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Abstract — Tasks running on embedded systems are often asso-

ciated with deadlines. While it is important to complete tasks 

before their associated deadlines, performance and energy con-

sumption also play important roles in many usages of embedded 

systems. To address these issues, we explore the use of Dynamic 

Voltage and Frequency Scaling (DVFS), a standard feature avail-

able on many modern processors for embedded systems. Previous 

studies often focus on frequency assignment for energy savings 

and meeting definite task deadlines. In this paper, we present a 

heuristic algorithm based on convex optimization techniques to 

compute energy-efficient processor frequencies for soft real-time 

tasks. Our novel approach provides performance improvements 

by allowing definitions of multiple target deadlines for each task. 

We simulate two versions of our algorithm in MATLAB and 

evaluate their performance and efficiency. The experimental 

results show that our strategy leverages performance and energy 

savings, and can be customized to suit practical applications. 

Keywords — DVFS; multiple deadlines; power savings; energy; 

convex optimization 

I. INTRODUCTION *† 

The development of embedded systems with real-time con-
straints should consider not only the traditional aspects such as 
effective task scheduling and accurate execution time predic-
tion, but also the environmental horizon such as minimizing 
energy consumption while providing sufficient performance to 
users. Consider a user operating a wireless barcode scanner 
running on a real-time OS. Such a scenario frequently occurs 
during stocktaking in a supermarket. Provided with a legible 
piece of barcode and an operational profile of barcode 
scanning, a deadline may be defined for the task of reading the 
barcode. If the deadline is missed, the scanner is deemed to be 
unable to recognize the barcode. Though undesirable, 
occasional deadline violations may be tolerated; hence, this 
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kind of deadline is called a soft deadline. If we attempt to 
increase the power of the laser beam module and the decoding 
processor to shorten the scanning time, more cycles can be 
completed, which may lead to an improvement in operational 
efficiency. On the other hand, if the scanning time is too short, 
the collaborating human action may not be able to move the 
scanner fast enough to feed the barcode, which worsens the 
effective utilization of the application and its battery power. 
The issue of energy consumption does not limit itself to 
battery-powered embedded devices, but also to embedded 
systems that remain running for long periods of time on 
stationary power.  A scheduling display system in a train 
station and a household intruder alarm system are two 
examples of such embedded systems. 

A recent survey shows that the Information and Commu-
nication Technologies (ICT) sector has a carbon footprint equal 
to the aviation industry, accounting for 3–4% of the world’s 
carbon emissions [7].  Take the above stocktaking scenario as 
an example. If there are only 100 such devices used on Hong 
Kong Island and each device can save merely 1 Watt, 
according to the calculation provided by National 
Semiconductor [13] as shown in Figure 1, it helps save 1666 
pounds of CO2 emissions per year. 

 

 
Figure 1. CO2 emissions from 100 scanners (according to [13]). 

 

To this end, in this paper, we address the problem by 
utilizing the dynamic voltage and frequency scaling (DVFS) 
that comes with many modern processors such as Intel’s 
Enhanced Intel Speedstep® Technology [9]. The general idea 
is a well-received concept: By lowering the processor fre-
quency and voltage dynamically, the workload of an applica-
tion could be spread over a period of time in return for energy 
savings. For CPU-bound tasks such as decoding barcode strips 
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into readable characters, we define workload as the number of 
processor cycles required to complete the task. 

The relationship between power consumption (P), voltage 
(V), and frequency (f) can be estimated as follows [23]:  
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In other words, as frequency is reduced linearly, voltage is also 
reduced linearly in a predetermined, hardware-specific fashion. 
This will result in energy savings in approximately cubic order 
and only gradual performance degradation. 

