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Abstract

The paper studies a discrete counterpart of Gerber et al (2006). The surplus

of an insurance company (before dividends) is modeled as a time-homogeneous

Markov chain with possible changes of size +1, 0,−1,−2,−3, · · ·. If a barrier

strategy is applied for paying dividends, it is shown that the dividends-penalty

identity holds. The identity expresses the expected present value of a penalty at

ruin in terms of the expected discounted dividends until ruin and the expected

present value of the penalty at ruin if no dividends are paid. For the problem

of maximizing the difference between the expected discounted dividends until

ruin and the expected present value of the penalty at ruin, barrier strategies

play a prominent role. In some cases an optimal dividend barrier exists. The

paper discusses in detail the special case where the distribution of the change in
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surplus does not depend on the current surplus (so that in the absence of div-

idends the surplus process has independent increments). A closed form result

for zero initial surplus is given, and it is shown how the relevant quantities can

be calculated recursively. Finally, it is shown how optimal dividend strategies

can be determined; typically, they are band strategies.
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band strategy, Lundberg equation.
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1 Introduction

Traditionally, actuaries have been primarily concerned with the valuation of insurance

and pension liabilities and the solvency of such financial systems. In the classical

actuarial model for the probability of ruin, the surplus of an insurance company can

increase without bounds. As this is unrealistic, de Finetti (1957) suggested that

other considerations, such as dividend payments, should play a role. Specifically, he

considered a discrete-time model, in which the periodic gains of a company are +1 or

−1. He sought the dividend-payment strategy that maximizes the expectation of the

discounted dividends paid to the shareholders of the company. He found that such a

dividend-payment strategy must be a barrier strategy, and showed how the optimal

level of the barrier can be determined.

Within a few years after the publication of de Finetti’s paper and apparently inde-

pendent of it, several economists and operations researchers (Shubik and Thompson

1959, Miyasawa 1962, Takeuchi 1962) also became interested in the problem and

some of its extensions. De Finetti’s model has now been refined and generalized
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in many directions. Two excellent, recent surveys on dividend-payment strategies

are Albrecher and Thonhauser (2009) and Avanzi (2009). Discussions on optimal

dividend-payment strategies can be found in actuarial books such as Seal (1969),

Bühlmann (1970), Borch (1974, 1990), Gerber (1979), Dickson (2005), and Schmidli

(2008).

In this paper, we return to the doubly discrete framework of de Finetti. We

assume that the surplus process is a time-homogeneous Markov chain. Following

Gerber et al. (2006), we also assume that the surplus process is skip-free upward; in

particular, we assume that only changes of size +1, 0,−1,−2,−3, · · · from one period

to the next are possible. (This is the case if the claims are multiples of the periodic

premium; after a change of monetary units, the periodic premium is 1.) Then we show

that the dividends-penalty identity of Gerber et al. (2006) also holds in this model.

The identity expresses the expected present value of a penalty at ruin, if dividends

are paid, in terms of the expected discounted dividends until ruin and the expected

present value of the penalty at ruin, if no dividends are ever paid. Moreover, the

dividends-penalty identity is crucial for the analysis of the optimal dividend barrier

(which does not always exist).

The second half of the paper specializes to the case where the distribution of

the change in surplus does not depend on the current surplus. (This is the discrete

counterpart of the classical compound Poisson model.) It is shown that the expected

discounted penalty at ruin, if no dividends are paid, can be calculated efficiently by

recursion. A key quantity for the recursion algorithm is Ak, the expectation of the

discounted value of a payment of 1 payable at the time of ruin, provided that the

deficit at ruin is k. Several equivalent formulas for Ak are derived. The roots of a

version of the Lundberg fundamental equation play an important role. For zero initial

surplus, there is a closed-form formula for the expected discounted penalty at ruin.

3



The last section discusses the problem of maximizing the expected difference

between the discounted dividends until ruin and the discounted penalty at ruin, if

arbitrary dividend-payment strategies are admitted. The problem is a special case

of discrete discounted dynamic programming. In general, the optimal strategy is a

band strategy.

In comparison to the continuous model, the discrete model has several important

merits; see also Li et al. (2009). The mathematics is more elementary and accessible

to a broader readership. Recursive calculations are easy to implement. The discrete

model can be used as an approximation to the continuous model, whereas the converse

is not true. Finally, important concepts can be readily illustrated. For example, as

we pointed out earlier, the optimal dividend-payment strategy in de Finetti’s model

is always a barrier strategy. However, if the periodic gains of the surplus process

change from {+1,−1} to {+1,−2}, then the optimal strategy is not necessarily a

barrier strategy. Such an example, originally due to Morrill (1966), will be presented

in Section 6 of the paper.

