121111112 ,,,,,, PDFCMCMCMCMCM   

17. 
173232313112221121121111112 ,,,,,, PDFCMCMCMCMCM   

18. 
183232313122221121121111112 ,,,,,, PDFCMCMCMCMCM   

19. 
193232313132221121121111112 ,,,,,, PDFCMCMCMCMCM   

20. 
203232313142221121121111112 ,,,,,, PDFCMCMCMCMCM   

21. 
213232313112231121121111112 ,,,,,, PDFCMCMCMCMCM   

22. 
223232313122231121121111112 ,,,,,, PDFCMCMCMCMCM   

23. 
233232313132231121121111112 ,,,,,, PDFCMCMCMCMCM   

24. 
243232313142231121121111112 ,,,,,, PDFCMCMCMCMCM   

25. 
25323231311221112 ,,,,, PDFCMCMCMCM   

26. 
26323231312221112 ,,,,, PDFCMCMCMCM   

27. 
27323231313221112 ,,,,, PDFCMCMCMCM   

28. 
28323231314221112 ,,,,, PDFCMCMCMCM   

29. 
29323231311222112 ,,,,, PDFCMCMCMCM   

30. 
30323231312222112 ,,,,, PDFCMCMCMCM   

31. 
31323231313222112 ,,,,, PDFCMCMCMCM   

32. 
32323231314222112 ,,,,, PDFCMCMCMCM   

33. 
33323231311223112 ,,,,, PDFCMCMCMCM   

34. 
34323231312223112 ,,,,, PDFCMCMCMCM   

35. 
35323231313223112 ,,,,, PDFCMCMCMCM   

36. 
36323231314223112 ,,,,, PDFCMCMCMCM   

 

Hence we can get the following formula. 

 

 
 

 













usedispathsolutionD

usedispathsolutionD

usedispathsolutionD

D

p

p

p

M

36

2

1

36

2

1


 (23) 

Formula 23 indicates that the values of the decision variables depend on which solution path is used. 

In other words, by choosing alternative solution paths, we can control the values of the decision 



International Journal of Production Research 2009, 1–35,   iFirst                  S.G. Kang  and  S.H. Choi 

 

14 

variables, which determine the final solution. 

 

In general, let P denotes a solution path. When P is used, DM  = Dp. Let p denote all possible Dp, i.e. 

 pp D .     For MD , we can get the following formula. 

 p  (24) 

Formula 24 indicates that the different solution paths lead to a large solution space p , which is a 

subset of the whole solution space .   Like  ,  p  is also a solution space that grows exponentially. 

For example, suppose M is sequentially decomposed into 10 steps, and each step is parallel 

decomposed into ten alternative methods, then 000,000,000,101010 p .  Theoretically, it is 

possible to make p . But even in the case of p ,  p  should contains high quality solutions  

if  p  is large enough. 

 

Based on this understanding, we can modify formula 11 to get formula 25: 

   )6(5,* optimizesandsatisfiesDFind pp   (25) 

 From
*

pD , we can get the optimal solution 
*

pS  in p  with the following formula: 

 
** , pp DFS   (26) 

*

pS  is indeed an approximation of 
*S . In practice, it is extremely difficult to get absolute optimal 

solutions to planning and scheduling problems (NP hard), even idealized theoretical ones. Therefore, 

we have to adopt certain kinds of approximation methods. When M is decomposed properly and p is 

large enough, 
*

pS  should be a good approximation of 
*S . With this approximation strategy, we can 

solve complex decision making problems with an indirect method, i.e., using formula 25 to 

approximate formula 11. 

 

In summary, with sequential and parallel decompositions, a complex decision making process can be 

decomposed into simple methods, leading to different solution paths which in turn result in a large 

solutions space p .  Instead of searching directly, we can search in p for high quality solutions. 

 

The final solution, and hence its quality, is determined by which solution path is used.  Since there are 

numerous solutions paths, finding one that would lead to a high quality solution quickly becomes an 

interesting problem.  Indeed, the choice of a solution path determines the computation efficiency and 

solution quality. This will be further discussed in the next section. 
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A sequential decomposition transforms a complex decision problem into a “multi-stage” decision 

making process, while a parallel decomposition transforms a decision making problem into an 

alternative method selection problem. Sequential and parallel decompositions can be used recursively 

and lead to a “multi-level” decision making scheme. Therefore, this framework is called multi-stage 

multi-level decision making (MSMLDM) model. 

 

The MSMLDM model provides a generic framework to model arbitrary complex decision making 

processes. It can transform a complex decision making process into a number of simple, small 

problems that are much easier to solve. The decompositions may lead to a very large solution space, 

which can be explored accordingly to obtain a high quality solution.  As planning and scheduling 

problems are essentially decision making problems, the MSMLDM model therefore provides a 

generic framework to formulate complex production planning and scheduling problems. 

 

4.2 The knowledge-directed opportunistic search method 

Since the MSMLDM model results in a huge number of solution paths, it is crucial to find a solution 

path to a high quality solution efficiently.  This will determine the computation efficiency and the 

solution quality. Thus, a knowledge-directed opportunistic search (KDOS) method is developed to 

find high quality solution paths quickly.  

