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Stabilization of Markovian Systems via Probability
Rate Synthesis and Output Feedback

Jun-E Feng, James Lam, and Zhan Shu

Abstract—This technical note is concerned with the stabilization problem
of Markovian jump linear systems via designing switching probability rate
matrices and static output-feedback gains. A novel necessary and sufficient
condition is established to characterize the switching probability rate ma-
trices that guarantee the mean square stability of Markovian jump linear
systems. Based on this, a necessary and sufficient condition is provided for
the existence of desired controller gains and probability rate matrices. Ex-
tensions to the polytopic uncertain case are also provided. All the conditions
are formulated in terms of linear matrix inequalities with some equality
constraints, which can be solved by two modified cone complementarity
linearization algorithms. Examples are given to show the effectiveness of
the proposed method.

Index Terms—Linear matrix inequality (LMI), Markovian process,
output feedback, stabilization, switched system.

I. INTRODUCTION

Markovian jump linear systems, which were first introduced in [1],
are modeled by a set of linear plants with transitions among them ac-
cording to a Markov chain taking values in a finite set. This kind of
model can capture the abrupt changes that appear in the system struc-
ture or its parameters, and has found widespread applications in various
practical problems such as target tracking, manufacturing processes,
and fault-tolerant control systems [2].

Over the past decades, a variety of results about Markovian jump
linear systems have been obtained. Stability and stabilization have
been studied thoroughly in [2]–[7], and references therein.�� control
for Markovian jump systems has been reported in different cases, for
instance, continuous-time [8], discrete-time [9], bilinear system [10],
time-delay [11], [12], descriptor system [13], and two-dimensional
system [14]. The quadratic optimal control problem concerning these
systems has been discussed in [15] and [16]. The filtering problem for
the continuous-time case has been investigated in [12], [17] and [18].
For a class of discrete-time Markov jump linear systems with partially
known transition probabilities, stability analysis and stabilization syn-
thesis problems have been considered in [19] and [20], respectively,
for systems without delay and for those with time-varying delays.

It should be pointed out that almost all the results mentioned above
were derived for given switching probability rate matrices except
[19] and [20]. In some practical cases, however, designers may have
freedom to choose appropriate switching probability rate matrices or
general switching rules. Some motivations for this and more general
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hybrid output-feedback control have been presented in [21]. In [21],
stabilizing switching signals have been constructed when none of
the individual subsystems is asymptotically stable. Closed-loop and
open-loop switching control strategies have been investigated in
[22] and [23]. State-feedback and output-feedback switching design
have been considered in [27], [28]. Although these results are nice,
they are mainly concerned with deterministic switching, and little
effort has been made towards stochastic switching. The selection or
determination of stochastic switching law, to a large extent, remains
an open problem.

In this technical note, we shall first present a novel characterization
for switching probability rate matrices that render mean square sta-
bility, and design such a matrix. This complements and differs from the
work in [19] where the transition matrices in discrete-time are partially
known or the work in [7] where the probability rate matrices have el-
ement-wise uncertainties. Based on this, a necessary and sufficient for
the existence of desired static output-feedback (SOF) gains and proba-
bility rate matrices is provided. The corresponding results are extended
to the polytopic uncertain case. All the results are formulated in terms
of linear matrix inequalities (LMIs) with some matrix equality con-
straints, which can be solved by two modified cone complementarity
linearization (CCL) algorithms inspired by [24].

Notation: Throughout this technical note, � represents the �-di-
mensional Euclidean space. The notation ��� refers to Euclidean norm
for vector. � is the mathematical expectation operator. We use super-
script � and symbol ����� for the transpose and trace of a matrix, re-
spectively. For real symmetric matrices � and �, the notation � � �
(respectively, � � �) means � �� is positive definite (respectively,
positive semidefinite). � is the identity matrix with compatible dimen-
sions. Matrices, if their dimensions are not explicitly stated, are as-
sumed to have compatible dimensions.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following linear continuous-time system with Mar-
kovian jump parameters:

���	� � 
���	����	� �����	��
�	��

��	� � ����	����	��

���� � �� �
�� ���� � ��

(1)

where ��	� � �, 
�	� � �, and ��	� � � are the system state, the
control input, and the measured output, respectively. ���	�� 	 � �� is
a continuous-time Markov process taking values in the finite discrete
set � � �	� 
� � � � � ��. For ��	� � �, 
���	��, ����	��, ����	�� are
given constant matrices, denoted by 
�, �� and �� for simplicity. The
mode transition probabilities are described as follows:

�����	�
� � ����	� � �� �
���
� ��
�� � 	� ��

	 � ���
� ��
�� � � �
(2)

where 
 � �� ��� � �� 
� 	� �, and ��� � �
� ���

��� � �, and
��
��
�� � as 
 approaches to zero. Denote � � �������� (a
square matrix is said to be Metzler if its off-diagonal entries are non-
negative).

Throughout this technical note, we will use the following definition
on mean square stability for system (1) (see [4]).

Definition 1: The free system (1) (that is, 
�	� � �) is said to be
mean square stable if

�����	������ �� �� 	��
 (3)

for any initial condition �� � � and initial distribution ��.
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In this technical note, we shall first establish a necessary and suffi-
cient condition on the choice of the probability rate matrix for mean
square stability of free system (1). Then we will design a mode-depen-
dent SOF (MDSOF) controller

���� � ����������� (4)

and a probability rate matrix such that the resulting closed-loop system
is mean square stable.

To this end, we need to introduce the following stability lemma
which will be used in the sequel.

Lemma 1: [25]: For a given probability rate matrix �, free system
(1) is mean square stable if and only if there exists a set of positive
definite matrices ��� ��� � � � � �� satisfying the following inequalities:

��
� �� � ���� �

�

���

	���� 
 �� � � �� 	� � � � � �
 (5)

For a given probability rate matrix�, the inequalities in (5) are linear
on the positive definite matrices��. When the probability rate matrix�
is not known, the stability characterization (5) turns out to be bilinear
due to the product terms of the positive definite matrices �� and the
elements in �. If inequalities (5) are feasible for a given probability
rate matrix �, it can be shown that there exists a stable convex com-
bination of the given matrices ��. However, checking the existence of
a stable combination is an NP-hard problem. In this technical note we
manage to rewrite the problem as LMIs with some equality constraints
and present an algorithm to solve it partially.

III. STABILIZING PROBABILITY RATE MATRICES

In this section, we consider the choice of a probability rate matrix,
which ensures the stability of free system (1). Firstly, we need to find a
means to separate matrix variables �� and elements of the probability
rate matrix �. Motivated by [26], we handle this separation problem
in the following theorem, which transforms the nonlinear problem into
linear one with some matrix equality constraints.

Theorem 1: There exists a probability rate matrix such that free
system (1) is mean square stable if and only if there exist a set of
positive definite matrices��� ��� � � � � �� � 
��� 
��� � � � � 
�� , a scalar
� � �, and a Metzler matrix 
� � �
	������ , satisfying

��� �
�

���

�� �� � � ���
�

� �� �

� � � 
��


 � (6)

and

��

�� � � (7)

where �� � 
 �� � 
	���� �� � 
	���� � � � �� � 
	�� �� �,
� � ����� 
��� 
��� � � � � 
��� and � � �� 	� � � � � � . In this case,
a stabilizing probability rate matrix is given by � � 	��
�.

Proof: There exists a probability rate matrix � such that free
system (1) is mean square stable if and only if there exists a set of
positive definite matrices ��� ��� � � � � �� satisfying the inequalities in
(5). On the other hand, the inequalities in (5) hold if and only if there
exists a sufficient small scalar � � � such that the following inequali-
ties hold:

��
� �� � ���� �

�

���

	��
	
�� �

�

���

	��
	
��

��

�

���

	��
	
��

	��
	

� ���
� ���� 
 �
 (8)

By Schur complement equivalence, it is easy to see that the inequalities
in (8) hold if and only if the following inequalities hold:

������ � ���
�

���

�� �� � � ���
�

� �� �

� � �� 
��


 � (9)

where 
�� � ���� , � � ������ 
��� � 
��� � � � � � 
��� and �� �
�� �
��		���� �� � ��		���� � � � �� � ��		�����. Taking �� � �����,

�� � � 
�� and 
	�� � ��		�� in the above inequalities, it is clear that

the inequalities in (9) hold if and only if the inequalities in (6) and the
matrix equalities in (7) hold. Thus the proof is completed.