2 Model

The model is doubly discrete. The surplus of a company is considered only at times

0, 1, 2, · · · , and the surplus is assumed to be integer-valued at any time. It is assumed

that the surplus is a time-homogeneous Markov chain, and that only changes of size

+1, 0,−1,−2,−3, · · · from one period to the next are possible. Ruin is the event that

the surplus becomes negative sometime in the future.

For non-negative integers u1 ≤ u2, we define C(u1, u2). Given an initial surplus

u1, it is the expected present value (with respect to a constant interest rate) of a

contingent payment of 1 at the time when the surplus reaches the level u2, provided
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that ruin has not occurred in the meantime. If the surplus process is to go from 0

to u2, it must pass through u1; it follows from this and the time-homogeneity of the

Markov chain that

C(0, u2) = C(0, u1)C(u1, u2).

Hence,

C(u1, u2) =
C(0, u2)

C(0, u1)
.

Thus, if one sets h(u) = 1/C(0, u), or any positive multiple of that, we have

C(u1, u2) =
h(u1)

h(u2)
. (2.1)

In the context of Lévy processes, the function h(u) is known as a scale function.

3 Dividends

Until possible ruin, the company can pay dividends to its shareholders. As a con-

sequence, the surplus is modified. We assume the transition probabilities are not

affected, that is, they depend on the current value of the modified surplus.

We assume that dividends are paid according to a barrier strategy with positive

parameter b, an integer. Whenever the surplus is above b, the excess is paid as a

dividend. Let V (u; b) denote the expected present value of the dividends until ruin,

if u is the initial surplus. Obviously,

V (u; b) = u− b+ V (b; b), u = b+ 1, b+ 2, · · · .

For u ≤ b, the surplus must first reach the level b+ 1 before any dividends are paid.

Hence,

V (u; b) = C(u, b+ 1)V (b+ 1; b)
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for u = 0, 1, · · · , b. From this and (2.1) we gather that

V (u; b) = K(b)h(u),

where K(b) does not depend on u. Taking the forward difference with respect to u

and setting u = b yields

1 = K(b)[h(b+ 1)− h(b)] = K(b)∆h(b).

It follows that

V (u; b) =
h(u)

∆h(b)
, u = 0, 1, · · · , b. (3.1)

This result is known as the factorization formula. Gerber (1972, formula 3.4) has

derived (3.1) with the additional assumption that the probability distribution of the

change in surplus does not depend on the current surplus. If the change in surplus

can only be +1 and −1 and if the distribution does not depend on the current surplus,

then (3.1) can be found in de Finetti (1957) and Shubik and Thompson (1959); Morrill

(1966) has derived the result with −1 generalized to −n.

4 The dividends-penalty identity

We assume that at the time of ruin, a penalty is due. Such a payment is a given

function of the deficit at ruin, and this function is the same for all dividend strategies.

The function φ(u) is defined as the expected discounted penalty at ruin, if no

dividends are paid (the penalty is discounted with the same interest rate as the

dividends). It is considered as a function of the initial surplus u. Similarly, φ(u; b)

denotes the expected discounted penalty at ruin, if dividends are paid according to

the barrier strategy with parameter b.
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We shall prove the formula

φ(u; b) = φ(u)−∆φ(b)·V (u; b), u = 0, 1, · · · , b, (4.1)

which is known as the dividends-penalty identity. It is a discrete counterpart of

formula (9) in Gerber et al. (2006) which was obtained by a similar probabilistic

reasoning. Important special cases of formula (9) in Gerber et al. (2006) are formulas

(3.5) in Lin et al. (2003) and (3.3) in Yuen et al. (2007), which were obtained by

analytical methods.

If the surplus does not reach the level b + 1 before ruin, the penalties with and

without dividends are the same. Hence,

φ(u; b)− φ(u) = C(u, b+ 1)[φ(b+ 1; b)− φ(b+ 1)]

= h(u)
φ(b+ 1; b)− φ(b+ 1)

h(b+ 1)
(4.2)

by (2.1). Obviously φ(b+ 1; b) = φ(b; b). So, if we take the forward difference of (4.2)

with respect to u and set u = b, we see that

−∆φ(b) = ∆h(b)
φ(b+ 1; b)− φ(b+ 1)

h(b+ 1)
. (4.3)

Combining (4.2) and (4.3), we obtain

φ(u; b)− φ(u) = −∆φ(b)
h(u)

∆h(b)
.