 

The solution paths form a tree structure. Figure 5 illustrates the solution path tree for the 36 paths of 

the previous example. Basically, there are three possible strategies to find a high quality solution path 

from the solution path tree, as follows. 

 Try only one path (greedy strategy) 

 Try all the paths (brute force strategy) 

 Selectively try some of the paths (intelligent strategy) 

 

 

 

Take in 

Figure 5: The solution path tree 

 

 

 

 

 

 

The first strategy is called “greedy” strategy. At each branch point in the tree, the greedy strategy 

selects only one branch and discards all the rest, based on some local knowledge. Obviously, the 

computation efficiency of the greedy strategy is excellent. But the myopic and greedy methods 

generally cannot yield high quality solutions to combinatorial (NP hard) decision making problems. 

 



International Journal of Production Research 2009, 1–35,   iFirst                  S.G. Kang  and  S.H. Choi 

 

16 

The second strategy is called “brute force” strategy. Because the brute force strategy traverses the 

whole solution path tree, it can guarantee to find the optimal solution path. However, its computation 

time is proportional to the number of solution paths, which grows exponentially and may become 

extremely large. Very often, the brute force strategy is unacceptably onerous. In other words, its 

computation efficiency is very bad.  

 

The third strategy is called “intelligent” strategy, which can achieve a good balance between solution 

quality and computation efficiency.  

 

Essentially, the solution path selection is an AI problem. The greedy strategy relies completely on 

local knowledge to select the solution path, while the brute force strategy adopts extensive search. 

Both strategies are impractical, because they cannot meet the solution quality and the computation 

efficiency requirements simultaneously. As a fundamental law in AI (Fox 1991), knowledge reduces 

uncertainty and thereby reducing search, and search compensates lack of knowledge. In fact, there is 

no perfect local knowledge that can guarantee optimal (or even good) solutions, but the knowledge 

can speed up the search and improve the computation efficiency. Indeed, with the intelligent strategy, 

knowledge-based search methods can be designed to simultaneously meet the requirements on 

solution quality and computation efficiency, and thus lead to practical methods. 

 

To design an effective method with the intelligent strategy, two AI techniques, namely constraint 

programming and beam search, are adopted. Constraint programming uses constraints to reduce 

solution space and thereby improves computation efficiency (Mayoh et al. 1994). From formulas 21 

and 22, we can see that sequential decompositions distribute the constraints into different steps. It is 

possible to check the constraints as early as possible, instead of waiting until a complete solution path 

is explored. If a constraint is violated, a branch in the solution path tree can be pruned away to reduce 

the solution space. In formula 22, for example, if constraint C111 is violated, then 24 of the 36 solution 

paths can be dropped, reducing the number of solution paths from 36 to 12. Therefore, with the 

constraint programming strategy, the computation efficiency can be substantially improved.  

 

Beam search (BS) method selectively explores up to a fixed number (beam width) of branches in the 

solution tree with some intelligent control strategies (Pinedo 2005). Beam search was first used in 

artificial intelligence for the speech recognition problem (Lowerre 1976).  Fox (Fox and Smith 1984) 

used beam search for solving complex scheduling problems by a system called ISIS, which is widely 

recognized as a milestone in both AI and the scheduling research domain. Indeed, it marked the 

beginning of a new area of scheduling research: intelligent scheduling. The beam search method 

strikes a balance between solution quality and computation efficiency. It perfectly matches the nature 

of the solution path search problem. Therefore, it is adopted to realize the intelligent strategy.   
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Prior to discussing the intelligent search method, let’s introduce a solution path tree traversal 

mechanism. As there are numerous solution paths, a large population of “software robots” are used to 

explore all the solution paths. We can create, duplicate, and destroy a software robot, which maintains 

the necessary information for exploring a solution path. At the beginning, there is only one software 

robot starting from the root of the solution path tree. At each branch point in the solution path tree, a 

software robot can be duplicated into multiple ones, each of which will continue to explore a different 

branch. Thus, the population of the software robots will increase with the number of the branches. At 

the end, every solution path (branch in the solution path tree) is explored by a software robot. This 

solutions traversal mechanism forms the basis for the intelligent search method. 

 

Figure 6 illustrates the structure of a software robot, which maintains an action stack and the data. The 

action stack is a dynamic first-in-last-out (FILO) list that stores the actions to be performed. The data 

maintains the problem structure and solution structure along the solution path.  

 

A software robot accepts three kinds of commands: push, execute, and query.  A push command puts a 

method on the top of the action stack.  An execute command pops a method from the action stack and 

executes the method.  A query command queries some information from the robot. 

