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Abstract

In recent years, value-at-risk (VaR) has become the standard tool for

market risk measure and management. For better VaR estimation, Engle

and Manganelli [2004] introduced the conditional autoregressive value-at-

risk (CAViaR) model to estimate the VaR directly by quantile regression.

To entertain the nonlinearity and structural change in the VaR, we extend

the CAViaR idea using two approaches: the threshold GARCH (TGARCH)

and the mixture-GARCH models. Some theoretical results are derived

and methods for model estimation are proposed. Our models inherit all

the advantages of the CAViaR model and enhance the nonlinear structure.

The methods are applied to the S&P 500, Hang Seng, Nikkei and Nasdaq

indices to illustrate our models.

Keywords: GARCH model, mixtures, threshold models, value-at-risk.
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1 Introduction

Many financial crises happened without warning. These extreme price move-

ments in the financial markets are rare, but they can bring fatal results to some

corporations and disasters to a country’s financial market. For instance, the New

York stock market crashed in October 1987, and then, one decade later, the Asian

stock market crashed also. Recent scandals of Enron had also caused the Dow

Jones Industrial Average (DJIA) to drop sharply. These crises are the causes of

ruin for hundreds of companies with their stock value evaporated in a short time.

These markets and credit risk issues make investors more and more cautious.

Nowadays, in the trend of globalization, market risk is of great importance and

deserves more attention. Therefore, to a risk manager, a good measure of mar-

ket risk is more than necessary. In particular, the Basel Committee on Banking

Supervision [1996] at the Bank for International Settlements imposes on finan-

cial institutions such as banks and investment firms to meet capital requirements

based on value-at-risk (VaR) estimates. As a result, value-at-risk has come out

as a standard measurement of an institution’s risk exposure and has become a

standard tool to evaluate and manage financial risk.

Value-at-risk is mainly concerned with market risk. It can be defined as the

maximal loss of a position on a financial asset during a given time period for a

given probability. Let ∆V (l) be the change in value in the position from time

t to t + l. We can define the VaR of the position over the time horizon l with
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probability η as

η = P [∆V (l) 6 VaR] ≡ Fl(VaR), (1)

where Fl(x) is the cumulative distribution function (CDF) of ∆V (l), evaluated

at ∆V (l) = x. See Jorion [2001] for a comprehensive review of VaR. Since the

potential loss of holding a financial asset can be represented by its return, we

can re-define the VaR in terms of the return. Let xt+l = log Pt+l − log Pt be the

logarithm return of holding the asset from time t to t + l, where Pt is the asset

price at time t. Then the VaR over the time horizontal with probability η is given

by

η = P [xt+l 6 VaR] ≡ Fl(VaR), (2)

Fl(x) is the CDF of xt+l, evaluated at xt+l = x. Although the concept of VaR is

not difficult to understand, the estimation of VaR is a very challenging statistical

problem. The pioneer is the risk management group at J. P. Morgan who devel-

oped the RiskMetrics model for measuring VaR in 1995. The RiskMetrics model

assumes that returns of a financial asset follow a conditional normal distribution

with zero mean and variance being expressed as an exponentially weighted mov-

ing average of historical squared returns. Because of the many nice properties

of the normal distribution, the calculation of VaR is relatively straightforward

and it can also be applied to a long horizon VaR estimation (Jorion [2001], Wong

and So [2003]). However, as many papers have pointed out, the RiskMetrics

model fails to measure market risk accurately because this model lack nonlin-

ear property which is a significant feature of the financial market. To overcome
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this shortcoming, various methods, such as that based on GARCH (Bollerslev

[1986]) and its variants such as integrated GARCH (Engle and Bollerslev [1986])

and exponential GARCH (Nelson [1991]) and extreme value theories (Danielsson

and de Vries [1997]) were proposed and found to have significant improvements.

Manganelli and Engle [2001] summarized some recent development of the VaR

estimation.

Generally speaking, from a statistical point of view, VaR defined by (2) is just

the conditional η-th quantile of the distribution of a future asset return. This

feature enlightens us to estimate the quantile directly. Koenker and Bassett [1978]

developed the quantile regression method to solve this question. Their method

provides a nonparametric approach to VaR estimation. The advantage of this

method is that it makes no specific distributional assumption on the return of

the asset.

For a given value η, 0 6 η 6 1, the η-th quantile of the a variable x is defined as

Cη(x) = inf{x|F (x) > η}, where F is the CDF of x. Koenker and Bassett [1978]

suggested that the quantile of b = Cη(x) based on a sample of iid realization of

x {xt} can be estimated by solving the following minimization problem

min
b∈R

[ ∑

t∈{t:xt>b}
η|xt − b|+

∑

t∈{t:xt<b}
(1− η)|xt − b|

]
. (3)

If the returns series {xt} follows an autoregressive process of order k:

xt = φ0 +
k∑

i=1

φixt−i + ut (4)
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the 100η% conditional VaR of xt is then given by

VaRt(η) = φ0 +
k∑

i=1

φixt−i + Cη(ut|Ft−1), (5)

where Cη(ut|Ft−1) is the η-th conditional quantile of the residual process ut, and

Ft−1 is the information up to time t − 1. With the quantile regression method,

Wu and Xiao [2002] obtained VaR process for the AR model and suggested this

method can be applied to ARCH model.

