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Filtering a Markov Modulated Random Measure

Robert J. Elliott, Tak Kuen Siu, and Hailiang Yang

Abstract—We develop a new exact filter when a hidden Markov
chain influences both the sizes and times of a marked point process.
An example would be an insurance claims process, where we as-
sume that both the stochastic intensity of the claim arrivals and the
distribution of the claim sizes depend on the states of an economy.
We also develop the robust filter-based and smoother-based EM
algorithms for the on-line recursive estimates of the unknown pa-
rameters in the Markov-modulated random measure. Our devel-
opment is in the framework of modern theory of stochastic pro-
cesses.

Index Terms—Insurance risk models, Markov-modulated
random measures, martingales, model uncertainty, reference
probability, robust EM algorithms.

I. INTRODUCTION

HE compound Poisson process is a standard, classical

model in ruin theory which is used to describe an insur-
ance claims process over a certain time horizon. The use of the
compound Poisson process for modelling insurance claims has
a natural interpretation. In particular, the number of claims over
a time horizon can be modelled as a Poisson process while the
amounts of individual claims can be modelled by a sequence of
positive random variables, independent of the number of claims.
One of the main reasons why the compound Poisson model is
so popular is that analytically tractable results for ruin theory
can be obtained. More specifically, some closed-form formulae
for ruin probabilities or analytical formulae for the upper and/or
lower bounds of ruin probabilities can be obtained. Besides the
compound Poisson process, other point processes have been
used to provide a more flexible and realistic way to describe in-
surance claims processes. For example, Mgller [18] introduced
amarked point process for an insurance claims process, in which
the arrivals of claims follow an inhomogeneous Poisson process
and claim amounts follow some time-dependent distributions.
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For more details on the use of point processes for modeling in-
surance claims, see, for example, [22] and [2]. For an excellent
account of point processes, interested readers may refer to the
monograph [5].

In recent years there has been considerable interest in the
applications of Markov-modulated point processes, such as
Markov-modulated compound Poisson processes, in ruin
theory. The history of Markov-modulated point processes
can be tracked back to the original work of Neuts [19] and
this term was formally coined in [20]. Reinhard [21] and
Asmussen [1] explored the applications of Markov-modu-
lated point processes to actuarial science, in particular, risk
theory. In the context of risk theory, the states of the Markov
chain underlying these models represent different economic
environments. The switching of the states of the economy
can be attributed to structural changes in (macro)-economic
conditions, changes in political regimes and business cycles,
etc. The states of the chain can also be interpreted as different
states of risk characteristics of policyholders. In practice, insur-
ance companies can observe individual claim sizes and claim
numbers over a given time period. However, the underlying
state of the economy, or the regime-switching process, is not
directly observable. The unobservability of the state introduces
model uncertainty, which is an important issue that needs
to be addressed in modern actuarial modeling. Most of the
literature about Markov-modulated point processes for risk
theory considers the situation that the chain only modulates the
intensity of claim arrivals. However, in practice, the stochastic
behavior of claim sizes may also depend on the state of the
economy. This situation is overlooked in the literature, but it
is certainly of practical importance and relevance. Indeed, a
risk model with both the stochastic intensity of claim arrivals
and the distribution of claims sizes provides a more flexible
and realistic way to describe the stochastic behavior of claims
and risk processes than one only having a Markov-modulated
intensity of claim arrivals. To build such a risk model, one needs
to lift the Markov-modulated point processes to a more general
process, namely, the Markov-modulated random measure. An
early formalism of modulated random measuress appeared in
[8]. For a more recent account on modulated random measures,
interested readers may refer to [9]. The classic monograph [15]
is a key reference of random measures and provides an excellent
and comprehensive account on the topic. Another issue that is
overlooked in some of the literature about Markov-modulated
point processes for risk theory is filtering and estimation of
the hidden state of the underlying Markov chain. This issue is
important for the practical implementation of risk models based
on Markov-modulated point processes.

In this paper we develop filters and smoothers for the state of a
hidden Markov chain, which influences both the jump times and
jump sizes of a random measure. Robust filters and smoothers
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for the Markov-modulated random measure are derived in the
form of linear ordinary differential equations (O.D.E.s). An ex-
ample would be an insurance claims process, where both the
stochastic intensity of the claim arrivals and the distribution of
the claim sizes depend on the hidden Markov chain whose states
represent different states of an economy. This provides a con-
venient way to estimate the hidden state of the economy based
on observed information about the number of claims and the
claim sizes. The filters and smoothers of the hidden states pro-
vide an appropriate method to select, or estimate, an insurance
risk model in the “mean-squared-error” sense. They also pro-
vide information about the underlying hidden economic states
generating the claims data. We also discuss the estimation of the
unknown parameters in the Markov-modulated random mea-
sure using the robust filter-based and smoother-based EM al-
gorithms. The development here is in the framework of modern
theory of stochastic processes and provides recursive estimates
of the unknown parameters. A simulation example is presented
to illustrate the implementation of the filters and the smoothers.

Bremaud [4] considered a filtering problem when a semi-
martingale modulates a marked point process. However, the
modified filtering and smoothing formulae for Markov chains
derived in this paper appear to be new. The model considered
here is also different from and certainly more general than those
considered in Elliott and Malcolm [12], [13]. In the papers by
Elliott and Malcolm [12], [13], the Markov chain only modu-
lates the rate of the Poisson process. Our paper establishes new
results for the case where the chain also influences the observed
size of the jumps of a marked point process, or random measure.
This result has not been obtained previously in the literature.
Zeng [23] obtained some results for filters associated with
an observed Poisson process. However, our results are more
general than and different from those in [23]. In a recent paper
by Elliott and Osakwe [14], a Markov-switching pure jump
process was considered which is similar to the process consid-
ered here, but the chain was supposed fully observed. Bayraktar
and Sezer [3] considered a Markov-modulated marked point
process where the hidden Markov chain modulates the rate and
the distribution of the jumps. However, the problem considered
and approach used in our current paper are different from those
in [3]. Their paper investigated the quickest detection problem
of a Markov-modulated marked point process. The novelty of
the current paper is that it is the first to develop the exact filter
when the hidden Markov chain influences both the rate and
size of the jumps of a random measure. We consider a situation
where a Markov chain modulates a random measure, which is
more general than the point processes considered in most of the
existing literature. Our work indicates that similar techniques,
such as Markovian regime-switching risk models, can be used
in economic modeling and signal processing.