 

 

 

 

Take in 

Figure 6: The structure of a software robot 

 

 

The execute command can produce four possible results: false, true, sequential, and parallel. If the 

result is false, it means that some constraints are violated, suggesting that this branch of solution paths 

can be pruned away and this software robot can be destroyed. If the result is true, it means that a 

functional method has been successfully executed, and the robot can continue executing. The 

functional method can modify the robot data with some programming logic. If the result is sequential, 

it means that a composite method is sequentially decomposed. Therefore, a sequence of sub-methods 

will be pushed onto the action stack. The sub-methods will be executed one by one as a substitute of 

the composite method. If the result is parallel, it means that a composite method is parallel 

decomposed into a set of alternative methods. Then, the software robot will be duplicated into 

multiple copies. For each copy, a different alternative method is pushed onto its action stack. Then the 

software robots will resume executing along different paths. If there is no command remaining in the 

action stack, the robot finishes exploring a solution path and the robot data provide a solution for the 
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decision making problem. The detailed solution path tree traversal algorithm is specified in table 2 

and illustrated in figure 7. The numbers in figure 7 correspond to the numbers in the comments of the 

pseudo code in table 2.  

 

 

Take in 

Figure 7: The solution path tree traversal mechanism 

 

 

As the robots are independent of each other, they can be executed in parallel. For simplification, the 

above traverse algorithm serializes the execution of the robots, and provides a queue Sp to hold the 

robots that are waiting for execution. The successfully finished robots will enter set Sc. 

 

Let’s now demonstrate the tree traverse algorithm with the previous example. At the beginning, a 

robot R0 is created with input W0 and method M.   Let’s represent this as:   

0
0

[ ]

W
R

M
         (27) 

 

In formula 27, W0 is the data of R0, and [M] means there is only one method M in the robot action 

stack. Now, when R0 executes, M is popped out of the action stack to be executed. As M is 

sequentially decomposed into M1, M2, and M3, the result for executing M is sequential, and three sub-

methods M1, M2, and M3 are pushed into the action stack. This can be represented as: 

 
][

][

][ 321

00
0

MMM

MW

M

W
R execute


    (28) 

 

In formula 28, ][M  means M is executed as a sequentially decomposed method, ][0 MW   

represents the current robot data, and ][ 321 MMM  represents the current action stack, which includes 

three sub-methods.    Indeed, M  does not change the robot data. 

 

 

Take in 

Table 2: The solution path tree traversal algorithm 

 

 

Now let’s continue to execute the robot R0. Thus, M1 is popped out of the action stack to be executed. 

As M1 is parallel decomposed into M11 and M12, the result for executing M1 is parallel. Then a copy of 

R0 is duplicated, namely R1. Therefore there are two identical robots: R0 and R1.   M11 is pushed into 
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the action stack of R0, and M12 is pushed into the action stack of R1. Then R0 and R1 resume executing 

along different solution paths. This can be represented as follows. 

 




















 


 

1

3212

10

)1(

0

3211

10

321

00
0

][

]ˆ[

][

]ˆ[

][

][

][

R
MMM

MMW

R
MMM

MMW

MMM

MW

M

W
R executeexecute






  (29) 

In formula 29, 1M̂ means M1 is executed as a parallel decomposed method. It also does not change the 

robot data. Similarly, we can continue executing the robots as follows. 

 





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


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
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

 


 

2

321121112
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0
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 (30)  
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 (31)  

In formula 31, 1111M  means M1111 is executed as a functional method, which can modify the robot 

data. 
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 (32)  
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)5(

0
3231131321211211111111110
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 (33)  

Formulas 29 to 33 can be depicted in figure 8.  When the software robot R0 reaches
)5(

0R , its action 

stack is empty, thus R0 finishes exploring a path ( 323113132121121111111111
ˆˆˆˆ MMMMMMMMMMMM  ). 

As the decomposition methods do not change the robot data, we can omit them and only keep the 

functional methods, thus we can get the solution path of R0 ( 32311211121111 MMMMM  ). By 

comparison with the previous formulations of the solution paths, we know that software robot R0 has 

explored the solution path P1. During this process, it has also propagated seven other software robots, 

namely R1, R2, R3, R4, R5, R6, and R7.  With the same executing mechanism, these software robots can 

continue executing and propagates other software robots. Finally, all the software robots finish 

executing and each of them explores a different solution path. Hence all the solution paths are 

explored accordingly. 

 

 

Take in 

Figure 8: The software robot based solution tree traversal mechanism 

 

 

Based on the beam search method and the software robot based solution path tree traversal 

mechanism, let’s now discuss how to further develop a computationally efficient method to find high 

quality solution paths quickly.  

 

The nature of the beam search method is to allocate the computation resources intelligently to a 

limited number of most promising branches, instead of blindly searching all the paths. As the solution 

paths are explored by a swarm of software robots, we need to adjust the number of branches indirectly 

by controlling the population size of the software robots. In other words, we need to allocate the 

limited computation resources to the most promising software robots. 

 

With the above consideration, a “quota” based computation resource allocation mechanism is 

designed. As the amount of computation resources depends on the number of branches, we can use the 

number of branches to measure computation resources. Let denote the total available computation 

resources in terms branches. In other words, we can explore up to   branches. At the beginning, there 

is only one software robot R0. Therefore, all the computation resources are allocated to R0. The 

computation resources allocated to a software robot is called quota. Hence, the quota of R0 is . This 



International Journal of Production Research 2009, 1–35,   iFirst                  S.G. Kang  and  S.H. Choi 

 

21 

can be represented as follows. 