From this and (3.1), formula (4.1) follows.

5 The optimal dividend barrier

It is natural to choose b which maximizes

W (u; b) = V (u; b)− φ(u; b). (5.1)
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A priori, it is not clear whether there is an optimal value of b that is independent of

u. For u ≤ b, we have

W (u; b) = V (u; b)− φ(u) + ∆φ(b)V (u; b)

=
1 + ∆φ(b)

∆h(b)
h(u)− φ(u) (5.2)

by (4.1) and (3.1). Hence if u ≤ b the problem is to maximize the function

1 + ∆φ(b)

∆h(b)
. (5.3)

For u < b, we have

W (u; b+ 1)−W (u; b) = h(u)∆{1 + ∆φ(b)

∆h(b)
}. (5.4)

On the other hand, for u ≥ b, we have

W (u; b) = u− b+W (b; b)

= u− b+ h(b)
1 + ∆φ(b)

∆h(b)
− φ(b) (5.5)

by (5.2) with u = b. Applying the product rule for forward differences, we see after

simplification that

W (u; b+ 1)−W (u; b) = h(b+ 1)∆{1 + ∆φ(b)

∆h(b)
} (5.6)

for u > b. A comparison of (5.4) and (5.6) shows that the sign of W (u; b+1)−W (u; b)

does not depend on u. From this we gather that the local maxima of (5.2) and (5.5)

are attained at the same values of b, that is, at the values of b for which (5.3) attains

a local maximum. Hence, in the case where there is only one maximum, there is

an optimal dividend barrier b∗ that is independent of u. If there is more than one

local maximum, it is possible that the global maximum of (5.2) and that of (5.5) are

attained at different values of b. This will be illustrated by the examples in the next

section.
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6 Compound binomial model

We consider the special case where the distribution of the change in surplus does

not depend on the current surplus; in other words, in the absence of dividends, the

surplus process would have independent and stationary increments. Let pi denote

the probability for a one-period change in surplus of amount i, i = +1, 0,−1,−2, · · ·

We assume that p1, which is the probability of no claim in one period, is positive,

and that p1 + p0 < 1 (otherwise the problem would not be interesting). Let v < 1

denote the one-period discount factor. By conditioning on the change in surplus in

the first period, we see that

V (u; b) = v
1∑

i=−u
piV (u+ i; b),

u = 0, 1, · · · , b − 1. Because of this and (3.1), and because b is arbitrary, it follows

that the scale function h satisfies the equation

h(u) = v
1∑

i=−u
pih(u+ i), (6.1)

u = 0, 1, 2, · · ·. Let Π(x) denote the penalty that is due if the negative surplus at

ruin is x. Then the function φ(u) satisfies the equation

φ(u) = v

[
1∑

i=−u
piφ(u+ i) +

−u−1∑
i=−∞

piΠ(u+ i)

]
, (6.2)

u = 0, 1, 2, · · ·.

The functions h and φ can be calculated recursively by rewriting (6.1) and (6.2)

as

h(u+ 1) =
1

p1

[
h(u)

v
−

0∑
i=−u

pih(u+ i)

]
(6.3)

and

φ(u+ 1) =
1

p1

[
φ(u)

v
−

0∑
i=−u

piφ(u+ i)−
−u−1∑
i=−∞

piΠ(u+ i)

]
, (6.4)
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respectively. To apply (6.3), we note that h(0) is an arbitrary positive constant and

we set

h(0) = 1. (6.5)

For applying (6.4), we need the value of φ(0). Fortunately, it has a closed-form

expression. For initial surplus u = 0, let Ak denote the expectation of the discounted

value of a payment of 1 payable at the time of ruin, provided that the deficit at ruin is

k. The symbol Ak is motivated by the international actuarial notation for net single

premiums for insurances of unit benefit amount. Obviously,

φ(0) =
∞∑
k=1

AkΠ(−k). (6.6)

We shall show in Section 7 that

Ak =
rk−1
0

p1

−k∑
i=−∞

pir
i
0, k = 1, 2, 3, · · · . (6.7)

Here, r0 is a particular solution of the following equation for r,

v
1∑

i=−∞
pir

i = 1; (6.8)

it is the solution greater than 1/v (To see the existence and uniqueness of r0, note

that the expression on the left hand side of (6.8) is less than 1 for r = 1/v, tends

to ∞ for r → ∞, and has a positive second derivative.) Equation (6.8) is a form of

Lundberg’s Fundamental Equation. We note that formula (6.7) is essentially formula

(5.1) in Cheng et al. (2000), where ruin is defined slightly differently; both formulas

can be viewed as discrete counterparts of formula (2.30) in Gerber and Shiu (1998),

g(x) =
λ

c

∫ ∞
x

e−ρ(y−x)p(y)dy, (6.9)

where eρ plays the role of r0. Formula (6.7) can be obtained from the last formula

on page 6 of Li and Garrido (2002) and also from m∗(0) on page 273 of Pavlova and

Willmot (2004). Section 7 will present an independent and more accessible proof

which seems to have merits on its own.
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The recursive methods are easy to implement. We consider three examples.