The result in Theorem 1 also holds when the free system (1) has
polytopic uncertainties, that is

�� �

�

���

������

�

���

�� � �� �� � � (10)

which is described in the following corollary.
Corollary 1: For free system (1) with polytopic uncertainties

(10), there exists a probability rate matrix such that the system is
mean square stable if and only if a set of positive definite matrices
��� ��� � � � � �� , 
��� 
��� � � � � 
�� , a scalar � � �, and a Metzler
matrix 
� � �
	������ , satisfying

��� �

��� �
�

���

�� �� � � ���
��

� �� �

� � � 
��


 � (11)

and the equalities in (7), where �� and � are defined in Theorem 1,
where � � �� 	� � � � � � � � � �� 	� � � � � �. In this case, a stabilizing
probability rate matrix is given by � � 	��
�.

Proof: The necessity is obvious, so here we only give the proof
of sufficiency. Noting that �� � � and �

���
�� � �, from (11)

we have �

���
����� 
 �, that is (12), shown at the bottom of

the page, where � � �� 	� � � � � � . With �

���
����� � �� and

�

���
�� � �, (6) is obtained from (12). Then using Theorem 1,

we derive the stability of uncertain free system (1). Thus the proof is
completed.
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It should be pointed out that the conditions in Theorem 1 and Corol-
lary 1 are presented by a set of LMIs with some matrix equality con-
straints, which cannot be solved directly with standard software due to
their non-convex nature. However, we can tackle them via employing
the CCL algorithm.

The basic idea of CCL algorithm is that if

�� �

� ���

� � (13)

is solvable in ��� matrices�� � � and ��� � �, then �����
���� � �,

while �����
���� � � if and only if ��

��� � � . Therefore, we summa-
rize a schematic algorithm to solve the original non-convex feasibility
problem formulated in Theorem 1.

Stabilizing Probability Rate Matrix (SPRM) Algorithm:
1) For the inequalities in (6), find a set of feasible positive defi-

nite matrices ���

� � ��
�

� � �
�

� � ��
�

� � � � � � �
�

� � ��
�

��. If there are none,
EXIT. Set � � �.

2) For matrices ��
� � ��

�
� � �

�
� � ��

�
� � � � � � �

�
� � ��

�
� , solve the LMI

problem: 	
�� �

���
�����

���
� � ��

�
����� subject to (6) and

(13), obtain ��� ���� ��� ���� � � � � �� � ��� � �
 and �.
3) Taking �� � ���, and 
 � �	��
, substitute the obtained vari-

ables ���� ��� � � � � �� �
� �� into (8) or (5). If condition (8) or
(5) is satisfied, then the stabilizing probability rate matrix is 
 �
�	��
. EXIT.

4) If � � 
� where 
� is the maximum number of iterations al-
lowed, EXIT.

5) Set � � � � �, let ���
� � ��

�
� � �

�
� � ��

�
� � � � � � �

�
� � ��

�
� ��

���� ���� ��� ���� � � � � �� � ����, and go to Step 2).
Remark 1: The convergence of the algorithm can be shown by fol-

lowing a similar line as used in [24]. It is noted that, similar to CCL, the
algorithm generally does not guarantee finding a globally optimal solu-
tion. For the computational complexity of the algorithm, on one hand,
the optimization of each iteration is a convex optimization problem, of
which the computational complexity with the interior-point method is
polynomial time. On the other hand, the number of total iterative steps
is bounded. Therefore, the computational complexity of the algorithm
is also polynomial time.