   0R  (34)  

 

A software robot can propagate a population of software robots to explore multiple branches. Indeed, 

the quota value is the upper limit of robot population.  

 

At a branch point, a software robot needs to be duplicated into multiple ones to explore different 

branches. Consequently, the available computation resource of the robot should be split and 

distributed to different robots. Instead of evenly distributing the computation resources, we can 

estimate the potential of each branch with some local knowledge, and proportionally allocate 

computations resources according to the potentials of the branches. Thus the local knowledge can help 

to minimize potential waste of precious computation resources.  This can be formulated as follows. 

  j
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ji RR i

0
  (35)  
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RR
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
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  (36)  

Formula 35 means that a robot Ri can be duplicated into ni robots at a branch point. Formula 36 

calculates the quota for each of the duplicated robots.  
jR  means the potential of Rj.  

jR  is 

calculated with some local knowledge.  

 

 

Take in 

Table 3: Example of quota calculation 

 

 

Table 3 shows the quota calculation with the previous example problem. As the quota values must be 

integer numbers, the fractional values are rounded to the nearest integer numbers. The quota values 

are allocated to the robots from the highest potential to the lowest potential. 

 

In table 3, the quota values for some robots (such as R3) are zero. This indicates that they do not get 

any computation resources. Therefore such robots will be destroyed. Indeed, it is not necessary to 

produce software robots for such branches.  Thus, some inferior branches will be pruned off to ensure 

the computation resources will not exceed the given limit. 

With the above computation resource allocation mechanism, the quota values of the robots will 

decrease with the growth of their population size. When the quota value of a robot becomes one, it 

cannot produce new robots any longer. Thus, in the remaining part of exploration, the software robot 
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has to completely rely on local knowledge to make greedy decisions on branch selection. This is not 

desirable for solution quality. For example, suppose a method is sequentially decomposed into 10 

steps, each of which can be parallel decomposed into 10 alternative methods as discussed before, then 

a very large solution space will result. Let  =100, the robot population size will grow to 100 after 

going through the first two steps. In the subsequent 8 steps, each robot continues solution path 

exploration among 10
8
 possible branches, based completely on myopic and greedy decisions. 

 

Now, let’s improve the above method with the beam search method. In the previous example, instead 

of keeping all the robots, we only keep 20 best robots to continue the next step. In other words, the 

beam width is 20. At the beginning, there is only one robot. After the first step, the robot population is 

10, so all of them are retained for the next step. After the second step, the 10 robots may propagate up 

to 100 robots. Then these robots are evaluated with some local knowledge, 20 of the best robots are 

retained while all the others are destroyed. The computation resources (totally 100) are now 

redistributed among the 20 robots according to their performance. These 20 robots continue the third 

step, after which the robot population grows up to 100 again. These robots are filtered to 20 with the 

similar evaluation and filter mechanism. This process repeats until the robots have gone through all 

the 10 steps. In general, we can represent the above mechanism as:  
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 (37)  

 

Formula 37 means a method M can be sequentially decomposed into a sequence of actions. Each 

action Ai can be a method Mi, or an evaluation function Ei.   Ei can evaluate the robots with local 

knowledge to shrink the robot population size and redistribute the computation resources.  

 

Similar to the methods, the evaluation functions can be pushed into the action stack of a robot, and be 

executed. After an evaluation function is executed, the robot will enter a buffer Se to wait for the other 

robots. When all the robots are evaluated and gathered in Se, they are sorted according to their 

performance. All inferior robots will be destroyed while good ones are retained, and the computation 

resources will be redistributed among the good robots. Then the good robots are moved into Sp to be 

further executed. This can be illustrated with figure 9, which is a modified version of figure 7. 

 

 

Take in 

Figure 9: The knowledge directed opportunistic search  
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As the decomposition methods can be used recursively, sequential decomposition can occur at 

multiple levels. Therefore, the above beam search mechanism can be applied in multiple levels 

accordingly. As the available computation resources vary at different levels, it is not feasible to have a 

fixed beam width. Hence, filter ratio is introduced. Filter ratio is the ratio of the available computation 

resources to the number of robots to be retained. This can be represented as follows. 

 

g

f
R

r


  (38)  

In formula 38, fr denotes the filter ratio,  denotes the available computation resources (quota), and 

g
R denotes the number of good robots to be retained. For example, in the previous example, the 

 =100, 
g

R =20, therefore fr =100/20=5. Given the available computation resources and the filter 

ratio, we can calculate the number of the good robots to be retained with the following formula: 

 
f

g r
R


  (39)  

 

In summary, with the quota based computation resource management method and the beam search 

mechanism, a swarm of software robots explore a huge solution path tree to find a high quality 

solution for a complex decision making problem. At each branch point, a software robot can be split 

into multiple ones, each of which will continue exploring a different branch, the computation 

resources are distributed to the new generation of robots based on the potential of each branch. 

Periodically, the software robots are evaluated and inferior ones are pruned off, and the computation 

resources are redistributed based on the performance of the robots retained. Thus, the population of 

the robots will experience many rounds of “grow and filter” cycles. In contrast to blind searching, this 

method tries to minimize the possible waste of computation resources and therefore maximize the 

possibility of finding high quality solutions with fixed amount of computation resources. As the 

search process depends largely on the local knowledge, this method is called knowledge-directed 

opportunistic search (KDOS).  