Example 1. Suppose p1 = 0.5, p0 = 0.2, p−1 = 0.2 and p−2 = 0.1. We consider

three different discount factors and five penalty functions of the form Π(x) = K|x|.

In all fifteen cases, it is found that expression (5.3) has a unique maximum. Hence

W (u; b) is maximized at b = b∗, independently of u. The optimal dividend barriers

b∗ are shown in Table 1. We note that b∗ is an increasing function of both K and the

discount factor v.

Table 1: The influence of v and Π on b∗

v K = 0 K = 1 K = 2 K = 5 K = 10

0.95 0 1 2 3 5

0.99 6 7 7 8 10

0.999 29 29 29 29 30

Example 2. Morrill’s (1966) example 2 is for p1 = 12/13, p−2 = 1/13 and

v = 65/72. There is no penalty at ruin. According to (6.3), h can be calculated

recursively by the formula

h(u+ 1) =
6

5
h(u)− 1

12
h(u− 2),

u = 0, 1, 2, · · · . It is found that expression (5.3) with φ = 0 has two local maxima, at

b = 0 and b = 2. A glance at Table 2 shows that for u = 0, 1 the expression V (u; b) is

maximized by b = 0 and that for all other values of u, V (u; b) is maximized by b = 2.

We consider now the same example, but with a penalty function Π(x) = |x|. Then φ

is determined recursively by the formula

φ(u+ 1) =
6

5
φ(u)− 1

12
φ(u− 2),

u = 0, 1, 2, · · · . Here, φ(0) = A1 + 2A2 with

A1 =
1

12
r−2
0 , A2 =

1

12
r−1
0 ,
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where r0 = 1.13535. It is found that (5.3) has two local maxima, at b = 0 and b = 2.

However, Table 3 shows that W (u; b) is maximized by b = 2 for any value of u. Hence

b∗ = 2 is the optimal dividend barrier.

Table 2: The values of V (u; b)

b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7

u = 0 5 4.167 4.886 4.368 3.926 3.465 3.056 2.692

u = 1 6 5 5.863 5.242 4.711 4.158 3.667 3.230

u = 2 7 6 7.036 6.290 5.653 4.990 4.400 3.876

u = 3 8 7 8.036 7.184 6.457 5.699 5.026 4.427

Table 3: The values of W (u; b) when Π(x) = |x|

b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7

u = 0 4.167 3.681 4.609 4.132 3.709 3.252 2.844 2.480

u = 1 5.167 4.583 5.698 5.125 4.618 4.069 3.579 3.143

u = 2 6.167 5.583 6.921 6.233 5.625 4.966 4.379 3.855

u = 3 7.167 6.583 7.921 7.135 6.440 5.688 5.017 4.419

Example 3. Suppose p1 = 0.75, p0 = 0.05, p−1 = 0.1 and p−6 = 0.1, v = 0.999,

and no penalty at ruin. It is found that expression (5.3) with φ = 0 has three local

maxima, at b = 1, 7, 38. In Table 4, the values of V (0; b), V (1; b) and V (50; b) around

the local maxima are exhibited. Thus V (0; b) and V (1; b) are maximized at b = 1,

but V (50; b) is maximized at b = 38. Hence, in this example, an optimal dividend

barrier does not exist and the optimal optimal dividend strategy cannot be a barrier

strategy.
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Table 4: The values of V (u; b)

u b = 1 b = 2 b = 6 b = 7 b = 8 b = 37 b = 38 b = 39

0 4.8428 4.4228 3.8031 3.9710 3.8952 4.7536 4.7556 4.7555

1 6.1407 5.6082 4.8223 5.0352 4.9391 6.0276 6.0302 6.0301

50 55.1407 54.5214 53.8961 54.3772 54.1410 59.4013 59.4212 59.4204

Remark 1. In view of (6.8), an alternative expression for (6.7) is

Ak =
rk−1
0

p1

(
1

v
−

1∑
i=−k+1

pir
i
0

)
, k = 1, 2, 3, · · · . (6.10)