Engle and Manganelli [2004] applied this method to the VaR problem and

proposed a conditional value-at-risk (CAViaR) model with a general specification

for VaR at time t

VaRt = f(xt, βθ) = β0 +

p∑
i=1

βi VaRt−i +l(βp+1, . . . , βp+q; Ft−1) (6)

where l(·) is a pre-specified function and θ is the subscript suppressed for nota-

tional convenience. They suggested the first order CAViaR model:

VaRt = β0 + β1 VaRt−1 +l(β2, xt−1, VaRt−1) (7)

is sufficient for practical use. Some examples are listed below:

1. Adaptive: VaRt = VaRt−1 +β[I(xt−1 6 −VaRt−1)− θ].

2. Symmetric absolute value: VaRt = β0 + β1 VaRt−1 +β|xt−1|.

3. Direct GARCH(1,1)1: VaRt = (β0 + β1 VaR2
t−1 +β2x

2
t−1)

1/2.

1Engle and Manganelli [2004] named this model indirect GARCH(1,1) model. However,

in this paper, we would like to call it direct GARCH(1,1) model because it models the VaRt

directly.
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As return series may usually exhibit nonlinearity such as a threshold structures

or mixture models, this paper aims at extending CAViaR models to incorporate

nonlinear structure of return series in order to improve the VaR estimation.

In the literature, examples of nonlinearity abound. For instance, DeBondt

and Thaler [1985] pointed out that a portfolio of “loser” stocks may outperform

a portfolio of “winner” stocks. Their article shown that a simple trading strategy

of buying “recent losers” and selling “recent winners” could yield a substantial

excess profit in both short-term and long-term investment horizons. That means

stock returns always exhibit an apparent asymmetric reverting pattern in their

return behavior. French et al. [1987] found evidence that the expected market risk

premium is positively related to the predictable volatility of stock returns, but

the unexpected stock market returns are negatively related to the unexpected

change in the volatility of stock returns. Nam et al. [2002] argued that the

relative profitability of “loser” stocks is attributed to an asymmetric reverting

property of their return dynamics. Chan and Maheu [2002] used conditional

jump dynamics to explain the behavior of the stock market returns. From these

results, it therefore appears natural to assume that the underlying data has an

asymmetric structure. It is well known that threshold or mixture models readily

allow for asymmetric structures. Furthermore, changing volatility (Schwert and

Stambaugh [1987]) is also an important stylized fact of stock returns. Hence

models with nonlinearity and changing volatility structures are needed to be

considered in risk management.
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Two popular models for describing the changing volatilities are the autoregres-

sive conditional heteroscedastic (ARCH) model (introduce by Engle [1982]) and

the generalized autoregressive conditional heteroscedastic (GARCH) model (Boller-

slev [1986]). To incorporate nonlinear structure, many of their variants were

proposed in the literature including models for asymmetric behavior of variance

such as the EGARCH (Nelson [1991]) and TARCH (Rabemananjara and Zaköıan

[1993] and Zaköıan [1994]). Li and Li [1996] suggested the double-threshold

ARCH (DTARCH) model which is an extension of Tong and Lim [1980]. The

model can handle the situation where both the conditional mean and the con-

ditional variance specifications are piecewise linear. Another variant is the class

of mixture models recently proposed by Wong and Li [2000, 2001] in which the

return is assumed to follow a mixture of k components AR-ARCH model. The

use of “mixtures” model is not new and has been considered in existing VaR

literatures (for instance, Hull [2002]), but their models do not allow changing

volatility. In this paper, we will focus on the conditional VaR estimation by ex-

tending CAViaR (Engle and Manganelli [2004]) models to include the threshold

GARCH (TGARCH) (an extension of Li and Li’s double TARCH, 1996) and

mixture-GARCH (an extension of Wong and Li [2001]’s mixture-ARCH) models

since these two models can better explain the asymmetric phenomenon in the

financial market. We call the new models direct-VaR models. The organization

of this paper is as follows. Section 2 reviews TGARCH and mixture-GARCH

models. Section 3 formulates two direct-VaR models based on either TGARCH

or mixture-GARCH models. The estimation methods of the proposed direct-VaR

7



models are introduced in Section 4. Simulations are done in Section 5 to exam-

ine the effectiveness of our proposed estimation methods. The proposed models

are applied in Section 6 to the S&P 500 index to illustrate the capability of the

models in estimating VaR. For comparison, we also apply our models to Hang

Seng, Nikkei and Nasdaq indices which can be regarded as immature markets and

indices. Section 7 concludes the advantage of our models.