Reducing voltage and frequency does not necessarily 
reduce power consumption owing to the longer time it takes to 
complete a task. In our study, we model the problem as a 
constrained optimization problem in finding the CPU frequen-
cies that minimize the overall energy consumption for all tasks, 
with task deadlines as constraints. Once the optimal frequen-
cies are computed, the processor is set to run at the computed 
frequency (and the corresponding stable voltage) during the 
execution of each task. The problem is challenging in practice 
because the underlying processors only support a discrete 
number of frequencies, which makes the problem NP-hard 
[21][22]. It is unlikely that there exists an efficient algorithm 
that solves the problem in the polynomial time [6]. Conse-
quently, like many other researchers, we first assume a conti-
nuous spectrum of processor speeds being available. After 
computing the optimal frequency fi for a task Ti over a time 
period ti, we attempt to simulate the execution using the lower 
adjacent frequency fA and the higher adjacent frequency fB over 
time periods tA and tB such that 
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where E(fi) denotes the processor energy computation when the 
processor is running at frequency fi. Chen et al [3] showed in 
their experiment that the above linear combination achieves 
lower energy consumption than running at fB over the entire 
duration ti. 

As pointed out in recent research [2][4][15], it is important 
not to overlook the energy consumptions of other system 
components such as memory, I/O devices, and basic circuitry. 
In our study, we model system-wide energy consumption by 
decomposing power usage and execution times into frequency-
dependent and frequency-independent variables to reflect on-
chip (i.e., CPU) and off-chip (i.e., other components) 
computations respectively. 

In this paper, we consider a novel extension to the tradi-
tional definition of deadlines by allowing a finite number of 
possible “deadlines” for each task. To clarify this point, let us 
consider a simplistic version of the above-mentioned example 
with barcode scanner:  

 
TABLE 1. EXAMPLE OF BARCODE SCANNER 

Case Prob 
Full-Speed 

Time (ms) 

Deadline 

(ms) 

1 95% 500 800 

2 5% 1500 2000 

 
We suppose that the scanner can read a barcode in 500 ms 

for 95% of the time (case 1), and takes 1500 ms at the worst 

case for the remaining 5% (case 2). Moreover, we further 
assume that the entire duration is dominant by the CPU 
component (i.e., the on-chip component), and that each barcode 
scanning should not take more than 2 s (or 2000 ms). Applying 
our approach, two “target deadlines” may be defined for this 
scanning task: first at 800 ms and the second at 2000 ms. Our 
frequency assignment algorithm first takes the value of 800 ms 
with respect to the offset of the task as the target deadline for 
the task and computes the optimal frequencies. The idea is that 
since 95% of all executions complete in 500 ms at full speed, 
energy savings by reducing processor frequency is already 
possible with the 800 ms deadline. Performance deterioration 
can also be controlled to within 800–500=300 ms. If the first 
target is missed, the algorithm then takes 2000 ms as the 
deadline and computes another set of frequencies. In this case, 
the execution is assumed to behave as in the worst-case 
scenario, and the goal of the algorithm now is to fulfill the 
second deadline while still attempting to conserve energy.  

While the worst-case deadline is usually defined based on 
application-specific requirements, definition of other target 
deadlines does not necessarily involve much additional efforts 
because these can be inferred from the operational profiles of 
the tasks by adding a fixed percentage of the execution time as 
slacks.  Referring to the example above, we add 60% slacks to 
the usual execution time of 500 ms as the corresponding target 
deadline of 800 ms.  The fixed percentage can be applied to all 
operational profiles to infer multiple target deadlines provided 
that the computed deadlines do not exceed the worst-case 
deadline (2000 ms in the above example). 

The main contribution of this paper is twofold: First, we 
develop a multi-deadline frequency assignment strategy that 
supports various performance levels for most executions of 
each task and attempts to enforce the task deadline with respect 
to the worst-case execution scenario. Our strategy is able to 
minimize the energy consumption in either case. Second, we 
report a simulation study on our strategy. The experiment result 
shows that with the presence of 150% slack time, the two 
versions of our algorithms achieve 52% energy savings on 
average compared to without any power management scheme, 
and up to 72% savings if all execution times are accurately 
predicted. 

For the rest of the paper, unless otherwise noted, we denote 
the set of execution times and deadlines for each task as 
prediction cases or test cases, and a selected deadline for a task 
at any instant of the algorithm execution as a deadline. A test 
case holds if it correctly predicts the timing of an execution.  

The rest of the paper is organized as follows: Section II 
summarizes the related research. Section III formulates our 
optimization problem. Section IV describes our algorithm and 
its variations. Section V presents the empirical results and our 
evaluation. Section VI concludes the paper.  