This paper is structured as follows. In Section II, we present
the Markov-modulated random measure. Then we introduce a
reference probability space by a measure change. Section III
develops filters and smoothers for the hidden states of the
economy. We then derive robust filters and smoothers for
hidden states underlying the Markov-modulated random mea-
sure in the form of ordinary differential equations. Section IV
presents robust filter-based and smoother-based EM algorithms.
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A simulation example is given in Section V. The final section
summarizes the paper.

II. MODEL DYNAMICS AND CHANGE OF MEASURES

In this section we shall present a Markov-modulated random
measure for an insurance claims process. Mgller [18] consid-
ered a marked point process for an insurance risk process, where
the arrivals of claims follow an inhomogeneous Poisson process
and claim amounts follow some time-dependent distributions.
Here, we consider the situation when both the stochastic inten-
sity of claim arrivals and the distribution of claim sizes switch
over time according to a continuous-time, finite-state, hidden
Markov chain. The hidden Markov chain is the state process in
our model and its states represent different states of an economy.
Both claim times and claim sizes are observable. We also sup-
pose that the arrivals of claims and claim sizes are independent
conditional on information about the hidden Markov chain. We
shall first write the claims process in terms of a random mea-
sure with a Markov-switching compensator, as in [14]. To de-
rive filters and smoothers for the hidden states, it is more con-
venient to work under a reference probability measure instead
of the “real-world” probability measure under which the actual
dynamics of the observable and unobservable processes are de-
fined. We shall adopt the general Girsanov theorem for jump
processes to change probability measures from a reference mea-
sure to a real-world one.

Consider a complete probability space (€2, F,P), where
P is the “real-world” probability measure. We suppose that
(Q,F,P) is rich enough to model the randomness of the
observations process and the state process. We first de-
scribe the “real-world” dynamics under P. However, P will
be constructed from a “reference probability” PT under
which the marked point process has simpler dynamics. We
write 7 for the time index set [0,00) of the model. Let
X := {X;},cr denote a continuous-time, finite-state, hidden
Markov process, defined on (Q,F,P), with state space
S = {s1,59,...,55} C RE. The states of the hidden Markov
chain represent the hidden states of an economy. Without
loss of generality, we can take the state space of X to be
the set of unit vectors £ := {ey,ea,...,ex} C RE, where
ei = (0,...,1,...,0)T € RE with the “1” in the i** position,
and where y7 represents the transpose of a row vector ¥. This
is called the canonical representation of the state space of the
Markov chain X. Let A denote a constant rate matrix, or the
Q-matrix, of the Markov chain. Then, using the canonical
representation of the state space, the dynamics of the Markov
chain X have the following semi-martingale representation,
(see [11]):

t
X; = Xo + /AXSds—i—Mt. (1)
0

Here {M;},.r is an R* -valued martingale with respect to the
natural filtration generated by {X;}, .

Consider a Poisson process N := {N;},. on (Q,F,P),
whose stochastic intensity is
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K

= (A,Xt> = Z<A7ei>l{xt=€i}'

i=1

2

Here A := (A1, Aa,.. .,
k=12, K.

For each t € 7, N; will represent the number of claims over
the time interval [0, ¢].

Consider right-continuous, complete versions of the filtra-
tions

Ax) € RE and A\, > 0, for each

F¥={F ey Fio=o{Xu|ue(0,d]},
FN .= {}—tN}teT? FN = 6 {N,|u € [0,#]},
G :={Gi}ter, Gi:=F VF .

Here F¥ is observable while F~ is unobservable.
Then the Doob-Meyer decomposition for N is, (see, for ex-
ample, [13])

t

0

3)

where V' := {V;},. is a (G, P)-martingale.

Let Z := {Z;},cr denote a real-valued, Markov-modulated,
random jump process under the real-world probability P. If
AZ, = Z, — Z,_, we can write

Zi=Y AZ, Zy=0, P-as
0<u<t

“4)

Note that the state space of random times of claim arrivals 7 is
[0, o). The state space of the jump sizes is Z := (—o00, 00). Our
results can be modified so they are true for jumps with values
in a general measurable space. For modeling insurance claims,
we have in mind that the jumps are always positive. Suppose X’
is the product space 7 x Z and 7(-, -) is a random measure on
X, which selects the random times of claim arrivals and random
claim sizes y := Z,, — Z,—. More rigorously, the random mea-
sure should be written as a family {y(-, -, w)|w € Q} of mea-
sures on X. To simplify the notation, we suppress the notation
w and write (-, -) for ¥(+, -, w). Note thaty := Z,, — Z,_ =0
if no claim occurs at time u; otherwise, it is positive. Then the
process Z can be written as

oo

tho/_/ yy(dy, du).

oo

®)

Here +y is a sum of random delta functions

Ydy,dt) =" by, (dy)br, (dt)

k>0

where 8, (+) is a Dirac delta function, or a point mass, at the point
Z.
Here T}, is the random time of the k" claim and Y7, is the
random jump size of the process Z at the random time 7},.
Then, for suitable integrands g : (2 X (—o0, 00) x [0, 00)) —
R
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t oo
/ / g(w7 Y, U)V(dyv du) = Z g9 (w7 YTk ) Tk) : (6)
0 —oo Ty <t
In terms of the random measure (-, )
t' oo
Ne= [ [tdyan), ter. )
0 oo

The statistical properties of Z under P are determined by its
compensator. In fact we wish to consider a Markov-modulated
compensator for Z under the real-world probability P.

First, foreach k = 1,2,..., K, write fx(y) for a probability
density function of the random claimssize Y := Z,, — Z,,_ when
X.u— = k. The random times of claim arrivals and the random
claim sizes are assumed to be independent conditional on the
hidden states X . Now, consider right-continuous, complete ver-
sions of the filtrations

FZ .= {ftZ}teT, FE =0 {Z,u€0,t]},
G5:{gt}teT> Gt izftZV]:tX
where FZ is observable.

Then, the Markov-switching compensator of the random
measure y(dy, du) under P is

K
v(dy, dulX,,—) :=> (Xu_,ex) \efr(y)dydu.  (8)
k=1
Consequently, under P
t oo
M, = Zt—/ / yv(dy, du| X, )
0 —oo
t oo
= [ [ vty = vidy. dufx,-)
0 —oo
t oo
= / / yy(dy, du)
0 —oo
K t oo
-5 [auttucend | [ uhitdy | du )
k=17} s

is a (G, P)-local martingale.