2 The TGARCH and Mixture-GARCH model

We first consider threshold type models for a time series xt. Tong and Lim [1980]

first suggested the self-exciting threshold autoregressive model (SETAR) model

for nonlinear time series dynamic structure. A time series xt is said to follow a

k-regime SETAR model with threshold variable xt−d if it satisfies

xt = φ
(j)
0 + φ

(j)
1 xt−1 + · · ·+ φ(j)

p xt−p + a
(j)
t ,

if γj−1 6 xt−d < γj, j = 1, . . . , k, (8)

where k and d are positive integers, j = 1, . . . , k. The thresholds γi are real

numbers such that −∞ = γ0 < γ1 < · · · < γk−1 < γk = ∞, where the superscript

(j) is used to signify the regime. The series {a(j)
t } are iid error with mean 0 and

variance σ2
j and are mutually independent for different j. The parameter d is

referred to as the delay parameter and γjs as the thresholds. With the similar

idea, to capture the asymmetric volatility characteristic of financial time series,

we extend the double threshold ARCH (DTARCH) of Li and Li [1996] to a general
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k-regime threshold GARCH (TGARCH) model as below:

xt = εt

√
ht, (9a)

ht = α
(j)
0 +

pj∑
r=1

α(j)
r x2

t−r +

qj∑
i=1

β
(j)
i ht−i, γj−1 6 xt−d < γj, j = 1, . . . , k,

(9b)

where regime number k and delay parameter d are positive integers, j = 1, . . . , k.

γj’s are real numbers such that −∞ = γ0 < γ1 < · · · < γk−1 < γk = ∞,

the superscript (j) is used to signify the regime, {εt} are iid noise with mean

0 and unit variance. We denote model (9) as TGARCH(p1, p2, . . . , pk; q1, q2,

. . . , qk). With some regularity conditions, Liu et al. [1997] proved that model

(9) is stationary and ergodic. One advantage of the TGARCH model is that it

can model asymmetric and limit cycle behavior in a natural way and break the

homoscedastic variance restriction as ordinary SETAR-type models do.

An alternative nonlinear time series model is the mixture AR-ARCH model

proposed by Wong and Li [2001]. They assume that xt follows a mixture of K-

component models with each components being a AR-ARCH model. The general

K-component model is given by:

F (xt|Ft−1) =
K∑

k=1

πkΦ

(
ek,t√
hk,t

)
(10a)

ek,t = xt − φk0 − φk1xt−1 − · · · − φkpk
xt−pk

(10b)

hk,t = βk0 + βk1e
2
k,t−1 + · · ·+ βkqk

e2
k,t−qk

, (10c)

where Ft−1 is the information set up to time t−1; Φ(·) is the (conditional) cumu-

lative distribution function of the standard Gaussian distribution; and π1 + · · ·+
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πK = 1, πk > 0 (k = 1, . . . , K). Here F (xt|Ft−1) is the conditional cumulative

distribution function of xt given the past information. They denote this model as

the MAR-ARCH(K; p1, p2, . . . , pK ; q1, q2, . . . , qK). We extend the ARCH formu-

lation to GARCH and the mixture-GARCH model with K components is defined

as

xt = εt

√
ht (11a)

ht =
K∑

k=1

Zkt

(
αk0 +

qk∑
ik=1

αkikx
2
t−ik

+

pk∑
jk=1

βkjk
ht−jk

)
, (11b)

where Zkt = 1 when the xt is drawn from the k-th component (let πk be the

probability that Zkt = 1), Zkt = 0 otherwise. Then π1 +π2 + · · ·+πK = 1, πk > 0,

(k = 1, . . . , K); εt is iid white noise following the standard normal distribution.

We call model (11) a mixture-GARCH(K; p1, p2, . . . , pK ; q1, q2, . . . , qK). As

in the case for the GARCH(1,1) model, the most important special case of the

mixture-GARCH model is the (2;1,1;1,1) model,

xt = εt

√
ht, (12a)

ht = Zt(α10 + α11x
2
t−1 + β11ht−1)

+ (1− Zt)(α20 + α21x
2
t−1 + β21ht−1) (12b)

where Zt follows the Bernoulli distribution:

Zt =





1 with probability π,

0 with probability (1− π).

(12c)

We denote the model (12) as the mixture-GARCH(1,1) with two components.
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3 Direct-VaR Models

Following the idea of quantile regression, Engle and Manganelli [2004] proposed

to model directly the quantiles instead of the underlying volatility. A conditional

autoregressive quantile regression model, termed as the conditional autoregressive

value-at-risk (CAViaR) model, is introduced. The general form of this model is

VaRt = f(xt, βθ) = β0 +

p∑
i=1

βi VaRt−1 +l(βp+1, . . . , βp+q; Ft−1), (13)

By analogy with the popular GARCH(1,1) model, the GARCH(1,1) direct-VaR

model (Engle and Manganelli, 2004, section 3) is defined as

VaRt = (β0 + β1 VaR2
t−1 +β2x

2
t−1)

1/2. (14)

Engle and Manganelli [2004] pointed out that if the underlying volatilities were

truly generated from a GARCH(1,1) process, the VaR follows the GARCH(1,1)

process (14). Note that (14) is not a GARCH(1,1) model in the usual sense. It

is in fact a “direct” model for VaRt. We will call (14) a GARCH(1,1) direct-

VaR model. In the following, we obtain a similar result for direct-VaR models

when the underlying data are truly a TGARCH or mixture-GARCH(1,1) model

respectively.

Theorem 3.1. If xt follows a TGARCH process (9), then the VaR2
t process

follows a TGARCH process (15). If xt follows a mixture-GARCH(1,1) process

(12), then the VaR process also follows an mixture-GARCH(1,1) process (16).