II. RELATED WORK 

A. Power-Aware Frequency Assignments 

A number of earlier studies focus on processor power 
savings without considering energy consumed by other off-chip 
system components [8][19]. Existing approaches can be classi-
fied into three categories: interval, inter-task, and intra-task.  
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Weiser et al adopted an interval approach in [19] by 
monitoring CPU utilization at regular intervals. Based on the 
statistics gathered, the clock frequency and voltage are reduced 
whenever the utilization drops below a predefined threshold. 
On the other hand, the CPU is accelerated again if the 
utilization percentage exceeds a certain threshold. The idea is 
to minimize energy consumption by reducing the amount of 
idle time in serving the same number of requests. Because the 
algorithm only utilizes data from the preceding round of the 
task execution, its prediction of future CPU utilization can be 
inaccurate, resulting in a suboptimal frequency assignments. 

Inter-task approach works at a finer granularity by 
assigning different frequencies per task rather than per interval. 
Shin and Choi [17] considered a modified scheduler for fixed 
priority scheduling in hard real-time systems. Their approach 
aims at lowering the frequency during the intervals in between 
executions of different tasks when the CPU is idle. CPU 
frequency and voltage of the active task is reduced whenever 
there is no task pending for immediate execution (i.e., in the 
run queue). If the CPU is predicted to be idle for sufficiently 
long time, the system enters power-down mode. Shin and Choi 
incorporated the rate of change of processor speed into their 
calculation of the optimal frequency. However, due to the 
expensive computation involved, they resorted to a heuristic 
solution that disregarded this factor in return for less overhead 
in the scheduling algorithm. The algorithm works well 
experimentally across several subject applications, and 
achieves better energy savings than the selected interval 
techniques despite that its accuracy is subject to the duration in 
between speed changes. If the processor speed changes 
frequently, the simplified heuristics in the algorithm may not 
harvest all potential power savings. Our approach can be 
classified as an inter-task as we compute distinct frequency per 
task. However our approach is different from [17] in that we 
utilize operational profiles of the tasks to compute CPU 
frequencies instead of referring to the current workload. Unlike 
[17], in our approach, the rate of change of processor speed 
does not depend on whether the run queue is empty. 

Intra-task energy optimization allows a task to be run at 
different frequencies throughout its execution period. Unlike 
the inter-task strategies, the intra-task approach may require 
additional information of each task at the design time or at the 
run-time (e.g., function/method of the high-level application 
being executed on a virtual machine) to determine its optimal 
frequency at any point in time. An example of this approach is 
presented by Rauch et al [14] where the Java Virtual Machine 
(JVM) is used to profile the CPU, memory, and I/O access of 
an application. The statistics collected in the execution context 
are checked by a separate thread at regular intervals and the 
processor frequency is changed if the application exhibits a 
high degree of off-chip activities in the past interval. Therefore 
their approach can be classified as a hybrid intra-task/interval 
approach where statistics of a task is collected alongside its 
execution in the JVM, and CPU frequency is adjusted at 
regular intervals. Implementing energy saving algorithms at the 
JVM level is beneficial in the sense that more programming 
constructs are available for considerations by a frequency 
assignment algorithm compared to relying solely on an 
operating system. The proposed algorithm is implemented as a 
standard Java interface, which targets it to be platform-

independent. Conversely, the implementation is limited to 
applications where runtime instrumentation is possible (such as 
those written in Java), and imposes 2–6% instrumentation 
overhead by inserting profiling codes within the execution 
context of applications monitored. Our approach can also be 
classified as intra-task in the case if an initial test case fails to 
predict the completion of a task (after 800 ms in our previous 
example in Section I), our algorithm computes the frequency 
assignment for the remaining execution of this task and 
assumes that the next test case holds under the newly computed 
frequency assignment. 

Variable deadlines have been proposed and studied by Shih 
and Liu [16]. They considered the case when deadlines of tasks 
can be constantly changing during their executions. Their 
approach models the deadline as a random process, and utilizes 
historical data sampling and simulations to construct 
probability distribution functions for different elapsed times 
since the first arrival of a task. A requirement engine is 
introduced to track changes in timing requirements for the 
underlying scheduling algorithm. Although our approach is 
similar in that each task may be associated with different 
deadlines at different times, our approach focuses on finding 
optimal frequency assignments with predefined deadlines, 
while Shih and Liu focus on how to gather updated deadlines 
without providing a concrete implementation of frequency 
assignment. 