 

The KDOS method uses a fixed amount of computation resources determined by the given parameters 

  and fr .   Its computation efficiency can therefore be guaranteed.  

 

The solution quality of KDOS depends on the given amount of computation resources, the problem 

decomposition scheme and the quality of the local knowledge. Theoretically, the KDOS method has 

advantages over the greedy methods and the extensive search methods. Comparing with the greedy 

methods, the KDOS method can obviously provide better solution quality. This is testified with 

computation experiments to be presented in section 6. In comparison with the extensive search 
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methods, KDOS should be able to either achieve better solution quality with same amount of 

computation resources, or achieve the same solution quality with less computation resources, because 

it can take advantage of constraint programming technique to effectively reduce the search space and 

local knowledge to minimize potential waste of computation resource. This is to be further verified in 

future research.   

 

Indeed, the most important advantage of the KDOS method is its generality. The generality comes 

from the generic multi-stage multi-level decision making (MSMLDM) model and the software robot 

based solution path search mechanism. Both the MSMLDM model and the software robot based 

search method do not assume any specific problem structure, solution structure, or constraints.  Hence, 

they can be used to solve arbitrary complex decision making problems. This advantage enables the 

KDOS method to model complex real-world manufacturing systems with multi-agent based 

distributed decision making techniques, which in turn lead to the multi-agent based beam search 

(MABBS) method for intelligent production planning and scheduling. This will be further discussed 

in the next section.   

 

4.3 The multi-agent based beam search method 

In general, complex decision making problems are difficult to handle in a centralized approach. For 

example, it is difficult to model a complex manufacturing system as a monolithic system. Hence, it 

would be advantageous to decompose a complex system into smaller and simpler units, which 

cooperate with each other in problem solving and decision making. In other words, for complex 

decision making problems, the problem structure, solution structure, constraints, and the decision-

making and problem-solving knowledge are all distributed among a group of intelligent software 

agents. This is the nature of multi-agent system (MAS) based scheduling. 

Although MAS-based scheduling has many advantages, it essentially uses local knowledge to make 

myopic and greedy decisions. As a result, MAS-based scheduling usually suffer from poor solution 

qualities (Shen 2002) (Caridi and Cavalieri 2004). This indeed is a major issue for MAS-based 

scheduling.   

 

As discussed in the previous section, the KDOS method provides a generic knowledge-based search 

method that can solve complex decision making problems, while MAS provides an effective method 

to model complex manufacturing systems. The combination of KDOS and MAS leads to a more 

powerful method, called multi-agent based beam search (MABBS), for effective planning and 

scheduling of complex real-world manufacturing systems. 

 

The MABBS method can be conceptualized as follows. For a very complex decision making problem, 
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a population of software robots are used to explore the huge solution path tree to find a good solution. 

The “brain” of each software robot is a multi-agent system. In other words, the intelligence of each 

software robot comes from a group of intelligent agents. 

 

Software agents and software robots are two different concepts in this paper. Software agents are 

problem solving and decision-making units, which usually represent some real world counterparts. 

For example, a resource agent may represent a machine on the shop floor, and manages the schedule 

of that machine. Software robots are vehicles to probe a large search space. A software robot indeed 

manages a program instance. It is quite similar to a program process or a program thread.  

 

A multi-agent system is specified as follows. 

 A complex dynamic system, such as a manufacturing system, can be modelled with many 

intelligent software agents, which collaborate with each other to solve complex problems. 

 Each software agent has its data and knowledge. A software agent maintains its data with its 

knowledge.  

 Each software agent can request services from other agents, and it can also provide services to 

the other agents. The agents interact through predefined interfaces. 

 Each agent can make decisions with its knowledge in the problem-solving process.  

 

A set of technical measures are used in this research to implement a multi-agent system: 

 Each software agent has a unique identifier. 

 All the agent data are stored in a common database. An agent can locate its data with its 

identifier. 

 The knowledge of the agents is organized in agent classes. A software agent is an instance of 

an agent class. Given an agent identifier, we can figure out the agent class, and thus access the 

knowledge of the agent. 

 Each agent class can implement one or more interfaces. Each interface includes one or more 

problem-solving methods. An agent class can inherit another agent to reuse its knowledge. 

 Each software agent belongs to an agent type. Agents of the same type provide services 

through same interfaces, but they can have different implementations through different agent 

classes.  

 

In order to integrate the MAS technique into the KDOS framework, we need to solve the following 

problems. 

 How to implement MAS-based distributed decision making? 

 How to manage the interactions between the software agents? 
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 How to manage the data of the software agents? 

 

For the first problem, the MSMLDM model is applied to MAS. Each method of the intelligent agents 

can be sequentially decomposed or parallel decomposed. The sub-methods can come from the same 

agent as the owner of the current method, or come from other agents. The decomposition methods can 

assign the problem solving and decision making tasks to many different software agents, and also lead 

to a huge solution path tree, which can be explored by the software robots with the KDOS method. 

The functional methods modify the agent data step by step to reach solutions for complex problems. 