From (6.10) or (6.7) it follows that

Ak+1 = r0Ak −
p−k
p1

, k = 1, 2, 3, · · · . (6.11)

Thus the Ak’s can be calculated recursively, starting with

A1 =
1

p1

(
1

v
− p0 − p1r0

)
. (6.12)

Remark 2. By conditioning on the first time when the surplus falls below the

initial surplus and on the amount by which it falls below, we see that

φ(u) =
u∑
k=1

φ(u− k)Ak +
∞∑

k=u+1

Π(u− k)Ak, u = 1, 2, 3, · · · . (6.13)

This equation (which is a discrete renewal equation) provides another recursive method,

alternative to (6.4), for calculating φ(u). Both methods start with (6.6). Equation

(6.13) is a discrete counterpart of (2.34) in Gerber and Shiu (1998).

Remark 3. Information about the asymptotic behavior of the function φ(u)

can be obtained as follows. The second derivative of the expression on the left-

hand side of (6.8) is positive for r > 0. It follows that equation (6.8) has at most

two positive solutions. One is r0. Under some mild technical conditions on the

13



asymptotic behavior of the pk’s, equation (6.8) has another positive solution r1 < 1.

With a martingale argument that will be explained in Remark 8 in the next section,

one can show that

∞∑
k=1

r−k1 Ak = 1.

(See also (7.11) in the next section.) Hence, the defective renewal equation (6.13)

for the function φ(u) can be turned into a proper renewal equation for the function

φ(u)r−u1 . From this, we obtain the asymptotic result that φ(u)r−u1 tends to a positive

constant for u→∞.

Remark 4. Let I denote the identity operator and E the forward shift operator.

Then, (6.7) is

Ak =
1

p1r0

∞∑
j=0

r−j0 p−k−j

=
1

p1r0

∞∑
j=0

r−j0 E−jp−k

=
1

p1

(r0I − E−1)−1p−k (6.14)

since r0 > 1. In functional analysis, for a given linear operator S, the function

R(z;S) = (zI − S)−1

is called the resolvent function of S, or simply, the resolvent of S. Thus,

Ak =
1

p1

R(r0;E
−1)p−k.

It has been pointed out in Gerber and Shiu (2005) that (6.9) can be expressed as

g(x) =
λ

c
R(ρ;D)p(x),

where D is the differentiation operator, and that the operator Tρ in Dickson and Hipp

(2001) is the resolvent R(ρ;D). In Albrecher et al. (2010), R(ρ;D) is denoted as Bρ.
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The operator Tr in Li (2005) and Li et al. (2009) is R(1; rE). A paper related to the

Dickson-Hipp operator is Redheffer (1966).

Remark 5. In some cases, we can evaluate (6.14) by the method of power shift

(Brand, 1966, Section 90). For example, suppose that

p−k = (1− p1)fNB(k), k = 0, 1, 2, · · · , (6.15)

where

fNB(k) =

 n− 1 + k

n− 1

 (1− θ)nθk, k = 0, 1, 2, · · · , (6.16)

with n being a fixed positive integer. Then, (6.14) is

Ak =
1− p1

p1

(r0I − E)−1fNB(k), k = 1, 2, 3, · · · . (6.17)

By the power shift formula,

h(E)[g(k)θk] = θkh(θE)g(k),

we have

(r0I − E)−1


 n− 1 + k

n− 1

 θk


= θk(r0I − θE)−1

 n− 1 + k

n− 1



=
θk

r0 − θ

(
I − θ

r0 − θ
∆
)−1

 n− 1 + k

n− 1



=
θk

r0 − θ

[
I +

θ

r0 − θ
∆ + (

θ

r0 − θ
)2∆2 + · · ·

] n− 1 + k

n− 1



= θk−1
n∑
j=1

(
θ

r0 − θ

)j  n− 1 + k

n− j

 . (6.18)
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It follows from (6.17), (6.16) and (6.18) that

Ak =
1− p1

p1

(1− θ)nθk−1
n∑
j=1

(
θ

r0 − θ

)j  n− 1 + k

n− j

 , k = 1, 2, 3, · · · .

By linearity, this method to evaluate Ak remains applicable even if the function fNB

in (6.15) is replaced by a linear combination of such functions.