B. Virtual Machine Instrumentation and Profiling 

It is important to mention virtual machine instrumentation 
because it can help automate the test case generation process. 
Similar to [10], [14], and many other studies, our approach 
relies on execution timing and deadlines (namely test cases as 
we define in Section I) which can be programmatically 
collected by means of instrumentation without the need to 
change the application source code. For instance, functions and 
methods of a program written in a high-level programming 
language can be instrumented for timing prediction of normal 
and worst-case executions. Deadlines for normal test cases can 
also be deduced manually or automatically from these data. 
Wilhelm et al [20] presented an overview of the methodology 
and tools available to determine worst-case execution times for 
real-time tasks. Although in this paper we assume that we are 
given the test cases, the analysis and automation tools 
described above show that gathering the execution times 
required in our approach is technically feasible. 

III. OUR MODEL 

In this section, we formulate our model formally. 

A. Worst-Case Execution Time 

Consider a set of independent tasks {T1, …, Tn}. To 
compute the energy consumption of a task Ti, we need to 
examine the effect of processor frequency on the execution 
time. Following the previous work [4], we define the worst-
case execution time (WCET) as the longest time to complete a 
task at the full processor speed. In the presence of off-chip 
computations, similar to [4], we further decompose the WCET 
of each task execution into an on-chip component and an off-
chip component. Assuming a single processor system, the 
WCET wi of task Ti is: 
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iw is the execution time on-chip and is dependent on 

CPU frequency; off

iw  is the execution time off-chip and is 

independent of CPU frequency. To reflect the change in CPU 
frequency on the overall execution time, we assume that at a 
lower frequency, the on-chip component takes proportionally 

longer period (i.e.,
f

w
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i ) to do the same amount of work in 

terms of number of CPU cycles. The execution time ti (f ) of 
task Ti is: 

 
]1,0()(

,
∈+= fw

f

w
ft

off

i

on

i
i

 (3) 

where f is frequency normalized to 1 when the CPU is at its 
maximum speed.  

B. Test Cases and Deadlines 

We define test cases τij for task Ti as triples sorted in 
ascending order of target deadlines: 

 τij = ( on

jit , off

jit , Dij),  1 ≤ i ≤ n, 1 ≤ j ≤ |τi| 

 
*

iτ  = ),,( ***

i

off

i

on
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 Di j ≤ Di k ,  if 1 ≤ j < k ≤ |τi| (4) 

where on

jit , off

jit , and Dij are the on-chip, off-chip execution 

times, and deadline of each test case respectively; |τi| is the 

number of test cases for the task; and
*

iτ is the test case selected 

by the algorithm for Ti. Note that if there is any task that cannot 
meet its deadline even when the processor is running at full 
speed, we will refer to the default rule of arbitration (i.e., reject 
the task or simply run at full speed). 

We recall that the purpose of allowing multiple test cases 
for a task is to sustain the performance for execution scenarios 
that are more likely to occur than the worst-case scenario, it 
follows that for each task Ti, 
 P(τij) ≥ P(τik),  if 1 ≤ j < k ≤ ci (5)

 1)(
1

≤∑ = ij

c

j

i

P τ   for all i  

where P(τij) is the probability that τij holds for task Ti. 

C. Energy Model 

We adopt the system-wide energy model presented in [22] 
and [23], which also takes into account the off-chip and on-
chip power consumptions. For any unit of time (tA) spent 
performing task Ti, power is consumed by the following active 
components during the execution of Ti: frequency-sensitive 
components (denoted as )( fP

on

i
), frequency-insensitive 

components that can be put into sleep modes when not running 
Ti (denoted as off

iP ), and other components that consume static 

power during the execution of Ti (denoted as PS). Sensitivity to 
frequency is defined as whether a component consumes 
different amounts of energy when the corresponding CPU 
frequency is changed. Following equations (1) and (2), we 
model energy utilization as: 
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where tA is the time period allocated to Ti; Ci is the task-specific 
effective capacitance being switched per clock cycle. Note that 
we refer to equation (3) in the context of WCET and expand 

ti(f) to on

iw  and off

iw  in equations (7) and (8) below. These 

terms can be replaced with on

it
*  and off

it
*  in the context of test 

cases. Taking the first derivative, we have: 
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We further take the second derivative: 
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For ,0,0, ≥> off

ii Pwf  we have equation (8) > 0, which 

shows that equation (6) is convex.  
We can set equation (7) to 0 and solve the quartic equation 

for f analytically. It has been shown that solving v quartic 
equations can be achieved in O(v3) time [12]. For the special 
case where there is no off-chip time, reference [22] presents a 
close formula for solving the optimal frequency f*. We define 