VaR2
t = a

(j)
0 +

pj∑
r=1

a(j)
r x2

t−r +

qj∑
i=1

b
(j)
i VaR2

t−i γj−1 6 xt−d < γj, (15)

11



VaR2
t = Zt

(
a10 + a11x

2
t−1 + b11 VaR2

t−1

)

+(1− Zt)
(
a20 + a21x

2
t−1 + b21 VaR2

t−1

)
, (16)

where Cη is the lower (left-tail) η-th quantile of the standard normal distribution,

a
(j)
r = C2

ηα
(j)
r , r = 0, . . . , pj, b

(j)
i = β

(j)
i , i = 1, . . . , qj, j = 1, . . . , k; Zt follows

(12c); ak0 = C2
η · αk0, ak1 = C2

η · αk1 and bk1 = βk1, k = 1, 2.

Corollary 3.2. If under the assumptions of theorem 3.1, the η-th VaRt follows

(15) or (16), then the µ-th VaRt follows (17) or (18) respectively.

VaR2
t = m2 · a(j)

0 +

pj∑
r=1

m2 · a(j)
r x2

t−r +

qj∑
i=1

b
(j)
i VaR2

t−i γj−1 6 xt−d < γj,

(17)

VaR2
t = Zt(m

2 · a10 + m2 · a11x
2
t−1 + b11 VaR2

t−1)

+ Zc
t (m

2 · a20 + m2 · a21x
2
t−1 + b21 VaR2

t−1), (18)

where m = Cµ/Cη, Zc
t = 1− Zt and j = 1, . . . , k.

Remark. Corollary 3.2 is very useful because if we have found the 100η% VaR

process and want to know the 100µ% VaR process for µ 6= η, we need not fit the

model again. We can apply corollary 3.2 above and obtain the result directly.
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4 Model Estimation for Threshold and Mixture

Type Direct-VaR Models

4.1 The Direct-VaR TGARCH Model

There are many ways to estimate a threshold model. One of the most popular

methods proposed by Tsay [1989] is to estimate the parameters by the structural

change method. However, in our case, it is hard to apply. Although the data may

actually have a structural change, an accurate numerical procedure is difficult to

implement. We resort to use a more direct but slightly more time consuming

method for the TGARCH model estimation. Firstly, we sort the data points

into an ascending order. Then we remove the smallest 25% and the largest 25%

data pionts and consider each data point in the middle 50% as possible candidate

value for the threshold parameter. As an example, we illustrate the method to

fit a direct-VaR TGARCH(1,1;1,1) model for the underlying series xt with two

regimes. Following (15), let

VaR2
t =





a
(1)
0 + a

(1)
1 x2

t−1 + b
(1)
1 VaR2

t−1, xt−d < γ,

a
(2)
0 + a

(2)
1 x2

t−1 + b
(2)
1 VaR2

t−1, xt−d > γ.

(19)

The initial value VaR1 is determined by Cη, the η-th quantile of the standard

normal distribution, times the sample standard error. Other VaRt can be deter-

mined iteratively by (19). If Cη < 0, we take the negative square root. If Cη > 0,

we choose the positive square root. For a given threshold candidate γ, we obtain
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the conditional η-th quantile by minimizing

L =





{∑
xt>VaRt

η|xt − VaRt |+
∑

xt<VaRt
(1− η)|xt − VaRt |

} · I(xt−d < γ)
∑n

t=d+1 I(xt−d < γ)





+





{∑
xt>VaRt

η|xt − VaRt |+
∑

xt<VaRt
(1− η)|xt − VaRt |

} · I(xt−d > γ)
∑n

t=d+1 I(xt−d > γ)





,

where I(·) is the indicator function. The first term can be interpreted as the ob-

jective function for the conditional quantile function corresponding to the regime

xt−d < γ normalized by the number of observations in that regime. A similar in-

terpretation holds for the second term which corresponds to the regime xt−d > γ.

The parameter d is chosen from natural numbers. Since in practice, the d seldom

exceeds 2, so we choose 1, 2 and 3 as its candidates. We repeat the method

above for all the candidates and choose the threshold and parameter values that

minimize L globally.

4.2 The Mixture-GARCH(1,1) Direct-VaR Model

Motivated by the Expectation-Maximization (EM) algorithm, we suggest a two-

stage estimation to find the η-th quantile for VaR estimation. Let

L =

{ ∑
xt>VaRt

η |xt − VaRt|+
∑

xt<VaRt

(1− η) |xt − VaRt|
}

. (20)

As in White [1994], here we treat L as a generalized objective function such that

the minimization of L is equivalent to the approach such that an EM style algo-

rithm can be applied to obtain the quasi maximum likelihood estimates (QMLE).
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We assume that xt also follows a mixture-GARCH(1,1) model corresponding to

theorem 3.1. For a mixture-GARCH(1,1) model (16), it is clear that the Zts are

unobserved and hence can be regarded as missing information. Therefore, the

two-stage algorithm can be used to handle this type of parameter estimation.