Note that M := {Mt}t <7 is the compensated Markov-mod-
ulated random measure under P.

To construct the process Z with compensator given by (8) we,
in fact, “start again” with a “reference probability” PT under
which the observation process Z does not depend on the chain.
The main purpose of introducing the reference probability mea-
sure PT is to facilitate the derivation of the Zakai forms of the
filtering and smoothing equations governing the evolution of
the filtered and smoothed estimates of the hidden state of the
chain over time. This technique based on a reference proba-
bility measure plays an important role in the filtering literature
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and was discussed in [11]. Here suppose we have a reference
probability measure Pt under which the process Z is a marked
point process with unit intensity for the jump times and a den-
sity function for the jump sizes f(y), with f(y) > 0, which is
independent of the hidden state X . That is, we assume that the
compensator ! of 4 under P is:

f(y)dydu.

Then, the compensated process M T := {M]}, o7 of Z under
Pt is

vi(dy, du) = (10)

t oo
M;r ::Zt—/ / yv' (dy, du)
0 —oo
t oo t oo
= / /yv(dy,dU)—//yf(y)dydu (11)
h —.oo .0 —.oo

where MT is a local martingale under P7.
Definition 2.1: For each k = 1,2,..., K, let hi(y) =
(Arfr(y)/ f(y)), where f(y) > 0.

We suppose that there is a probability measure PT under
which (10) holds. Taking the measure PT as a starting point,
we define a G-adapted process A := {Ag ¢}, 7 b

t K e’}
AO,t =1 +/A0,u— Z /<Xu—7ek>
0 k:l_oo

x (hi(y) = 1) (v(dy, du) — f(y)dydu)).
Then A is a (G, PT)-local martingale. We assume that A is a

(G, P)-martingale.
By Itd’s differentiation rule

t K ()
Aoy = exp | - / kZ:l<Xu_,ek>_ [O (hay) — 1) £ (y)dydu

(12)

t K [e%e}
+/Z = €k) /logfbk(y)v(dy.,dU) (13)
k=1 e

The “real world” probability measure P is then constructed
using A by setting
dpP

d—’]DT = AO,t-

40
Note, however, by the general Girsanov theorem for jump
processes, it is under the real-world probability measure P that

oo

0/_4 Y(Xu—, er) A fr(y)dydu
g

/yv(dy,dU)-, teT (14)

is a (G, P)-local martingale. So, it is under P that the observa-
tion process Z is influenced by the chain.
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Suppose v := {7;},c7 is any G-adapted, integrable process.
Given F7, we can estimate ~y; by its least-square estimate
E[v|F#]. By a form of the Bayes’ rule

ET [Ao,t’YtU:tZ]

_— - 15
Et [Ao 4| F7] (1

E [w|F7] =

where ET denotes expectation with respect to PT.
Write, for each t € T, o4(7) := ET[Ag47v:|FZ]. Then (15)
can be expressed as o4(y)/o+(1).

III. FILTERS AND SMOOTHERS

In this section, we shall derive filters and smoothers for the
hidden Markov chain X . Theorems 3.2, 3.5 and 3.8 are the main
results in this section. First, we shall derive the recursive Zakai
equation for the filter E(X;|F7#). In particular, the Zakai sto-
chastic differential equation governing the evolution of the un-
normalized filter over time is given in Theorem 3.2. Then we
shall derive robust filters for the hidden states using the gauge
transformation technique introduced by Clark [6]. In particular,
a linear ordinary differential equation (O.D.E) for the trans-
formed process of the filtered estimates will be derived. The
O.D.E. governing the robust filter is then summarized in The-
orem 3.5. This provides a convenient way to evaluate the filtered
estimates of the state process. By exploiting a duality as in [13],
we also derive robust smoothers for the hidden process. In par-
ticular, a linear forward O.D.E. for the smoothed estimates and
a linear backward O.D.E. for the process of extra information
are derived. These results are presented in Theorem 3.8.

For each time u € (0, 00), suppose Y,, : Q@ — (—o00,00) isa
random variable with a strictly positive density function f under
PT. Write

f(Vu(w))
where hy(y) is given by Definition 2.1. To simplify the notation,

we suppress the notation w in the sequel unless otherwise stated.
Then

Hy(u,w) := = hy (Yu(w)) (16)

(oo}

/ hic(y)f () dy

— 00

E'(Hy)

-/

— 00

M fre(y)
f()

f(y)dy = M. (17

We shall consider the diagonal matrices

diag (H(u)—1) :=diag ((H1(u)—1), (Ha(u)—1),...,
(Hg (u)=1)),
diag(A—1) :=diag (M —1),(A2—1),...,(Ak—1)).
Definition 3.1: For each t € T, we define ¢; = o(X;) =
ET(Ag+X¢|FZ), which is the unnormalized filtered estimate of
X, given F7.
We give the recursive Zakai equation governing ¢, in the fol-
lowing theorem:
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Theorem 3.2:
tu t.
qt = qo + / Aqudu + / dzaq (H(U) - 1) qu—dNu
0 0

t

—/diag(/\— Dqudu (18)
0

where qo := E[Xp] is the initial distribution of the chain X,
which is assumed to be known.
Let1:=(1,1,...,1)T € RE; then, (X;,1) = 1. Hence

(E" [Ao X4 FZ] 1) = ET [Ao (X, 1)|F7]

=E" [Ao.|F7] . (19)
Write p; := E[X;|F#]. Then, by (15)
qt
= . 20
bt (4, 1) (20)

Proof: See Appendix.

In the sequel, we shall derive a robust filter for the hidden
Markov chain. First, we need to introduce a rotation, or trans-
formation, matrix I'; for the gauge transformation of ¢;, for each
t € 7.Foreachk = 1,2,..., N, we consider a scalar-valued
process v* := {7}'},. defined by

t

R = exp [(1— M)t + /long(u)dNu

0
= exp (Ly) 1)
where L¥ is defined by
t
LF =0 - )t + /long(u)dNu
0
=(1= M)t + Y log Hy(Ty)
T;<t
=(1 =)t +log [ J] He(T)) (22)

T;<t

where T} is the random time of the j th claim defined as above.