*

if  as the maximum of f* considering only task Ti, and fmin, the 

lowest frequency supported by the processor normalized to 1. 
In general, since dom(Ei) is the set of all positive real numbers 
which is also convex, our problem can be formulated into a 
convex optimization problem with constraints.  

D. Convex Optimization Problem 

Given the above model, we formulate our optimization 
problem as follows: 
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Constraint (9) ensures that each task is completed before its 
selected deadline. Since the objective function is a summation 
of convex functions of fi as discussed in the previous 
subsection, the optimization problem is also convex. 

IV. ALGORITHM 

A. Preprocessing of Test Cases 

Constraints (4) and (5) specify the rules when defining test 
cases. It is worthy to note that real-life executions of tasks may 
not follow these constraints. We illustrate our algorithm using 
the hypothetical execution times of an arbitrary task Ti as 
shown in Table 2. First of all, notice that τi2 and τi3 are nearly 
identical. We can combine them into τi23 = (10, 0, 20) with 
probability 0.2 in order to reduce the incurred computation 
overhead. To satisfy constraint (4), we first sort the test cases 
by deadlines in ascending order: {τi23, τi5, τi4, τi1}. However, this 
sequence violates constraint (5) because P(τi23) < P(τi5). In this 
case, we remove τi23 from the test suite. If further reduction of 
the test suite size is required owing to practical limitations, test 
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cases may be combined further to achieve this goal. For 
instance if only 2 test cases are allowed per task, one may 
combine τi2, τi3, τi4, and τi5 into a new test case with the 
weighted average of the execution times. For the rest of the 
discussion, we assume the given test cases are preprocessed 
and follow these constraints. It will be interesting to investigate 
as a separate study whether automatic preprocessing can be 
done effectively. 

TABLE 2. EXAMPLE OF TEST CASE PREPROCESSING 

Case P(τi j) 
on

jit  
off

jit  Di j 

τi1 0.1 40 0 100 

τi2 0.1 10.001 0 20 

τi3 0.1 10 0 20 

τi4 0.3 30 0 60 

τi5 0.4 20 0 40 

Preprocessing test sets may reduce the number of test cases 
per task but we can never be definite which test case will most 
accurately describe the on-chip and off-chip execution times of 
a task. To ensure that deadlines are met in all cases, a simple 
solution is to consider all test cases in constraint (9). However 
this prevents maximum energy savings since additional con-
straints that do not accurately predict task executions are 
included into the computation. In this paper, we present our 
heuristic Test-Guided Power Management (TGPM) algorithms 
to tackle this problem. 

B. TGPM-ALL Algorithm 

The following is the baseline version of our algorithm: 
Algorithm 1. TGPM-ALL 

1: Q ← insert new test cases into queue sorted according to constraint 

(4); 

2: T_guess ← get earliest test case for each task from Q; 

3: compute f* for each task in T_guess; 

4: f ← call barrier(T_guess, f *) to find optimal frequencies; 

5: update f for each task; 

6: T ← Task for T_guess(1); 

7: run checker(T) at the expected or actual completion of T; 

  

8: procedure checker(T) 

9:    if T_guess(1) is for task T then remove it from T_guess; 

10:    if T is actually completed then remove all test cases of T from Q; 

11:    else 

12:       remove T_guess(1) and unfeasible test cases of T from Q; 

13:       if no more test case of T exists in Q then 

14:          run at full speed and run checker(T) on completion of T; 

15:          return; 

16:       end if; 

17:       T_guess ← insert earliest test case for T from Q; 

18:       repeat 4–5; 

19:    end if; 

20:    repeat 6–7; 

21: end procedure 

In lines 1−2, we assume Earliest Deadline First (EDF) 
scheduling [18], sort all test cases for all tasks, and put them in 

Q. For each task Ti, we pick the first test case as *

iτ  and store 

them in T_guess. In lines 3−4, the chosen test cases and con-
straints are passed into the Interior Point algorithm to compute 
an optimal set of frequencies. The algorithm is described in 
details in the next subsection. In line 5, the computed frequen-
cies are enforced. In line 6−7, the expected completion time of 

the first task is computed and checker is scheduled to run at 
that time or when the task actually completes. 