 

For the second problem, two agent interaction methods are designed:  

 send request (action stack based) 

 post request (message queue based) 

Send requests are implemented based on the action stack and they trigger immediate responses, 

something like making phone calls. Post requests are implemented based on the message queue, 

something like posting mails. A request in the message queue will not be executed until the receiver 

agent picks it up from the message queue and pushes it into the action stack. Figure 10 depicts the 

enhanced software robot structure to support MAS. For each software robot, a message queue and two 

commands (post and pick) are introduced to support the post requests. In brief, all the intelligent 

software agents are executed within the context of a common software robot (like a program process 

or thread), the action stack and message queue provides flexible mechanisms to control the execution 

of the software agents.  

 

As shown in figure 10, a method can be pushed in the action stack or posted into the message queue, 

and it can be specified with four fields of information, namely agent ID, interface name, method name, 

and method parameters.  With such information, the software robot can invoke the agent methods 

properly.  

 

Take in 

Figure 10: The enhanced software robot structure  

 

 

For the third problem, each software robot provides a database buffer to manage the modified and 

new added agent data. Although the agent data are stored in database, a software robot cannot directly 

modify the data in the database, because the database is shared by all the software robots, and 

different robots may change the agent data in different ways. In order to avoid messing up the data, a 

“copy on write” strategy is used to manage data modification, as shown in figure 11. This method 
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makes each software robot “feel” as if it owns all the data, and it can modify the data in its private 

database buffer without affecting other software robots. As the software robots only keep the modified 

data in the buffer, this will help to reduce memory consumption. It is also convenient to commit the 

data in the database buffer into the database to save the final solution. 

 

 

 

Take in 

Figure 11: The copy on write method  

 

 

In summary, the MAS method and the KDOS method are seamlessly integrated to form a more 

powerful method. As the KDOS method is based on the beam search method, this method is called 

multi-agent based beam search (MABBS).  The major advantage of the MABBS method is to upgrade 

the MAS method from local knowledge based myopic and greedy decision makings to knowledge 

directed intelligent search. This will substantially improve the solution quality of the MAS method.  

Indeed, the MABBS method can systematically address three major requirements: generality, solution 

quality, and computation efficiency, within a unified framework. Hence, it provides a promising 

method for practical production planning and scheduling problems. The fourth requirement 

(implementation difficulty) will be further discussed in the next section.   

    

5. The MABBS-based open software platform  

In order to substantially reduce the implementation difficulty of the MABBS method, an open 

software platform is developed. As shown in figure 12, the software platform includes five major 

components:  

 the MABBS engine 

 the knowledge base 

 the database 

 the client 

 the toolkit 

 

 

 

Take in 

Figure 12: The MABBS based open software platform 
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The MABBS engine is the key component of the software platform. It can solve complex decision 

making problems with the MABBS method. It is designed as a server program, which can receive and 

handle problem solving requests from the client program. It can create and populate the software 

robots to perform complex computations and intelligent search, based on the knowledge of intelligent 

agents. The MABBS method is built into the engine, but the knowledge and data of the intelligent 

agents are separated from the MABBS engine, and are stored in the knowledge base and the database 

respectively.  

 

The knowledge base is encoded in a knowledge markup language (KML), which is an XML 

(Extensible Markup Language) based markup language to organize the knowledge of the intelligent 

agents with agent classes and interfaces. A script language, called embedded extensible application 

script language (EXASL) is developed to program the methods of the agent classes. EXASL is 

embedded in KML, which can be loaded and executed by the MABBS engine. With built-in XML and 

database functions, EXASL can manipulate database data and XML-based complex data structures 

conveniently. More importantly, EXASL makes it very convenient to specify sequential and parallel 

decompositions of the agent methods. In summary, KML and EXASL provide a flexible and 

productive programming facility to develop a multi-agent based knowledge base for complex decision 

making problems. 

 

SQL (Structured Query Language) based database are used to store the agent data. Firstly, this 

simplifies the agent data management (as discussed in the previous “copy on write” mechanism). 

Secondly, the SQL language and relational database are mature and standard data management 

techniques, this also makes it convenient to share data and integrate with other software systems. 

 

The client program provides user friendly graphical user interfaces (GUI) for effective user 

interactions. It is also a very important part for a production planning and scheduling system (Pinedo 

2002). A smart client program is developed, and EXASL can also be used to develop the GUIs. The 

fact that both the server side and the client side use the common programming language can greatly 

reduce the complexity of the software platform as well as the effort on application system 

development. 

 

A toolkit is developed to facilitate the development of knowledge base and GUI. Figure 13 shows a 

screenshot of the toolkit. It provides an integrated environment for editing and debugging the 

programs. A syntax sensitive EXASL editor is developed based on Scintilla (Scintilla 2007), which is 

an open-source source code editor. 

 

In summary, the open software platforms provide a total solution for implementing practical 
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production planning and scheduling systems. With the software platform, the knowledge engineers 

can focus on the knowledge of the intelligent agents, instead of the implementation of the search 

process and low-level implementation details. An operation system (OS) can substantially reduce the 

difficulty and effort on application program development. Similarly, the open software platform 

provides reusable infrastructure and flexible tools, which can greatly reduce the implementation 

difficulty of MABBS method for complex real world problems. 