The “dN” integral in (22) is now given as a sum of the func-
tions of the random times of claims. Indeed, the “dN” integral
in the stochastic differential equation governing ¢ in (18) is also
really a sum. However, it involves the implicitly defined quan-
tity ¢, which makes it difficult to implement (18) in practice.
Equation (22) expresses the “dN” integral as an explicit sum.
This eliminates the problem of evaluating the “dN” integral in
(18) which implicitly involves the solution process q.

Then, we define the transformation matrix I'; as the diagonal
matrix diag(vl,vZ, ..., 7). Write, for each t € 7, T';" for
the inverse of I'y. Then, the following lemma gives a stochastic
differential equation governing the evolution of I'~! over time.
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Lemma 3.3: For each u € 7T, define the diagonal matrix

Then

A7t = diag(A — DI7 dE + diag (“TZ()“)

) I;7'dN,
(23)
where g = T';! = I and I is the (K x K)-identity matrix.
Proof: See Appendix.

Definition 3.4: Define the transformed process 7 := {G: },c 7

by setting
@:=T7'm, teT.

Then the following theorem gives the linear ordinary differen-
tial equation governing the evolution of the transformed process
over time.

Theorem 3.5: q satisfies the linear ordinary differential equa-
tion

t

qt =qo + /FglAFu(judu-
0

(24)

Proof: See Appendix.
Let 7(X;) denote a version of the expectation E[X,|FZ].
Since qt = tht

T'+qe
<th_t7 1) '

It has been shown in [17] that 7(X;) is a version of the expecta-
tion E[X;|F7], which is continuous in the observation process
Z 1in the Skorokhod topology. The robust filter estimate of X,
given FZ is then given by m(X;).

In the sequel, we shall derive smoothed state estimates for
X by exploiting a duality. That is, we calculate the conditional
expectation E[X,|FZ], for t € [0,T]. First, we define some
useful notation.

Definition 3.6: Letry := ET[Ag 7 X¢|FZ], which represents
the unnormalized smoothed estimate of X;.

Then, we define the process of extra information and its trans-
formed process as follows.

Definition 3.7: Consider the process v* (k= 1,2,..., K)

(X)) = (25)

vf == EV [N 7| FE Xy = e] . (26)
. T .

write v for (v}, v2,...,vK)" € RE with vy = 1, where v,

t € T, represents the process of extra information. Its trans-

formed process is defined by

Vg 1= Ftl/t7 t e 7.

Let p; := E[X;|FZ], where p; is the smoothed estimate of
X, foreacht € 7. Then, the smoothed estimate p; can be eval-
vated based on the formulae presented in the following theorem.
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Theorem 3.8: For t € [0,T],

1
(Gt t)

K
Z(@?ek)(ljﬁ 6k>ek

?,.
Il
-

1
<qt7 Vt>

(qe, ex)(ve, ex)er 27

] =

>
Il
iR

where ¢; satisfies the following forward linear ordinary differ-
ential equation:

da

& rytarg.,

7t (28)

qo = qo
and v, satisfies the following backward linear ordinary differen-
tial equation:

d;

— = —FtATl_‘;lljt,

dt 29

vr =I'r1.
Proof: See Appendix.

IV. PARAMETER ESTIMATION BY THE EM ALGORITHM

In this section, we shall consider the estimation of the un-
known parameters for the Markov-modulated random measure
with Markov-switching stochastic intensity for claim arrivals
and distribution for claim sizes using the EM algorithm. For the
estimation of the parameters in a Markov-modulated Poisson
process with Markov-switching stochastic intensity only, inter-
ested readers may refer to [13]. Here we shall compute the esti-
mates of the parameters in the rate matrix A := [a;;]; ,_, ,
and the vector of intensity parameters A := (A1, Ag, ..., Ax).
We suppose that for each regime k£ = 1,2,... K, the distribu-
tion of claim sizes F(y) is known. The estimation of the distri-
bution of claim sizes is also an interesting and practically rele-
vant research topic in actuarial science, (see, for example, [16]).
Here, our main focus is to filter the hidden state of the chain and
to estimate the rate matrix of the chain and the intensity param-
eter of the jumps. We leave the estimation of the distribution of
claim sizes for future research.

We shall consider both a robust filter-based EM algorithm and
a robust smoother-based EM algorithm for the estimation of the
model parameters. We also provide practical forms of the robust
dynamics involved in the estimation scheme by computing time
domain discretization of these robust dynamics on a regular par-
tition. Then the robust estimates of the unknown parameters can
be evaluated recursively.

The main results obtained in this section are presented in The-
orems 4.1, 4.3, 4.4, 4.6 and Corollary 4.5. Theorem 4.1 gives
the filter-based estimates of a;; and ); and the stochastic dif-
ferential equations governing the measure-valued quantities to
compute the estimates. Theorem 4.3 gives the dynamics gov-
erning the gauge transformed processes corresponding to the
measure-valued quantities, which are then used to derive the ro-
bust filter-based EM algorithm. To implement the robust filter-
based EM algorithm, we need to discretize the processes gov-
erning the evolution of the measure-valued quantities. The dis-
cretizations of these processes are presented in Theorem 4.4.
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Corollary 4.5 gives the solutions to the discretized processes in
Theorem 4.4. Then we consider the smoother-based estimates
of the unknown parameters a;; and A; by exploiting a duality
and give these estimates in Theorem 4.6.

A. Robust Filter-Based EM Algorithm

First, we notice that since F(y) is supposed given, the ob-
servation processes N and Z provide the same amount of infor-
mation to estimate a;; and A;. The computation of the estimates
of the unknown parameters involves the filtered estimates of the
state X, two quantities related to the state and one quantity in-
volving the state X and the observation N. We shall list these
quantities as follows:

1) X,, the state of the Markov chain X. The unnormalized

filter estimate ¢, in Definition 2.1 is given by Theorem 3.2.
2) O}, the occupation time of the process X in state e; up to
time ¢. That is

t

0! = /(Xu,ei)du €R.
0

(30)

3) Ntij , the number of transitions from e; to e; of X, where
1 # j,up to time ¢

t

N} = /(Xu,7 ei)(d Xy, e;) € R. (31)
0
4) G, the level integral for the state e;
t
Gi = /(Xu,ei)dNu €eR. (32)
0
Our goal is to estimate the parameters A := (A1, Ag, . .. ,?\K)

and A := [a;;] by the EM algorithm. The estimates é;; and A; of
a;; and \;, respectively, based on the EM algorithm were given
in [7] and are presented as follows:

E [Nﬂ]-’TZ] o (N;j)

&i": - - B ’ V(IL7])77’#],
"B [O;ﬂfTZ} 7 (01)
. _E[GHFE] _ o (GY)
= ! - r). (33)
E[OF|FF] o (0F)

Note that the estimate d;; of the diagonal element a;; (i =
1,2,..., K) of the rate matrix A can be computed by noticing

2

thathzl aj; =0,Vi =1,2,... K.