Example 1: When the system matrices in free system (1) are

�� �
� ��

�� �
� �� �

�� ��

� �
�


 �
�� �

� ��

we can check that inequalities in (5) are not solvable for variables ��
and �� using Lemma 1. Therefore the system above is not mean square
stable for the given probability rate matrix
. However, using algorithm
SPRM, and solving inequalities in (6) and equalities in (7), we derive
a stabilizing probability rate matrix


 �
�������� �������

������� ��������
�

IV. MDSOF DESIGN

Based on the discussion in Section III, in this section we simulta-
neously design an MDSOF stabilizing controller and a probability rate
matrix for system (1). When a control law (4) is applied to system (1),
the closed-loop system becomes

�
��� � �������� �����������������������
���� (14)

Now using Lemma 1, we provide a necessary and sufficient condi-
tion for the existence of MDSOF stabilizing controllers and probability
rate matrices.

Theorem 2: There exist an MDSOF controller and a probability
rate matrix such that the closed-loop system of (1) is mean square
stable if and only if there exist a set of positive definite matrices
��� ��� � � � � �� � ���� ���� � � � � ��� , matrices ���� ���� � � � � ��� , a
scalar � � �, and a Metzler matrix �
 � ��������� , satisfying

���� �
�

���

�� �� � � ��
�
���
� �

�
� � � ���

�

� �� � �

� � � ��� �

� � � � ���

� � (15)

and the matrix equalities in (7), where �� and � are defined in The-
orem 1, where � � �� �� � � � � 
 . Then an MDSOF stabilizing controller
(4) and the corresponding probability rate matrix are obtained, where
�� � ��� ��� and 
 � �	��
.

Proof: From Lemma 1, there exist an SOF controller (4) and a
probability rate matrix 
 such that closed-loop system (14) is mean
square stable if and only if there exists a set of positive definite matrices
��� ��� � � � � �� satisfying the following inequalities:

��� ��������
��� � ����� �������� �

�

���

����� � �� (16)

The above inequalities in (16) hold if and only if there exists a small
scalar � � � such that the following inequalities hold:

��� ��������
��� � ����� �������� �

�

���

�����

� ���������
����������� � ���

� ����

� �

�

���

���
�
��

���
�

� �� (17)

The remaining part of the proof is similar to Theorem 1, hence they
are omitted here.

Similar to Theorem 1, Theorem 2 can be extended to the polytopic
uncertain case. Assume that system (1) has polytopic uncertainties, that
is

���� ��� �

�

���

������� �����

�

���

�� � �� �� � � (18)

�� �

�

	��

�	��	�

�

	��

�	 � �� �	 � �� (19)

We have the following result for uncertain system (1).
Corollary 2: For system (1) with polytopic uncertainties (18)

and (19), there exist an MDSOF controller and a probability rate
matrix such that the closed-loop of system (1) is mean square
stable if and only if there exist a set of positive definite matrices
��� ��� � � � � �� � ���� ���� � � � � ��� , matrices ���� ���� � � � � ��� , a
scalar � � �, and a Metzler matrix �
 � ��������� , satisfying

���	 �

���� �
�

���

�� �� � � ��
�	
���
� �

�
�� � � ���

��

� �� � �

� � � ��� �

� � � � ���

� � (20)

and the matrix equalities in (7), where�� and � are defined in Theorem
1, and � � �� �� � � � � 
� � � �� �� � � � � �� � � �� �� � � � � �. In this case,
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an MDSOF stabilizing controller (4) and the corresponding probability
rate matrix are obtained, where �� � ��� ��� and � � �����.

Proof: Similar to Corollary 1, here we only give the proof of suf-
ficiency. Noting that �� � � and �

���
�� � �, from (20) we have

�

���
������ � �, that is (21), shown at the bottom of the page,

where � � �� �� � � � � �� 	 � �� �� � � � � 
. With �

���
����� �

��,
�

���
����� � �� and �

���
�� � �, from (21) we have

See equation (22) at the bottom of the page.

	���

��
� �
�

���


� 
� � � ��
��
���
� �

�
� � � ���

�

� �� � �

� � � �
� �

� � � � �
�

���

(22)
Using �

���
����� � �� and �

���
�� � �, the remaining part of the

proof can be easily obtained and hence it is omitted here for brevity.
To solve the non-convex feasibility problem formulated in Theorem

2, an algorithm similar to that of Theorem 1 can be constructed for de-
riving the MDSOF stabilizing controller and the corresponding proba-
bility rate matrix simultaneously.