 

 

Take in 

  Figure 13: The toolkit program for knowledge base development  

 

 

6. The prototype system and computation experiments  

In order to verify the feasibility and effectiveness of this research, a prototype production planning, 

scheduling and executing system was developed based on the requirements of a local manufacturing 

company, and preliminary computation experiments were conducted to evaluate the performance of 

the MABBS method. 

 

A manufacturing system is modelled as an intra-organization supply chain based on the bill of 

materials (BOM) and production routes. Four types of software agents, planning agent, scheduling 

agent, operation manager agent, and resource agent are developed for distributed planning and 

scheduling, as illustrated in figure 14.  

 

The planning and scheduling process can be described as follows. When a production order (which 

prescribes what product and what quantity to produce) enters the manufacturing system, the planning 

agent decomposes the production order according to the BOM, and produces a detailed process plan 

according to the production routes. There may be multiple alternative production routes, the planning 

agent need to make decisions on production route selection. Then the scheduling agent allocates 

resources for the production order according to the process plan produced by the planning agent. The 

scheduling agent can make decisions on different scheduling policies. As there are different operations 

in a production plan and different operations may have different constraints and requirements, a group 

of operation manager agents are created to manage the different operations. When the scheduling 

agent allocates resource for operations, it passes the requests to the corresponding operation manager 

agents. Each operation manager agent manages a type of operations, which may be processed on one 

or more applicable production resources. Each resource is managed by a resource agent. The 

operation manager agent assigns the operations to the resource agents with a bid mechanism. Each 
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resource agent maintains the schedule of a production resource (such as a production line, or a 

machine). Different resources may have different constraints and different resource allocation policies. 

Thus the planning and scheduling are merged into an integrated MAS based problem solving and 

decision making process. 

 

 

Take in 

  Figure 14: The MAS model for production planning and scheduling  

 

  

 

 Take in 

Figure 15: Screenshots of the prototype system 

 

 

 

Some complicated realistic factors are taken into consideration in the production planning and 

scheduling process, including the following: 

 Alternative production routes selection; 

 Part-production operations and assembly operations; 

 Capacity constraints and material constraints; 

 Priority and due dates for the production orders; 

 Changeover-dependent setup time; 

 Shift patterns and factory holidays; 

 Resource preferences and production route preferences; 

 Overlap between operations; 

 Multiple optimization objectives, including make span, tardiness, and setup time. 

 

A workflow-based shop floor data collection system is integrated with the planning and scheduling 

function to keep the production schedule synchronized with the shop floor executing status in real-

time. Figure 15 shows two screenshots of the prototype system. 

 

The prototype system is based on a realistic manufacturing system configuration and a number of 

factors can be handled in the planning and scheduling process.  Its successful development 

demonstrates the generality of the MABBS method and the feasibility of the software platform. 

Indeed, comparing with the extensive search methods, generality is the major advantage of the 
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MABBS method, as it can handle complex practical problems that are often difficult for most 

extensive search methods. 

 

On the other hand, as discussed in section 4, the MABBS method can provide better solution quality 

than the greedy methods, such as the MAS based scheduling, expert system scheduling, etc. This can 

be testified with the following method. As the greedy approach only tries one solution path, we can 

emulate the greedy approach by setting  =1. If  =1, there will be only one software robot and it 

will not produce new software robots. Therefore the software robot has to make greedy and myopic 

decisions in the problem solving process. Keeping everything the same while changing only the value 

of , we can compare the performance of normal MABBS method ( >1) and the greedy method 

( =1).  The computation experiment results are plotted in figure 16.  

 

 

 Take in 

Figure 16: The relationship between solution quality and computation 

resources of MABBS method 

 

 

 

The curves in figure 16 reflect the trend of solution quality with the increase of computation resources. 

Relative solution quality (0-100) is used for comparison. It is converted from a composite 

optimization objective to simultaneously minimize the make span, tardiness penalty, and setup time. A 

greater value of relative solution quality means better solution quality.  The three curves are based on 

three independent sets of test data. From the curves, we can see that the greedy decision approach 

( =1) gets the worst solution quality for all the three independent experiments, and the solution 

quality improves with the increasing of the computation resources. This testifies that the MABBS 

method can provide better solution quality than the greedy methods. The details of the computation 

experiments are available in (Kang 2007). 

 

Indeed, we are continuously improving the system and trying to put the system into operation in a real 

manufacturing environment. This will further testify the effectiveness of this research.  