The above estimates involve evaluating o(NZ), o(Ok)
and o(G%). In general, it is not possible to compute closed
form dynamics for the processes o(N%), o(O%) and o(G?)
directly. However, it is possible to compute the associated
measure-valued quantities o(N,” X;), 0(OiX;) and o(GiX,),
which are vectors in R%. Here we adopt these measure-valued
quantities to compute the estimates a;; and \;. The results are
summarized in the following theorem.

Theorem 4.1: The estimates a,; and \; are given by
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o (07K 1) o
and
5, = {2 (GrXa) 1) (35)
© (o (0pXr) 1)
where
t
a(G;&):‘/AU(G}&Jdu
0
t
+ /diag( —1)o (Gﬁ,_Xu_) dN,
0
t.
—/dz’ag()\ - 1)o (GLX,) du
0
t.
—i—/(H(u),ei) (qu—, €:)dN,e;
0
t
- /()\ —1,¢;){(qu, ei)due; (36)

0

o (N7X,) = / Ao (NP X,,) du
0

+ ei)(Ae;, ej)due;

(qu—e

o .

t
+ / diag (H(w) ~ 1) o (N X, ) dN,

0
t.
- / diag(A — 1)o (N7 X,,) du (37)
0
and
t
U(OiXt) = /Ao du—l—/ Qu, €i)due;
0
/dmg -1)o (OfL_Xq,,_) dN,
- / diag(A — 1)o (OLX,) du (38)

0

with 0(G4 X)) = o(N Xo) = 0(0i X)) = 0, P-as.
Proof: See Appendix.

To compute the above estimates, we can implement a filter
bank consisting of recursive filters given by (18) and (36)—(38).
The seminal work of Clark [6] utilized a version of a gauge
transformation to simplify these recursive filters and developed
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observation-parameterized forms of these filters. Here we shall
adopt the gauge transformation of Clark [6] to compute new
versions of the filters, which are robust.

First, the gauge transformed process ¢ in Definition 3.4 satis-
fies the linear ordinary differential equation in Theorem 3.5. We
define the gauge transformed processes of the measure-valued
quantities as follows.

Definition 4.2: Define the gauge transformed processes
7(GiX,) == I'7'o(GiX,), (NP X,) := I o(N X,) and
7(0!Xy) := I 1o(0!X,).

Then the following theorem gives the dynamics of these
gauge transformed processes.

Theorem 4.3: The gauge transformed processes in Definition
4.2 are governed by

7 (G, Xy)

t
= / I 'A,e (G Xy) du
0
di ! H 7 N,
+ arag (m) (H(u),ei) (Tt €i) Nuei

t

) / (A= 1€ {u ) due;

oo (g o] )

(39)
5 (N;jxt)
t
= / I, 'AT,6 (N7 X,) du
0
t
+/(rju,ei)(Aei,ej)duej (40)

0
and
t

7 (01X;) = /F;lAFua

du+/ Ju, € )due;.
0

(41)

0

Proof: See Appendix.

To compute the estimates a;; and A, we need to compute the
filtered quantities o (N X 1), o(0% X 1) and o/(G X 1), which
also depend on ¢; defined in Definition 3.1. In practice, we need
to consider a version of the discrete-time approximation to these
filtered quantities to implement these filters. Here we consider
a regular partition on the time interval [0, 7] with equal length
of each sub-interval A := T'/M, where M is a positive integer.
We write ¢, := mA, where m = 1,2,..., M.

Let

Prym—1 =1, Ft_mlq (42)

Then

G, =Tt @, =T, T7 [T+ AAlg 43)

m—1"
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Hence

qt,, = Py m—1[I+ AA]g, 90 = E[Xo). 44)

By first calculating the time domain discretizations of
(N’ X;), 5(0iX;) and 5(GiX;) in Definition 4.2 and
noting that o(H,) = I'yo(H,), the time domain discretiza-
tions of o(N,? X}), 0(0i X;) and o(G%X;) are obtained. The
following theorem presents the time domain discretizations of

o(N X;), 0(0iX;) and o(GiXy).
Theorem 4.4 Let Qi(t) = diag(1/H(D)(H (1), ). for
eacht € 7 andi = 1,2,---, K. Then

o (G}, Xu,)
~ O[T+ Ao (G X, ) + T,
X [Q(t ) <th ) ei> Ntmei - Ql(tmfl) <qtn1—17ei>

XNy, e —(A—1,¢;) <(jtn171,ei> Ae;
Nt (Qi(tm) T, ei) ei — Ny,
% (Qultm-1)7) (AA =D, e > «] @)
o (N x,,)
~ O [+ Ao (NP X, )
+ Py m—1 <(Jtm,1 , ei> (Ae;, ej)Ae; (46)
and

o (0}, X1,) ® P14+ A4 (0], X0, )

+®rm—1 (., . €i) Nei. (47)

Proof: See Appendix.
The following corollary gives explicit forms for g,
o(GL Xi,.),0(N X, ) and 0(O; X, ).
Corollary 4.5: Foreach k = 1,2,---, K and each m,l =
1,2,---, M with m > [, let

Lf’m,,tl = (1 - )‘k)(tm - tl) + IOg

II A1y

t <Ty<tm

sothat Lf , = Lj .

Write, for each m, 1= 1,2,---, M withm > 1
Un i = (exp(L%m ,tz) 7eXP(L12,,,,,,t,) o ,exp(Lfi ,tz)) eRk.
Then foreachm = 1,2,---, M
G, = o | [ [diag(U; ;—1)(T + AA)] (48)
j=1
o (G, Xe.,)
~ Z {diag(Ui )
1=1
x [Qi(t1) (@n i) Nyei—Qi(ti—1) (T, - €i)
X Ny, yei—(A=1,¢;) (@, ,.ei) Ae;

- Nt171 <Q’L(tl)qt171 ’ 61> €5
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- N, <Qz’(t171) [diag(Ui—1,0)] "
X(AA — I)qt171 s 6,‘,> ei]

X l ﬁ diag(Uy n—1)(1+AA) } (49)

n=I[+1
NZ{dLag Uii—1 (qtl 15 € > AeweJ}AeJ

} (50)

o (N“' X, )

X l [I diag(Unn-1)(T + AA)

n=I+1
and
o (Oithm) ~ Z {diag(Ul,l_l) <qt,71,ei> Ae;
=1
X [ II diag(Unn1)(I+A4) } . (5D
n=Il+1

Proof: See Appendix.