We divide all the parameters into two groups, the parameters containing missing

information and the other parameters not containing it. We call them group 1

and group 2 respectively. After that, our algorithm contains two stages. In stage

1, we suppose that all the parameters in group 2 are given by the previous step,

and use them as initial values to estimate the missing information parameters in

group 1 by taking conditional expectations of these parameters in group 1 with

respect to the values of parameters in group 2. In stage 2, we use the conditional

expectation of parameters under the mixture-GARCH model for xt in group 1 as

the real value of the missing information and estimate the parameters in group 2

by maximizing the likelihood function. These two steps are repeated until all the

parameters have converged. Here, the parameter π corresponds to the missing

information, so it is in group 1. The other parameters ak0, ak1 and bk1, k = 1, 2

are in group 2.

Stage 1. Given parameter estimates âk0, âk1, b̂k1, k = 1, 2, from the previous

step, we estimate π̂k as follows. We denote Tkt as the conditional probability

of xt in the k-th component, k = 1, 2. Since
√

ht = VaRt /Cη, following

Wong and Li [2001, section 3], we obtain

Tkt =
πk

VaR
(k)
t

φ

(
Cη · xt

VaR
(k)
t

)( 2∑

l=1

πl

VaR
(l)
t

φ

(
Cη · xt

VaR
(l)
t

))−1

,
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where φ(·) is the density of the standard normal distribution,

VaR
(k)
t = Sgn(Cη)(âk0 + âk1x

2
t−1 + b̂k1VaR2

t−1)
1/2,

and Sgn(x) is 1, 0, -1 if x > 0, x = 0 and x < 0 respectively. Tkt can be

computed by using the estimates of π1 and π2 obtained from the previous

iteration. Therefore, we can estimate πk, k = 1, 2 by

π̂k =

∑n
t=3 Tkt

n− 2
, k = 1, 2.

Stage 2. Now, using π̂1 and π̂2 obtained in Stage 1, ak0, ak1, bk1, k = 1, 2 are

updated by minimizing L where

L =

{ ∑

xt>dVaRt

η
∣∣∣xt − V̂aRt

∣∣∣ +
∑

xt<dVaRt

(1− η)
∣∣∣xt − V̂aRt

∣∣∣
}

,

and

V̂aRt = Sgn(Cη)
(
π̂1(a10 + a11x

2
t−1 + b11V̂aR

2

t−1)
1/2

+ π̂2(a20 + a21x
2
t−1 + b21V̂aR

2

t−1)
1/2

)
. (21)

Since we can not determine the source component of xt, t = 1, . . . , n, we have

to use the expectation of Zt and 1− Zt, π̂1 and π̂2, to estimate VaRt. Therefore

ˆVaRt is in fact the conditional expectation of the true VaRt. We repeat these two

steps until the parameter estimates converge.

Remark. In probability theory, the parameters of model (16) should be estimated

based on the information Ft−1 which is the σ-field generated by observations

(x1, . . . , xt−1). In our estimation method, at the first glance, the parameters seem

to be estimated based on the information (x1, . . . , xt−1, z1, . . . , zt−1). However, the
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conditional expectation of the missing information z1, . . . , zt−1 is replaced by the

conditional expectation and can be treated as a function of x1, . . . , xt−1 from the

method of our estimation. Therefore, our method can be regarded as a generalized

estimation method based on Ft−1.

From the discussion above, it can be proved that under some regular condi-

tions (White [1994, page 75] or Jin [2005, page 63]), the estimators we proposed

are consistent under the probability sense. Furthermore, we find that no assump-

tion on the distribution of the error terms is needed, hence reducing the risk of

misspecification. Moreover, as Manganelli and Engle [2001] pointed out, even if

the quantile process is misspecified, the minimization of the regression quantile

objective function can still be interpreted as the minimization of the Kullback-

Leibler information criterion, which measures the discrepancy between the true

model and the one under study. Our models inherit all these advantages and it is

expected that after incorporating a flexible nonlinear structure on VaR, the VaR

can be estimated more accurately.

5 Simulations

In this section we simulate two time series data sets from the following two models

and fit the direct-VaRt process with TGARCH and mixture-GARCH model by

quantile regression. The models are
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Model 1.

xt = εt

√
ht,

ht =





0.2 + 0.25x2
t−1 + 0.3ht−1 xt−1 < 0,

0.1 + 0.15x2
t−1 + 0.4ht−1 xt−1 > 0.

(22)

Model 2.

xt = εt

√
ht,

ht = Zt(0.1 + 0.1x2
t−1 + 0.4ht−1)

1/2

+ (1− Zt)(0.5 + 0.2x2
t−1 + 0.3ht−1)

1/2, (23)

where Zt = 1 with probability 0.3 and Zt = 0 with probability 0.7.

Model 1 is a TGARCH(1,1;1,1) model with two regimes and Model 2 is a two-

component mixture-GARCH(1,1) models. For each model, we generated a white

noise {εt}, t = 1, . . . , 1001, and simulated a time series realization of length

1001 using (22) or (23). Let the series be {xt}, t = 1, . . . , 1001. The {xt},

t = 1, . . . , 1000 were used for model fitting. The last one, x1001, was used to test

the accuracy of the model. Initial values for estimation were drawn uniformly

from a small interval containing the true parameters in the center. By repeating

the above procedure 1500 times, we obtained 1500 one-step VaR’s for testing the

accuracy of the VaR prediction. The results are listed in Table 1. The upper

section contains the result for TGARCH(1,1;1,1) model (22). We found that the

means of the estimated parameters were very close to the true value. The number

of times x1001 smaller than the estimated 5% VaR is 72. That is about 4.8% of
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the times that the 5% quantile value was exceeded. This is very close to the

theoretical value of 5%.