 

7. Conclusions and future work  

Production planning and scheduling problems are complex decision making problems of great 

practical value. Most research results are not practicable for real world problems. In order to narrow 

this gap, four major requirements, generality, solution quality, computation efficiency and 
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implementation difficulty are indentified for development of practical production planning and 

scheduling methods. Accordingly, a set of methods and tools are developed based on the four 

requirements to provide a practical solution for complex real-world production planning and 

scheduling problems.  This study can be summarized as in figure 17.  Firstly, a generic multi-stage 

multi-level decision making (MSMLDM) model is developed to formulate complex decision making 

processes. Secondly, by combining the MSMLDM model and the beam search method, a software-

robot based knowledge directed opportunistic search (KDOS) method is developed to efficiently find 

high quality solutions for complex decision making problems. Thirdly, by seamlessly integrating the 

KDOS method with the multi-agent system (MAS) technique, a more powerful method, multi-agent 

based beam search (MABBS) method is developed for complex real-world production planning and 

scheduling problems. Fourthly, an open software platform and computer languages (KML, EXASL) 

are developed to reduce the implementation difficulty of the MABBS method. Finally, a prototype 

production planning, scheduling and executing system is developed to apply the MABBS method in a 

real industrial environment. The feasibility and generality of the MABBS method is demonstrated by 

the prototype system. The advantage of the MABBS method over the greedy methods is testified with 

computation experiments. 

 

As the MABBS method systematically considers all the four major requirements, it provides a 

promising method toward practical production planning and scheduling. The MABBS method 

provides a generic knowledge based search framework, and the knowledge base can be organized in a 

MAS-based distributed approach.  

 

 

Take in 

Figure 17: Summary of this study  

 

 

 

Indeed, more work would be needed to apply the MABBS method into industrial practice and to 

investigate how to design the multi-agent based knowledge base and how to acquire useful knowledge 

effectively.  Although the development of the MABBS method is motivated by production planning 

and scheduling of manufacturing systems, its generality and the open software platform render it 

possible to apply the MABBS method to other complex decision making problems. It would be 

valuable to further improve the MABBS method and the software platform for broader applications to 

real-world problems. 
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Figure 1: Traditional research methodology 
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 Figure 2: Illustration of a planning and/or scheduling method 

 

 

  

Table 1: Definition of planning and scheduling problems with the generic framework  

 

 

 

Scheduling 

P0 Allocate resources for the jobs 

S0 Empty schedule 

C Capacity constraints, precedence constraints, etc. 

SM The final schedule 

o Make span, tardiness, setup time, etc. 

 

 

Re-scheduling 

P0 Handle some changes 

S0 Existing schedule 

C Capacity constraints, precedence constraints, etc. 

SM The revised schedule 

o Make span, tardiness, setup time, stability, etc. 

 

 

Planning 

P0 Create detailed process plan for some production tasks  

S0 Empty plan 

C Operation sequence, geometric constraints, etc.  

SM The production process plan 

o Production cost, etc. 
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Figure 3: Parallel decomposition 
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Figure 4: Sequential decomposition  
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Figure 5: The solution path tree 
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Figure 6: The structure of a software robot 
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Figure 7: The solution path tree traversal mechanism 
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Table 2: The solution path tree traversal algorithm 

 

    

    /* (1) initialize */ 

    R0=create(W0, M); 

    Let R=R0;   

continue: 
 

 /* (2) execute method on the stack top */ 

 Let result=R.execute(); 
 

 /* (3) violate constraints */ 

 if (result==false) { 

    destroy(R); 

    goto next; 

  } 
  

  /* method successfully executed */   

  if(result==true) { 

   if(R.query(finished)) { 

                  /* (4) arrive goal state */   

   add R into Sc; 

   goto next; 

  } 

            /* (5) continue working */   

  goto continue; 

 } 

 /* (6) method sequentially decomposed into Md0 ... Mdn*/ 

 if(result==sequential) {  

  for (Md=Mdn to Md0) R.push(Md); 

  goto continue; 

 } 
 

 /* (7) method parallel decomposed into Md0...Mdn */ 

 if(result==parallel) { 

  for (Md=Md1 to Mdn) { 

   Let Rd=duplicate(R); 

   Rd.push(Md); 

   add Rd into Sp; 

  } 

  R.push(Md0); 

  goto continue; 

 } 
 

next: 
 

 if(|Sp|>0) { 

       /* (8) pick up the next robot and continue */ 

  Let R=first element of Sp; 

  Sp= Sp-R; 

  goto continue; 

 } 
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Figure 8: The software robot based solution tree traversal mechanism 

 

 

Table 3: Example of quota calculation 

 

Ri Rj  
jR   

jR   (  iR =15)  
jR   (  iR =5)  

jR   (  iR =3) 

 
)2(

0R  

 

)3(

0R  50 5 5 5/3 2 1 1 

3R  20 2 2 2/3 0 2/5 0 

4R  80 8 8 40/15 3 24/15 2 
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Figure 9: The knowledge directed opportunistic search  
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Figure 10: The enhanced software robot structure  

 

 

 

Find in buffer?

Read from buffer

Y

Read from DB

N

Read agent data

Find in buffer?

Modify the data in 

the buffer

Y

Load from 

database and 

make copy in the 

buffer

N

Modify agent data

 

 

Figure 11: The copy on write method  
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Figure 12: The MABBS based open software platform 

 

 

  Figure 13: The toolkit program for knowledge base development  
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  Figure 14: The MAS model for production planning and scheduling  

 

 

    

 

Figure 15: Screenshots of the prototype system 
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Figure 16: The relationship between solution quality and computation 

resources of MABBS method 
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Figure 17: Summary of this study  
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