Then the estimates a;; and \; can be computed by following
the three steps of the filter-based EM algorithm described as
below: .

Step I: Select the initial values @;;(0) and A;(0).

Step II: Compute the MLEs, é;,(k + 1) and Xi(k +1) by
(34), (35) and (48)—(51), respectively.

Step I1I: Stop when | (k+1)—aq; (k)] < e1 and |A;(k+
1) — Ai(k)| < €2 otherwise, continue from Step II, where
€1, €2 are the desirable levels of accuracy and €1, €5 > 0.

B. Robust Smoother-Based EM Algorithm

In this section, we shall derive the estimates of the unknown
parameters based on a robust smoother-based EM algorithm.
That is, the estimators are computed based on smoothing
schemes rather than filtering schemes. The smoothing schemes
are particularly useful when the expectation step is completed
with smoothed estimates, rather than filtered estimates, in some
implementations of the EM algorithm. One major difficulty
of computing the smoothing schemes is that the backward
dynamics are difficult to develop. The development of these
backward dynamics involves the construction of stochastic
integrals evolving backward in time. To avoid this difficulty,
Elliott and Malcolm [12] used a duality between forward and
backward robust dynamics to develop smoothing algorithms for
Markov-modulated Poisson processes. The smoothers in [12]
do not involve backward stochastic integration. In the sequel,
we shall compute the estimates from the robust smoother-based
EM algorithm for the Markov-modulated random measure
using the approach in [12].

We need to derive the dynamics for the dual process v for v
in Definition 3.7. In particular, we need to find a process v such
that the following duality holds:
= (T, ', Te1p) = vieT (52

(@es ) (qe: 1),

where 7, satisfies (29) and I',’ ! satisfies (23).
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By discretizing the O.D.E. for v satisfying (29) and recov-
ering the process v in Definition 3.7

V1~ T+ AAT)®,, 01, (53)
where v = 1.

By adopting a duality, we obtain the the smoother-based up-
date equations for the estimates @;; and \; of a;; and A;, respec-
tively.

Theorem 4.6: The smoother-based update equations for a;;
and 5\1 are

f0T<Qt7 €i><1/t, €j>dt
foT<qt; ei><1/t, ei>dt

a;j(k+1) = a;;(k) (54)

and

Ak +1) = [Qi(T

~—

Nrlgr,ei)(vr,e)

<)\ — 1,e,;><(jt,e,;><17t, 6,‘,>dt
+ | Ni(@»ei) (D7 AT Qi(t)es, 1) di

Ni(or, €) (d[Qi(t)] , e:)

N9 Oty T T

-1

X /<Qt7 67‘,><Vt7 67‘,>dt (55)

0

Proof: See Appendix.

Note that the index k € {1, 2, ...} represents each pass of the
estimation scheme that determines the elements of the transition
matrix A and the vector of intensity parameters A. We need to
update ¢,, and v,, in each step in (54) and (55) using estimates
obtained in the k" pass.

To sum up, the smoother-based EM algorithm is:

Step I: Select ,;(0) and A;(0).

Step II: Using the discrete time forward and backward
equations, respectively, (48) and (53), evaluate (54) and
(55) to compute the MLEs, a;;(k + 1) and ik +1).
Step III: Stop when | (k+1) —aq; (k)| < ey and |\ (k+
1) — X(k)| < €g; otherwise, continue from Step II, where
€1, €2 are the desirable levels of accuracy and €1, €3 > 0.

V. A SIMULATION EXAMPLE

In this section we present a simulation example to illustrate
the implementation of the filters and the smoothers derived here.
We consider a two-state Markov chain with two-state distribu-
tion of jumps. We say that the chain X is in “State 17 (“State 2”)
at time ¢ if X; = e; (X = e2). We suppose that the distribu-
tions of jump sizes are two gamma distributions with different
shape parameters, but the same scale parameter. That is

1 —1,—2/b :
i(z) = e =0, 0, i=1,2.
fi(2) T (ar) e z > i

z
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Fig. 1. Simulated aggregate claims process.
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Fig. 2. P(X = 1|Observation), filter.

In actuarial science, gamma distributions are commonly used
distributions for claim sizes. We consider the following config-
uration of specimen values of the parameters in the simulation
example

M =60, A=1/12,
/\1 = 10/ /\2 = 5, a); = 50, g = 100, b= 05,

a1 = —5,a12 =5, a1 = 10, azy = —10.

We assume that the Markov chain is in “State 1” initially, (i.e.
Xy = e1). Note that Z; = 0, which means that the initial claim
amount is zero. All figures are presented in the Appendix after
the proofs.

Fig. 1 depicts a simulation path of the aggregate claim process
7, which is our observation process.

Fig. 2 depicts a simulated hidden Markov chain and the
robust, filter-based, estimated state probability P(X
1|Observation).
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Fig. 3. P(X = 2|Observation), filter.
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Fig. 4. P(X = 1|Observation), smoother.

Fig. 3 depicts a simulated hidden Markov chain and the
robust, filter-based, estimated state probability P(X =
2|Observation).

Fig. 4 depicts a simulated hidden Markov chain and
the robust, smoother-based, estimated state probability
P(X = 1|Observation).

Fig. 5 depicts a simulated hidden Markov chain and
the robust, smoother-based, estimated state probability
P(X = 2|Observation).

From Figs. 2 and 3, we see that the robust, filter-based, esti-
mated state probabilities give reasonably good estimates for the
hidden Markov chain. Comparing Figs. 2 and 3 with Figs. 4 and
5, the robust, filter-based, estimates seem outperforming the ro-
bust, smoother-based, estimates of the hidden Markov chain.