The lower part of Table 1 contains the results for mixture-GARCH model.

Although the estimated parameters for the VaR process were slightly different

from the true value, only 76 x1001 are outside of the estimated VaR. That is

about 5.1% of the 5% quantile value was exceeded. From Table 1, we can find

that the quantile regression method for the direct-VaR estimation in TGARCH

and mixture-GARCH(1,1) cases can provide accurate VaR estimates.

6 Empirical Results

In this section, we applied our model to four real data sets: S&P 500 daily closing

indices from Jan. 2, 1998 to Aug. 31, 2004, Hang Seng daily closing indices of

Hong Kong from Jan. 2, 1997 to Dec. 31, 2003, Nasdaq daily closing indices from

Jan. 2, 1997 to Dec. 31, 2003 and Nikkei daily closing indices from Jan. 6, 1998

to Dec. 30, 2003. We will discuss the study of S&P 500 in details and other three

examples will be explained briefly. All these data sets are obtained from Yahoo.

The first example is the daily S&P 500 closing indices from Jan. 2, 1998 to

Aug. 31, 2004. Days that the market was closed were removed and there are

totally 1674 observations in the series. We denoted them as {yt} and used these

observations for our empirical research.
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Let the daily log-returns of the S&P 500 {rt} be defined by rt = log yt−log yt−1.

With the log-transformation, all {rt} are around zero and stationary. Figure 1

shows the S&P 500 series and its return series respectively. The autocorrela-

tion (ACF) and partial autocorrelation (PACF)2 functions of the return series

{rt} do not show any apparent autoregressive structure and therefore, we will

use the return series {rt} to fit the model directly without any linear filter. To

illustrate the capability of our method, we choose the first 1173 log-returns, r1,

. . . , r1173, for model fitting. The remaining 500 data points, r1174, . . . , r1673 are

used to check the number of data points outside the predicted VaRt.

The first direct-VaR model we fit to the r1, . . . , r1173 was the TGARCH(1,1;1,1)

direct-VaR. The method was the same as what had been described in subsec-

tion 4.1. As mentioned before, we sorted the log-return in ascending order,

discard the smallest and largest 25% and tried every rt in the middle 50% as

candidates for the threshold and obtained a TGARCH(1,1;1,1) model (24). For

the sake of checking accuracy of long position VaR estimation, we did not update

the model though new data points r1174, . . . , r1673 came into the system daily

during the checking stage. The second direct-VaR model considered was the

mixture-GARCH(1,1) direct-VaR model (25). We applied the two-stage quan-

tile regression method which had been described in subsection 4.2 to fit the

mixture-GARCH(1,1) direct-VaR model. We summarized the result as below:

2The plots of the ACF and PACF can be found in Jin [2005]

20



TGARCH(1,1;1,1) direct-VaR:

VaR2
t =





2.413× 10−6 + 7.938× 10−2r2
t−1

+9.072× 10−1 VaR2
t−1 rt−1 6 −1.343× 10−2,

4.176× 10−4 + 2.135× 10−2r2
t−1

+1.472× 10−1 VaR2
t−1 rt−1 > −1.343× 10−2.

(24)

Since this is the left tail VaR, we choose the negative square roots. There are

31 return values lying outside of the 5% VaR. This amounts to an empirical

coverage of 6.2%.

Mixture-GARCH(1,1) direct-VaR:

VaR2
t = zt(6.2713× 10−4 + 0.1896r2

t−1 + 0.05369 VaR2
t−1)

+ (1− zt)(6.6137× 10−4 + 0.25093r2
t−1 + 0.6733 VaR2

t−1) (25)

where zt = 1 with probability 0.1435 and zt = 0 with probability 0.8565.We

also choose the negative square root for VaRt. There are 28 return values

lying outside of the 5% VaR. This amounts to an empirical coverage of

5.6%.

Since S&P 500 is a developed indices, some performance checking of our model

in immature markets and indices are also needed. We choose three of these

indices, Hang Seng index (Figure 2) of Hong Kong, Nikkei indices of Japan and

Nasdaq indices for technological stocks. The periods for these three indices are

seven years, from the beginning of 1997 to the end of 2003. Because of the
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difference between the holidays of these markets, the length of the three series

are slightly different. Note that the period we chose covered the Asian financial

crisis, this may be a challenge to our model. As usual, we first check the ACF

and PACF for these three series and find that the log-return series of Hang Seng

and Nikkei indices contain apparent autoregressive components. From the plot

of ACFs and PACFs of the three indices, we found Hang Seng and Nikkei indices

should have their linear components removed before model fitting since our model

only focuses on the residuals. After removing the autoregressive components, we

fit the residuals to our direct-VaR models. The linear part for Hang Seng index

is estimated to be

rt − 0.0381rt−1 + 0.0665rt−2 − 0.1124rt−3 + 0.061rt−4 = xt. (26)

Then we fit to xt a TGARCH direct-VaR model:

VaR2
t =





1.35× 10−5 + 0.127x2
t−1 + 0.712 VaR2

t−1, xt−1 6 1.126× 10−2,

1.42× 10−5 + 0.229x2
t−1 + 0.771 VaR2

t−1, xt−1 > 1.126× 10−2.