7 Formula (6.7)

In this section, we assume that only changes of the surplus of +1, 0, 1, 2, · · · ,−m are

possible. That is, the largest possible negative change of the surplus in each period

is m (thus m = 2 in Examples 1 and 2, and m = 6 in Example 3). Clearly, it suffices

to prove (6.7) under this assumption. Also, in this special case, the functions h(u)

and φ(u) can be obtained in a transparent fashion. First, it is judicious to extend

their domain of definition to u = −1,−2, · · · ,−m by setting

h(u) = 0 for u = −1,−2, · · · ,−m, (7.1)

and

φ(u) = Π(u) for u = −1,−2, · · · ,−m. (7.2)

Then, equations (6.1) and (6.2) can be written as

h(u) = v
1∑

j=−m
pjh(u+ j) (7.3)

and

φ(u) = v
1∑

j=−m
pjφ(u+ j), (7.4)

for u = 0, 1, 2, · · ·. The characteristic polynomial of these homogeneous difference

equations is

P (r) = rm − v
1∑

j=−m
pjr

m+j. (7.5)
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Because |P (r) − rm| < 1 for |r| = 1, it follows from Rouché’s Theorem that P (r)

has exactly m zeros, r1, r2, · · · , rm, inside the unit circle. Typically, the zeros are

distinct, and we make this assumption temporarily. Also, note that the remaining

zero r0 > 1/v has already been introduced in Section 6. Now, the general solutions

of (7.3) and (7.4) are of the form

h(u) =
m∑
k=0

Ckr
u
k

and

φ(u) =
m∑
k=0

Dkr
u
k . (7.6)

The boundary conditions (6.5) and (7.1) yield a system of m+ 1 linear equations for

the coefficients C0, C1, · · · , Cm:

C0 + C1 + · · ·+ Cm = 1,
m∑
k=0

Ckr
x
k = 0, x = −1,−2, · · · ,−m. (7.7)

As for the function φ(u), we note that D0 = 0 because φ(u) → 0 for u → ∞. The

boundary conditions (7.2) yield a system of m linear equations

m∑
k=1

Dkr
x
k = Π(x), x = −1,−2, · · · ,−m, (7.8)

from which D1, D2, · · · , Dm can be determined. The coefficient matrices of both (7.7)

and (7.8) are Vandermonde matrices and therefore invertible as the rk’s are assumed

to be distinct. Examples solving (7.8) with v = 1 can be found in Liu and Guo

(2006).

Our next goal is to show that the Ak’s satisfy a system of m linear equations.

For this, it is convenient to use matrix notation. Let R be the m ×m matrix with

element r−jk in row k and column j, and let

D = (D1, D2, · · · , Dm)
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and

Π = (Π(−1),Π(−2), · · · ,Π(−m))

be two m-dimensional row vectors. Then, (7.8) states that

DR = Π,

or

D = ΠR−1.

Because of (7.6),

φ(0) =
m∑
k=1

Dk = D1 = ΠR−11, (7.9)

where 1 is the m-dimensional column vector with all entries being 1. From (7.9) and

(6.6), we see that

R−11 = A, (7.10)

where

A = (A1, A2, · · · , Am)T .

It follows from (7.10) that

RA = 1,

or

m∑
k=1

r−kj Ak = 1, j = 1, 2, · · · ,m. (7.11)

This is a system of m linear equations for determining A1, A2, · · · , Am.

To derive (6.7), consider the generating function

G(y) =
m∑
k=1

Aky
k. (7.12)

18



Then, (7.11) means that

G(1/rn) = 1, n = 1, 2, · · · ,m. (7.13)

Since the polynomial G(y) vanishes at y = 0, it can be written as

G(y) = 1−
m∏
n=1

(1− rny). (7.14)

Because r0, r1, · · · , rm are the zeros of P (r), we have

P (r) = −vp1(r − r0)
m∏
n=1

(r − rn)

= −vp1(r − r0)rm[1−G(1/r)]

= −vp1(r − r0)(rm −
m∑
k=1

Akr
m−k)

= −vp1[r
m+1 − (r0 + A1)r

m +
m−1∑
k=1

(r0Ak − Ak+1)r
m−k + r0Am]. (7.15)

Comparing (7.15) with (7.5) yields (m+ 1) equations:

1− vp0 = vp1(r0 + A1), (7.16)

vp−k = vp1(r0Ak − Ak+1), k = 1, 2, · · · ,m− 1, (7.17)

vp−m = vp1r0Am. (7.18)

Note that (7.16) and (7.17) are equivalent to (6.12) and (6.11), respectively. Clearly,

these equations hold even if some of the rk’s coincide. To solve for the Ak’s, we

rewrite formulas (7.17) and (7.18) as

r
−(j+1)
0 p−j = p1(r

−j
0 Aj − r−(j+1)

0 Aj+1), j = 1, 2, · · · ,m− 1, (7.19)

r
−(m+1)
0 p−m = p1r

−m
0 Am. (7.20)

By summing (7.19) from j = k to j = m− 1, adding the resulting equation to (7.20),

and changing j to −j, we obtain

−k∑
j=−m

rj−1
0 pj = p1r

−k
0 Ak, k = 1, 2, · · · ,m, (7.21)
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from which (6.7) follows.