VI. CONCLUSION

We developed new recursive filter when the hidden
Markov chain modulates both the jump sizes and times of

Fig. 5. P(X = 2|Observation), smoother.

a Markov-modulated random measure. The model considered
here is a natural generalization of marked point processes
studied in [12], [13]. The Markov-modulated random mea-
sure is a flexible model for an insurance claims process, in
which both the stochastic intensity of the claim arrivals and
the distribution of the claim sizes switch over time according
to a continuous-time, finite-state, hidden Markov chain. The
filter developed here is new. The filter and the smoother,
which can be obtained from solving linear ordinary differen-
tial equations, provide us with a convenient way to select a
model that is the “best” estimate in the “mean-squared-error”
sense. We provided the estimation method of the unknown
parameters in the Markov-modulated random measure using
the robust filter-based and smoother-based EM algorithms. The
development provides recursive estimates in the framework of
modern theory of stochastic processes. A simulation example
was provided to illustrate the implementation of the filters
and the smoothers. The simulation results revealed that the
robust, filter-based, estimates seem outperforming the robust,
smoother-based, estimates of the hidden Markov chain.

APPENDIX A
PROOF OF LEMMAS, THEOREMS AND COROLLARIES
Proof of Theorem 3.2: First, note that

t

X =Xo+ /AX“du + M. (56)
0
Then, applying the product rule to the process A X
t
NoaXi = Xo + / Aou—X e
K %
X Z/ u—s ex) (h(y) — 1)
k=1_"_
X (Y(dy, du) — f(y)dydu))
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t t

+/A0’uAXudu+/A07u,dMu
0 0

(57)

Conditioning on F7Z under P (strictly, taking the 7% -optional
projection under PT), we have

t t K oo
@ =q+ [ Agudu+ (qu—ser) (he(y) — 1)
oo fanasr [ ($ [t
x (v(dy, du) — f(y)dydu)) ex. (58)
Now
[ o) = 1 1wy =xe 1. (59)
Thus

t

t
4t = qo + /Aquu + /dwg (H(U) - 1) qu_dNu
0

0
t

- /diag()\ —1)gudu. (60)

0
Proof of Lemma 3.3: First, by the differentiation rule (see, for
example, Theorem 12.19 in [10]), for any real-valued function

F € C'(R) (i.e. C'(R) is the space of first-order differentiable
functions on i)

t

FUMZF@M+/F@WMM

0
+ Y [F(Lu) = F(Lu-) — F'(L,)ALL) . (61)

0<u<t

We shall apply this to F(L) = e~L so F/(L) = —e~ L, and

AL, = log Hy,(u)AN,. (62)
Also
F(Ly) — F(Ly,_) =e L [exp (- log Hy(u)AN,) — 1]
= Lu- (%(u) - 1> AN,,. (63)
Therefore
d(v¥) 7 == (v5) T (1= ) dt+log Hi(£) AN
+ () [(ﬁ—l) AN, +log Hk(t)ANf}
=— (%) (1-x)dt
+ () (Eﬁ’;@) AN, (64)
Since
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the result follows.
Proof of Theorem 3.5: First note that

% = q = E" [Xo|F¢]| = ET[Xo). (65)

As diagonal matrices commute
t

t
leqt=q0+/F;idqq,,+/dF;1qu_+
0

0
t t

:q0+/ F;lAqudu—i—/ diag (H(u)—1) F;iqu_dNu

0 0
t t

—/diag(A—l)F;lqudu+/diag()\—l)l"glqudu
0 0

/ o (1=H@W)
+O/d g<

Z (AFU)(A(]u)

o<u<t

——— )1 tq,_dN,
H@))“J

t

H(u)

+ [ diag (F(w)=1) diag( =2 -1y an,
J H(u)

+ / [diag (H(u)—l)-i—diag(

0

i)

)

Note that the sum of the k** terms on the diagonal matrices in
the dV,, integral is

+diag (H(u)—1) diag <

x 7 qu_dN,. (66)

1— Hp
k

1— Hy
k

Hy—1+

+(Hk—1)< ):o (67)

and so the dN,, integral vanishes.
Therefore

t

Ft_1Qt - (jt - /FJIAQudu
0

(68)

The result follows by writing ¢, = ', G-

Proof of Theorem 3.8: The proof is the same as the proof of
Theorem 8 in [13]. So, we do not repeat the detail here. Instead,
we only highlight some of the key steps of the proof.

First, by the semi-group property of A and the double expec-
tation formula

re = BT [Mo o X EV [N p| FEVFY]|FZ] . (69)
Due to the Markov property of X under P’
ET AN g|FEVFX| = EN [N | FEV o{X:}] . (70)
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(76)

(77)

Since Y1 (X, ex) = 1, vF is FZ-measurable and Z has f 4
independent increments under P* / diag (H(u) — 1) o (G%_X,_) dN,
K
=E" Aoy [ Y (Xi,er) | XuEY [Ny 7| FEV FY] |FE f ,
k=1 - /diag()\— o (G, X,) d
K
= qul/tkek e RE. (71)
k=1 + /(Hz ()/u(w)) - 1) <qu—7 ei>dNuei
Then, the normalized smoothed estimate of X is 0
t
Z
E[X|F7] = e 1> (72) - /()\ — 1){qu, €;)due;
Note that the following duality holds, (see [13]):
= [ dia -1 G! e Xu—) ANy
(re, 1) = (@, 2). (73) 0/ 9 (Hw = Do | )
Since the process (r, 1) is independent of time, so is (g, 4), p 4
from the above equation. Then + / Ao (GLXu) du
d d 0
%<Tta 1) = %(‘h»l/t) =0. (74) t .
— /diag()\ - 1)o (G, X,) du
For the rest of the proof, interested readers may refer to [13]. 2
Proof of Theorem 4.1: Using the product rule, the decompo- t
sition of the process AG*X is computed as n /(H( ), e (qu_, e:)dNues
t t “
Mo Gy Xy = / Nou—Xu( Xy, ei)dN, + / A GLAX du t
! ! = [0 L. cavdue,
t t ;
+ / Ao, GLAM, + / G Xy No - 4
) ) where 0(G}Xo) = 0, P-as.
P Similarly, it can be shown that
Z / wsek) (he(y) — 1) t t
kzl—oo o (Ntint) :/Aa (NJX,) du-i—/(qu_,ei)(Aei,ej)duej
t oo +
+/ / Xuho,u— (X, €i) (hi(y) — 1) + /diag(H(u) ~ 1o (N;j{Xu,) N,
0 —oo 0
x (y(dy,du) — f(y)dydu). — (75) ¢
di -1 Xu)d
Taking the F7 -optional projection under P* / 9 ( )
0
t t
o (GiXy) = / (Gu—, ei)dNye; + / Ao (G4 X,) du and
0 0 t
KT a(oix):/A du+/ )d
. t<vt Qus ez ue;
+/ > / (0 (G X)) ser) (hi(y) — 1) ) )
0 kzl—oo t
x (y(dy, du) — f(y)dydu)) e / diag (H(u) — 1) (0%_X,_) N,
t oo
0
s [ [ e tut) - 1)
0 —oo /diag( -1) (O Xq,) du