(27)

We use the last 500 residuals to check the performance of our model. We do not

update our model when new data points feed in and find that there are 21 points

outside the 5% VaR. This amounts to an empirical coverage of 4.2%. We also fit

to the xt a mixture GARCH direct-VaR model:

VaR2
t = zt(2.03× 10−4 + 0.141x2

t−1 + 0.671 VaR2
t−1)

+ (1− zt)(1.33× 10−5 + 0.213x2
t−1 + 0.692 VaR2

t−1). (28)
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The Bernoulli variable zt = 1 with probability 0.2895. Similar to TGARCH, the

out-sample checking shows that there are 29 points outside the 5% VaR. This

amounts to an empirical coverage of 5.8%.

The Nikkei index also shows a significant autoregressive component. The linear

component is estimated to be

rt + 0.0462rt−1 + 0.687rt−2 = xt. (29)

Fitting to the residuals xt a TGARCH direct-VaR model gives:

VaR2
t =





3.02× 10−5 + 1.90× 10−1x2
t−1

+8.08× 10−1 VaR2
t−1, xt−1 6 −5.43× 10−2,

6.02× 10−5 + 2.13× 10−1x2
t−1

+6.43× 10−1 VaR2
t−1, xt−1 > −5.43× 10−2,

(30)

and we find that there are 22 points lying outside the 5% VaR, about 4.4%

coverage. If we fit to the residuals xt a mixture-GARCH direct-VaR model, we

got,

VaR2
t = zt(4.127× 10−5 + 0.168x2

t−1 + 0.687 VaR2
t−1)

+ (1− zt)(4.067× 10−5 + 0.315x2
t−1 + 0.415 VaR2

t−1), (31)

where zt = 1 with probability 0.4129 and find that 23 observations lie outside the

5% VaR, about 4.6% empirical coverage.

The ACF of the Nasdaq does not show any apparent pattern. Therefore, we fit

to the log-return our TGARCH and mixture GARCH direct-VaR models directly.
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The TGARCH direct-VaR model is

VaR2
t =





1.36× 10−5 + 2.13× 10−1r2
t−1

+8.76× 10−1 VaR2
t−1, rt−1 6 −1.925× 10−3,

1.24× 10−5 + 1.791× 10−1r2
t−1

+7.32× 10−1 VaR2
t−1, rt−1 > −1.925× 10−3.

(32)

There are 24 points outside the 5% VaR which amount to a 4.8% coverage. The

mixture GARCH model for Nasdaq is

VaR2
t = zt(1.337× 10−5 + 0.2018r2

t−1 + 0.5279 VaR2
t−1)

+ (1− zt)(1.309× 10−5 + 0.1364r2
t−1 + 0.6183 VaR2

t−1), (33)

where zt = 1 with probability 0.4220. There are 27 points of the last 500 out-

sample lying outside the 5% VaR, about 5.4% empirical coverage.

For comparison purpose, we also fit some traditional VaR models for all these

series. These models are GARCH model with normal innovation, GARCH model

with student-t innovation, integrated GARCH (IGARCH) model with normal in-

novation, IGARCH model with student-t innovation and the popular RiskMetrics

method. We summarize the results in Table 2. From the table, in terms of cov-

erage accuracy, the mixture direct VaR models is among the best for two indices

(S&P 500 and Nikkei) and second best in the other two indices (HSI and Nasdaq).

The threshold direct VaR is the second best in two indices (HSI and Nikkei) but

is the best in the case of Nasdaq. The RiskMetrics is better than the mixture

direct VaR model in one index but is inferior in three other cases. The IGARCH
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model ties with the mixture direct VaR in one index (Nikkei) but performs not

as well in the other three. On the other hand, the GARCH-type models perform

the worst in all cases except that the GARCH with normal innovation performs

the second best in the Nasdaq case. Table 3 shows the ranks of the results in

Table 2. In the case of ties, the average of the respective ranks is used. The

smaller the sum of ranks the better is the performance. According to the sum of

ranks, it seems that the mixture direct VaR model (sum of ranks is 8.5) gives the

most stable and best performance in terms of coverage accuracy and it could be

a valuable toolkit for financial risk managers. The threshold direct VaR model

performs the second best (sum of ranks is 11.5) and can be another good choice

for risk management.

Risk managers also like to calculate the VaR at the 1% level. Table 4 shows

the 1 % results obtained by reestimating all the models at the 1% level. Table 5

shows the ranks of the results at the 1% level. From the table, in terms of

coverage accuracy, the mixture direct VaR models are still among the best for

two indices (S&P and HSI). The average performance of the mixture direct VaR

models according to the sum of the ranks is still superior to the other models.

Since the data points lying outside the 1% VaR are very few, missing one datum

point could change the accuracy dramatically. Therefore, in the 1% VaR case,

that the performance of the threshold direct VaR model is not outstanding does

not mean this model is not good. Note that ranks of the threshold direct VaR

model are stable, this model could still be a good choice for risk management.
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7 Conclusion

In this paper, we extended the CAViaR model of Engle and Manganelli [2004]

using a threshold or a mixture approach respectively. The quantile regression

method is used in the estimation for TGARCH and mixture-GARCH direct-VaR

models. A full modelling methodology is suggested in both the threshold and

mixture cases. From the results of the simulations and the post-sample prediction

results in the real-data studies, we find that these new extensions are potentially

useful. One advantage is that we can use the approaches to study the nonlinear

phenomenon due to positive and negative shocks in the financial market and the

performance of our model appears to be more stable than other methods.