Remark 6. In deriving (7.21), we did not use (7.16), which can be rewritten as

−r−1
0

1

v
+ p1 + r−1

0 p0 = −p1r
−1
0 A1. (7.22)

By summing (7.19) from j = 1 to j = k − 1 and adding the resulting equation to

(7.22), we obtain

−r−1
0

1

v
+

k−1∑
j=−1

r
−(j+1)
0 p−j = −p1r

−k
0 Ak, k = 1, 2, 3, · · · ,

which is equivalent to (6.10).

Remark 7. There is a closed-form solution of the system of equations (7.11):

Ak = (−1)k−1σk(r1, r2, · · · , rm),

where σk(r1, r2, · · · , rm) is the elementary symmetric polynomial of degree k in r1,

r2, · · ·, rm. This result is obtained by expanding the product in (7.14) and then

comparing with (7.12). Hence it holds for arbitrary rk’s.

Remark 8. An alternative proof of (7.11) uses martingales. Consider a stochastic

process of the form {vtrU(t); t ≥ 0}, where U(t) is the surplus (in the model without

dividends) at time t. This process is a martingale, provided that r is a zero of P (r).

In particular, for j = 1, 2, · · · ,m, the process {vtrU(t)
j ; 0 ≤ t < T} is a bounded

martingale, where T is the time of ruin. If we start at U(0) = 0, stop it at time T ,

and use the optional sampling theorem, we obtain (7.11).

Remark 9. Applying (7.2) to (6.13) yields

φ(u) =
m∑
k=1

φ(u− k)Ak, (7.23)

which should be compared with (7.4). With the function G defined by (7.12), the

characteristic equation of (7.23) is

1 = G(1/r). (7.24)
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Thus, φ(u) is a linear combination of the m roots of (7.24), each raised to the power

u. To reconcile this result with (7.6), we can use (7.13).

8 Remarks on optimal dividend strategies

So far, our discussion focussed on barrier strategies. We now consider the more general

problem of maximizing the expected difference between the discounted dividends

until ruin and the discounted penalty at ruin, if arbitrary dividend strategies are

admitted. For each initial surplus u ≥ 0, let W (u) denote the maximal value of

the expected difference. A dividend strategy is optimal, if the resulting expected

difference is W (u) for each u ≥ 0. The problem of finding W (u) and an optimal

dividend strategy is a special case of discrete discounted dynamic programming. For

an excellent introduction to this topic, the reader is referred to the first three sections

of Blackwell (1962). In particular, it is shown that the search for optimal strategies

can be limited to stationary strategies, that is, strategies where the decision at any

time depends only on the state of the system at that time.

If the initial surplus is u > 0, an option is to pay an immediate dividend of

1 and to continue with a new initial surplus of u − 1. It follows that W (u) is at

least W (u − 1) + 1. If the function W (u) is known, an optimal dividend strategy

is readily obtained as follows: Let u be the current surplus, no dividend is paid if

W (u) > W (u− 1) + 1, and a dividend of amount

max{d |W (u− d) = W (u)− d} (8.1)

is paid if W (u) = W (u− 1) + 1. Such an optimal strategy is a band strategy. In some

cases, it is reduced to a barrier strategy.

The maximal value function, W (u), can be obtained by Bellman’s recursive algo-
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rithm. To explain it, we shall again assume the compound binomial model that was

considered in Section 6. We choose a function w(u), set W1(u) = w(u), and calculate

W2(u), W3(u), · · · recursively according to the formula

Wn+1(u) = max
d=0,1,···,u

{
d+ v

[ 1∑
j=d−u

pjWn(u− d+ j)−
d−u−1∑
j=−∞

pjΠ(u− d+ j)
]}
.

(8.2)

Note that Wn(u) can be interpreted as the maximal expected difference of an n-period

“game”, with a terminal payoff of w(x) and x being the terminal surplus, if ruin has

not occurred by time n. Under fairly general conditions for the function w(u), Wn(u)

converges to W (u) for each u. Then, (8.2) becomes a functional equation for W (u),

W (u) = max
d=0,1,···,u

{
d+ v

[ 1∑
j=d−u

pjW (u− d+ j)−
d−u−1∑
j=−∞

pjΠ(u− d+ j)
]}
. (8.3)

This is a discrete counterpart of the Hamilton-Jacobi-Bellman equation.