In lines 9−10 if the task is actually completed, all test cases 
of the task is removed in line 11. Otherwise, the task does not 
complete as expected. Lines 12−13 remove all unfeasible test 
cases from Q and checks if there is another feasible test case 
for this task. A test case is feasible if the actual elapsed on-chip 
and off-chip times are smaller than or equal to those of the test 
case. If no such test case exists, line 14 runs the arbitration rule 
for missing deadlines. Otherwise, lines 17−20 put the next test 
case into T_guess, and the algorithm retrieves the task with the 
earliest deadline from T_guess and repeats itself. 

C. Interior Point and Infeasible-Start Newton Methods 

To solve the constrained optimization problem described by 
equation (9), we employ the Interior Point Method with 

indicator function φ(f), and the infeasible start Newton method 
[1]. These algorithms run in polynomial time and are well 
studied in the field of Convex Optimization. Following the 

literature in [1], φ(f) can be approximated using a logarithmic 
barrier function 
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We let 1* denote a real number slightly larger than 1 (we use 
1.000001 in our experiment). This is to overcome the non-zero 
input domain of the log function. The gradient and Hessian 
terms for the problem described by (9) are as follows: 
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We implement the infeasible-start Newton algorithm by 
making use of equations (11) to (13). The optimization algo-
rithm is outlined below. Initializations of parameters in lines 
1−2 are typical values suggested from empirical studies. We 
start the algorithm with a feasible input of normalized 
frequencies of 1 (i.e., full CPU speed). Lines 2−4 narrow down 
the range of the optimal values for the input vector f. Lines 
4−10 are the implementation of Newton method. Specifically, 
lines 7–8 performs backtracking line search by checking 
whether the Euclidean norm of the gradient in equation (11) is 
sufficiently small before updating the vector f. Note that the 
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feasibility check in line 7 ensures that all values in the vector f# 
satisfy constraint (10). 

Algorithm 2. Interior Point Method (barrier) 

1: initialize: � = 0.000001, t = 1, α = 1/3, β = 5/6, µ = 2, and strictly 

feasible f = 1 and f# = 1; 

2: while 3|T|/t ≥ � do 

3:    norm_r ← Compute ∇φ according to equation 11; 

4:    while norm_r > � and f <> f# do 

5:       t ← 1; 

6:       ∆f ← Compute ∇2φ according to equation 12 and 13; 

7:       while norm(∇φ) > (1-α*t)*norm_r or f# not feasible 

8:          t ← β*t, f # ← f+t*∆f, compute ∇φ according to equation 11; 

9:       f ← f#, norm_r ← norm(∇φ); 

10:    end do; 

11: end do 

D. Asymptotic Complexity 

The overall complexity of TGPM-ALL depends on a 

number of parameters, namely n and ∑ =
=

n

i ic
1
τ , the total 

number of test cases. Lines 1, 2, and 17 of Algorithm 1 have 
complexity O(log(c)). Line 3 involves solving n quartic 
equations, which can be achieved in O(n3) as described 
previously. Line 4 converges in exactly b = 









+

−








6

*

log

)/||3log(

γµ

ε EET NPM iterations [1] where ENPM is the 

energy consumed when there is no power management (i.e., 
processor at full speed); E* is the optimal energy consumption; 

and γ is the upper bound on the component values of ∆f 
between two successive Newton iterations (line 4 of Algorithm 
2). In the worst case, the barrier method is called c times. The 
overall complexity of TGPM-ALL is, therefore, O(n3 + log(c) + 
cb), or O(n2 + (log(c) + cb) / n) for each task. 