Some econometricians have pointed out that VaR fails to satisfy the sub-

additive property and suggested using the expected shortfall (ES) as an alter-

native tool for risk measure and management. Artzner et al. [1997] defined ES

analytically:

Et(yt|yt < qt, θ). (34)

This is just a conditional expectation of the lower tail. Our method can be

extended to the estimation of ES. This will be our agenda for the next paper.
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Table 1: 5% Quantile Regression Results of Two Models

Mean of Loss greater

Model Parameter True Value Estimation(std. dev.) than VaR

a
(1)
0 0.2× 1.642 = 0.5279 0.5028(0.0456)

a
(1)
1 0.25× 1.642 = 0.6724 0.6802(0.0426)

TGARCH b
(1)
1 0.3 0.2820(0.0624)

(1,1;1,1) a
(2)
0 0.1× 1.642 = 0.2689 0.2438(0.0550)

Direct-VaR a
(2)
1 0.15× 1.642 = 0.4034 0.4112(0.0457)

b
(2)
1 0.4 0.3916(0.0678)

d 1 1.6946(0.8118)

γ 0.0 0.2217(0.1714) 72(4.8%)

a10 0.1× 1.642 = 0.2689 0.3729(0.0514)

Mixture a11 0.1× 1.642 = 0.2689 0.3122(0.0579)

-GARCH b11 0.4 0.3678(0.0714)

Direct a20 0.5× 1.642 = 1.3448 1.5723(0.0417)

-VaR a21 0.2× 1.642 = 0.5379 0.6012(0.0479)

b21 0.3 0.2785(0.0372)

π 0.3 0.2603(0.0819) 76(5.1%)
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Table 2: Results for some commonly used models for the 5 % VaR

GARCH GARCH(t) IGARCH IGARCH(t)

S&P 500 3.2% 2.8%(11.696) 4.0% 3.6%(10.684)

HSI 3.2% 3.4%(6.882) 3.4% 4.0%(6.127)

Nikkei 5.8% 6.0%(11.038) 4.6% 4.6%(8.977)

Nasdaq 5.4% 5.6%(12.853) 5.4% 5.6%(12.500)

RiskMetrics Threshold direct-VaR Mixture direct-VaR model

S&P 500 4.2% 6.2% 5.6%

HSI 5.6% 4.2% 5.8%

Nikkei 5.8% 4.4% 4.6%

Nasdaq 4.0% 4.8% 5.4%

Inside the parentheses are the degrees of freedom of the student-t distributions.
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Table 3: Ranks for some commonly used models for the 5% VaR

GARCH GARCH(t) IGARCH IGARCH(t)

S&P 500 6 7 3 5

HSI 7 5.5 5.5 4

Nikkei 5.5 7 2 2

Nasdaq 3 5.5 3 5.5

Sum 21.5 25 13.5 16.5

RiskMetrics Threshold direct-VaR Mixture direct-VaR model

S&P 500 2 4 1

HSI 1 2.5 2.5

Nikkei 5.5 4 2

Nasdaq 7 1 3

Sum 15.5 11.5 8.5
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Table 4: Results for some commonly used models for the 1% VaR

GARCH GARCH(t) IGARCH IGARCH(t)

S&P 500 0.60% 0.40%(11.696) 0.80% 0.80%(10.684)

HSI 0.60% 0.60%(6.882) 0.60% 0.80%(6.127)

Nikkei 1.60% 1.20%(11.038) 0.80% 1.20%(8.977)

Nasdaq 1.60% 1.00%(12.853) 1.00% 1.00%(12.500)

RiskMetrics Threshold direct-VaR Mixture direct-VaR

S&P 500 0.80% 1.20% 1.00%

HSI 1.20% 0.80% 1.00%

Nikkei 1.20% 0.80% 0.80%

Nasdaq 0.80% 0.80% 0.80%

Inside the parentheses are the degrees of freedom of the student-t distributions.
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Table 5: Ranks for some commonly used models for the 1% VaR

GARCH GARCH(t) IGARCH IGARCH(t)

S&P 500 6 7 3.5 3.5

HSI 6 6 6 3

Nikkei 7 3.5 3.5 3.5

Nasdaq 7 2 2 2

Sum 26 18.5 15 12

RiskMetrics Threshold direct-VaR Mixture direct-VaR

S&P 500 3.5 3.5 1

HSI 3 3 1

Nikkei 3.5 3.5 3.5

Nasdaq 5 5 5

Sum 15 15 10.5
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Figure 1: Plot of S&P 500 (Jan. 2, 1998 – Aug. 31, 2004). The upper panel is

the plot of the real series and the lower panel is the plot of the log-return series.
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Figure 2: Plot of Hang Seng Index (Jan. 2, 1997 — Dec. 31, 2003). The upper

panel is the plot of the real series and the lower panel is the plot of the log-return

series.
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