If Wn+1(u− 1) is already known, we have to consider only d = 0 and 1 in (8.2).

Thus

Wn+1(u) = max
{
v
[ 1∑
j=−u

pjWn(u+ j)−
−u−1∑
j=−∞

pjΠ(u+ j)
]
, 1 +Wn+1(u− 1)

}
(8.4)

for u = 1, 2, 3, · · · . Thus (8.4) provides a doubly recursive method, starting with

Wn+1(0) = v[p0Wn(0) + p1Wn(1)].

In the limit, (8.4) gives rises to the equation

W (u) = max
{
v
[ 1∑
j=−u

pjW (u+ j)−
−u−1∑
j=−∞

pjΠ(u+ j)
]
, 1 +W (u− 1)

}
,

which is an alternative to (8.3).

When is there an optimal dividend strategy that is a barrier strategy? Clearly,

a necessary condition is the existence of an optimal dividend barrier b∗ which was
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discussed in Section 5. However, we believe that in general this condition is not

sufficient, and that W (u; b∗) = W (u) has to be verified in each case. For this purpose,

one sets W1(u) = W (u; b∗) and verifies that (8.2) leads to W2(u) = W (u; b∗). In other

words, one verifies that W (u; b∗) is a solution of (8.3). This condition has been verified

in each of the 15 cases considered in Example 1. Thus the 15 barrier strategies with

respective parameter b∗ are indeed optimal dividend strategies.

In the following, the maximal value function is denoted as V (u) in the special

case when Π = 0.

Example 4. For the model and assumptions of Example 2, Bellman’s recursive

algorithm was applied to obtain the maximal value functions V and W as limits. The

results are displayed in Table 5. From this and (8.1), the optimal dividend strategies

can be deduced. In the absence of a penalty, the optimal dividend strategy is the

following band strategy: Pay a dividend of 1 if u = 1, and u − 2 if u > 2, and no

dividend if u = 0 or 2. But, with the penalty at ruin, the barrier strategy with

parameter b∗ = 2 is optimal.

Table 5: The values of V (u) and W (u) when Π(x) = |x|

u 0 1 2 3 4 5 6 7

V (u) 5 6 7.083 8.083 9.083 10.083 11.083 12.083

W (u) 4.609 5.698 6.921 7.921 8.921 9.921 10.921 11.921

Example 5. For the model and assumptions of Example 3, Bellman’s recursive

algorithm was applied to obtain the maximal value function as a limit. Table 6

shows the values of V (u) for u = 0, 1, · · · , 39. For u ≥ 39, V (u) = V (38) +u−38. We

also notice that V (2) = V (1) + 1, and that in all other cases V (u + 1) > V (u) + 1.

According to (8.1), the optimal band strategy is as follows: if the current surplus is 2,

a dividend of 1 is paid. If it is u > 38, a dividend of u−38 is paid. For any other value
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of u, no dividend is paid. Comparing Tables 4 and 6, we see that V (u; 1) = V (u) for

u = 0, 1 and that V (50; 38) = 59.4212 is less than V (50) = V (38) + 12 = 59.4784.

Table 6: The values of V (u)

u 0 1 2 3 4 5 6 7

V (u) 4.8428 6.1407 7.1407 8.1487 9.3805 10.8079 12.4538 13.7046

u 8 9 10 11 12 13 14 15

V (u) 14.8982 16.1116 17.3566 18.6093 19.8413 21.0170 22.1769 23.3316

u 16 17 18 19 20 21 22 23

V (u) 24.4793 25.6148 26.7344 27.8384 28.9323 30.0175 31.0937 32.1606

u 24 25 26 27 28 29 30 31

V (u) 33.2186 34.2686 35.3116 36.3484 37.3793 38.4047 39.4252 40.4415

u 32 33 34 35 36 37 38 39

V (u) 41.4540 42.4633 43.4699 44.4742 45.4767 46.4780 47.4784 48.4784

Remark 10. If Wn(u) is known for u = 0, 1, · · · ,m, the recursive formula (8.2)

produces the values of Wn+1(u) for u = 0, 1, · · · ,m−1 only. Thus with each iteration,

the last component disappears. This poses a problem, if the convergence is slow,

which necessitates a large number of iterations. The problem can be solved with the

following technique. Choose m large enough so that we can be sure that W (u) =

W (u − 1) + 1, for all u ≥ m. Then apply (8.2) for u = 0, 1, · · · ,m − 1 and set

Wn+1(m) = Wn+1(m− 1) + 1.
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