Simultaneous SOF and Probability Rate Matrix (SOFPMR)
Algorithm:

1) For the inequalities in (15), find a set of feasible positive defi-
nite matrices �
�

� � �

�

� � 

�

� � �

�

� � � � � � 

�

� � �

�

�
. If there are none,
EXIT. Set � � �.

2) For matrices 
	
� � �


	
� � 


	
� � �


	
� � � � � � 


	
� � �


	
� , solve the

LMI problem: ���� �

���
���
�

�
	
� � 
	

�
�
�
� subject to

(15) and (13), obtain 
�� �
�� 
�� �
�� � � � � 
� � �
� � ��,
���� ���� � � � � ��� and �.

3) Taking �� � �
�, �� � ��� ��� and � � �����, substitute
the obtained variables ���� ��� � � � � �� ��, ������ � � � � �� � �

into (17) or (16). If condition (17) or (16) is satisfied, then an
MDSOF stabilizing controller and the corresponding probability
rate matrix are�� � ��� ��� and� � �����, respectively. EXIT.

4) If � � �� where �� is the maximum number of iterations al-
lowed, EXIT.

5) Set � � � � �, let �
	
� � �


	
� � 


	
� � �


	
� � � � � � 


	
� � �


	
� 
 �

�
�� �
�� 
�� �
�� � � � � 
� � �
�
, and go to Step 2).
Remark 2: Different from some other commonly used design

methods involving controller reconstruction, the MDSOF gains are
directly solved. An advantage of our method is that some special
requirements on the desired controller can be realized. For example,
we can impose some elements of the controller gain matrices to be
positive, or negative, or even zeroes, which will be useful in practice.

Remark 3: All the results can be applied to mode-independent de-
sign by setting �� � �� � � �� �� � � � � � in Theorem 2 and Corollary
2.

Remark 4: When some elements in the probability rate matrices of
system (1) are partially known, the presented results are also applicable.
In [19], a sufficient condition guaranteeing the stability was given for a
class of discrete-time Markov jump linear systems with partially known
transition probabilities. Therefore, the results in this technical note can
be considered as an alternative development, but with a rather different
spirit, of [19] for the continuous-time case.

Example 2: Consider the MDSOF design problem for system (1)
with system matrices

�� �
� �

� �
� �� �

� �

� �
�

�� �
�

�
� �� �

�

�
�

�� � � � � � � �� � � � � � �

It is easy to test that neither ���� ��� ��� nor ���� ��� ��� can be
stabilized by single SOF controller. Using algorithm SOFPMR and
solving inequalities in (15) with constraints in (7), we have an MDSOF
stabilizing controller

�� � ��������� � � �� � ��������� �

with the corresponding probability rate matrix

� �
������� ������

������ �������
�

Example 3: Consider the MDSOF design problem for system (1)
with system matrices

�� ��� �

�� � �

� � �

� � �

� �� � �� �

� �

� �

� �

�� � � � � � � � �� � � � � � � �

It is also easy to test that neither ���� ��� ��� nor ���� ��� ��� can
be stabilized by static output controller. Using algorithm SOFPMR and
solving inequalities in (15) with constraints in (7), we have an MDSOF
stabilizing controller

�� �
�������

������
� �� �

�������

��������

with the corresponding probability rate matrix

� �
������� ������
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�

�
�

���

�� �
� �
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�� �
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Fig. 1. Trajectory of the state variables of the closed-loop system.

Fig. 1 depicts state variable trajectories of the closed-loop system for
initial value ���� � � ��� ��� � 	� .

V. CONCLUSION

In this technical note, we have studied the stabilization problem via
designing probability rate matrices and SOF gains for Markovian jump
linear systems. A necessary and sufficient condition with separated
Lyapunov matrices and probability rates has been established. Based
on this, an SOF controller and a probability rate matrix have been de-
signed to guarantee the closed-loop stability. All the results have been
extended to the polytopic uncertain case. Numerical examples have
been provided to show the effectiveness of proposed approaches.
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