X (V(dy, du) — f(y)dydu) e;
t t
= /(qu_,ez)dNuei + /Aa (GZXU) du where O'(Noino) = (0} Xy) = 0, P-as.
2 2 Note that
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<0 (NZth) ,1> = <ET [AO,tN;'J'X”ftZ} ,1>

= (M), (79)
Similarly
(0 (0;Xy),1) =0 (0}) (80)
and
(0 (GiXy) 1) =0 (G}). (81)
Proof of Theorem 4.3: Write Q;(t) =
diag(1/H(t)){H(t),e;), for each t € 7T and

1 = 1,2,---, N. Since diagonal matrices commute, from (23)
and (36)

t t
I 'o (GiXy) = /r;ida (GLX.) + /df;la (Gi_Xu)

+ Y (AT (Ao (Gi X)) (82)

o<u<t
where AH;, := H, — H,_.
Then
t
/ [, 'AT,6 (GLX.,) du
0

7 (GiXy) =

t

+/<H(u)7ez> <‘ju—7ei>dNuei

0
t

— /()\ — 1, e;{qu, ei)due;
0
t

- /diag()\ —1)5 (G, X,) du
0
t
+ /diag (H(u) — 1) (G4_X,—) dN,
0
t

+ /diag()\ -1)5 (Gi,_X,_) dN,

0
t

+ /diag()\ - 1)5 (GLX.,) du
0

+/tdiag<1_H(u)
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+ O/tdz'ag <1_T}i()u)> (H (u), i)

X (Gu—s e)dN,e;. (83)

Note that

diag (H(u) — 1) + diag <1—_H(“>) N

1_H(U)) — 0 REXK

H(u) (84

diag (H(u) — 1) diag <

This implies that

t

/ I 'AT,6 (GLX,) du

7 (GiXy)

t

0
t
+ QL(U_)<(ju—/eL>dNuet_ </\_1,6i><qu,6i>duei.
] j

0

(85)
By the stochastic integration by parts

/ Qi) ex)dNue: = Qut) (s i) Noes
0

t
- / N, (d[Qu(w)T)  ei) er. (86)
0
Hence
t
7 (GiXy) = /r;lAFua

0
t t

—/(x\—l,ei)(q_u,ei>duei—/Nu ([Qs(w)G] e) ern (87)

0

(GZXu) du 4+ Qi(t)(qs, i) Nie;

Similarly, we can derive the dynamics of the gauge transformed
processes o(N,” X;) and 5(O: X}).
Proof of Theorem 4.4: Note that

5 (G X, )=¢ (Gﬁqutmq)
tn
+ / I, lAT,&
ton
+ Qi(tm) (qr,, i) Ny, €
= Qi(tm=1){Gt,, ,-€i) N, €

(GLX.) du

tm
- / (A_laei><q“>ei>duei
tw:.—l
tom
- [ Mo e 68)
tm—1

Now
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to,
/ N’u, <d [Q1(u)(j'u] ’ ei) €
tn;—l
to
= / Ny (7udQi(u), ;) e;
ton 1
tm
+ / N (Qi(w)T AT gy du, €;) e;
tn;fl
~ Nipoy (Gt 1Qi( Em ei>ei
- Nt,, <th 1 >6L
+ N,y <Q1( - 1) o 1Aqtm sei) Ae;
=N,y <th 1Qz >ez
FN, <Qi( m_l)r;H (AA-T)q,. .. e> ei. (89)
Hence
o (G} Xu,)

~ O [T+ Ao (G, X0, )
+T4,, [Qi(tm) (4t €i) Ny, €
=Qi(tm=1){Gt,,_1- ) Ni,,_,€i
—(A—1,¢;) <qtm_1,ei> Ae;
—Ni  {Qi(tm) Tty 1r€i) €i— Ny,
x <Qi(tm,l)F{ml_l(AA—I)qtm_l,ei>ez}.
(90)

Similarly, it can be shown that

o (N X0,) % Qs [T4+ DAL (N X, )
+ @ m—1 (e, .:€i) (Aes,ej) Aej  (91)

and

7 (0}, X0,,) % Py [T+ A4 (0} X, )

+(Dm,m—l <th,1 3 ei> Aei- (92)

Proof of Corollary 4.5: Consider the following stochastic dif-
ference equation:

Wy = CpiWin_1 4+ Dy, m=1,2,--, M. (93)

Then it is easy to show that the solution of the stochastic differ-
ence equation is given by

Wi =Wo [[Ci+>_ D <
j=1 I=1

m=1,2,---, M.

ﬁ Cn) )
n=I[+1
(94)

Set Wi, = ¢y Cry = @om—1({ + AA) and D,,, = 0. Then
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gm = a0 | [] ®ji-1(1+AA)
7=1

95)

By noticing that ®; ;_1 = diag(U; j_1), the formula (48) fol-
lows. Note that the matrices in the product []5", ®; ;1(1 +
AA) do not commute. So we leave the solution q as the product
form.

Similarly, the formulas (49)—(51) can be proved by ap-
plying (A.39) and by noting that o(G} X;,) = O'(N“Xto) =

(Oto Xto) = 0.

Proof of Theorem 4.6: By exploiting the duality

(o (GiXr) vr) = (o (G5 X) 1)
=Qi(T)Nr{qr,ei){vr,e:)

- /<A L) (e ) (e, )t
0

Nt<q_t7ei> <F AFtQ ez l/t> dt

(96)

Similarly
(o (40).0r) = 5 (v 37) )

T
/(Ael ej)(qe, €:){ve, e5)dt (97)
0

and
<0' (O%/XT) Z/T> <5’ (OrZT/XT) 7I/T>
T
= [lwedmendn o9
0
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