E. TGPM-N Algorithm 

The number of calls to the barrier method may become 
overwhelming when the total number of test cases is 
reasonably large. To address this problem, we present an 
enhanced version TGPM-N based on TGPM-ALL: 

 
Algorithm 3. TGPM-N 

1–7: (same as TGPM-ALL) 

8: k(Ti) ← 0 for all tasks Ti; 

 procedure checker(T) 

9:    if T_guess(1) is for task T then remove it from T_guess; 

10:    if T is actually expected then remove all test cases of T from Q; 

11:    else 

12:       k(T) ← k(T)+1; 

13:       remove T_guess(1) and unfeasible test cases of T from Q; 

14:       if no more test case of T exists in Q or k(T)=N then 

15:          remove all test cases of T from Q; 

16:          run at full speed and run checker(T) on completion of T; 

17:          return; 

18:       end if; 

19:    repeat 6–7; 

20: end procedure 

Line 8 initializes k to 0 for all tasks. Line 12 keeps track of 
the number of failed test case attempts for task T. If it meets the 
predefined value N, lines 15–16 discard remaining test cases 
for the task and execute the task at full speed until completion. 
The overall complexity is then reduced to O(n2+log(c)/n+Nb) 
for each task.  

V. EVALUATION 

We implemented TGPM-ALL and TGPM-1 in MATLAB 
and compared their performance in terms of energy savings. 
Owing to the potentially large number of tasks and test cases, 
the algorithm must also run efficiently and should not incur too 
much overhead on the system. Hence, we also instrumented the 
two versions to report the number of Newton iterations ex-
ecuted in line 4 of Algorithm 2. In our evaluation, we selected 
the BEST algorithm as the one that always correctly identified 
the test case that best described each task. Although it is not a 
plausible algorithm unless we have knowledge into the future 
as to how all tasks will execute, it nevertheless serves as a 
theoretical bound of our strategy and a reference for compari-
son. 

A. Experimental Setup 

Without loss of generality, we let Ps tA in equation (6) be 0, 
as this factor does not depend on the variables (time or 
frequency) manipulated by our algorithm.  

For the number of tasks n, we experimented with 10, 20, 
and 50 simultaneous tasks for the optimization problem and 
find that for the evaluation criteria stated above, their statistical 
patterns agree with each other. Therefore in the following 
discussions, we only present the results with 20 simultaneous 
tasks. Note that each data point in our figures represents 
average values of 50 trial runs. 

We evaluate the effectiveness of our approach using the 
baseline energy consumption ENPM when all tasks are running 
at full speed. The reported energy consumptions are normalized 
to ENPM.  First we study the effects of energy savings with 

respect to test suite sizes by setting 
)( fP

P
on

off = 0.05, C = 1, off

it
* = 

0 and fmin = 0.2. (We note that the effects of these parameters 
have also been studied by Zhu and Aydin [22].) We summarize 
the findings in Section V-B.  

In our simulation, we randomly generate on

it
*  from 0.1 to 

1.0 based on uniform distribution. To guarantee achievable 
deadlines, we define S > 0 as the amount of slack time between 
task completion at full speed and the deadline. S is expressed as 
a multiple of the full speed execution time. We let S = 1.5 to 
ensure sufficient slack time while we study the effects of test 
suite sizes. After generating all test cases, we randomly pick 
one test case for each task as the true runtime characteristic of 
the task. 

B. Effects of P
off

, C, and off

it
*  

It has been shown in [22] that the effects of these 
parameters are similar on all DVFS-based power management 

schemes. As
)( fP

P
on

off increases, off-chip components consume 

relatively more energy. Intuitively this has an adverse effect on 
all processor-based power management schemes as less power 
can be saved on-chip relatively by frequency and voltage 
manipulation. Conversely, increased switching capacitance (C) 
and off-chip workload reduce energy-efficient frequencies, and 
will therefore benefit all DVFS power schemes.  
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C. Effects of Test Case Size on Energy Consumption 

Figure 2 shows the effects of test suite size on energy savings. 
As expected, TGPM-ALL performs better than TGPM-1 
(denoted by ONCE) in the simulation. TGPM-ALL behaves 
much closer to the hypothetical BEST algorithm. From Figure 
2 with as many as 20 simultaneous tasks and 10 test cases per 
task, it can still save up to 60% of CPU power compared to the 
case when no power management scheme is active, although it 
slowly deteriorates as the number of test cases and failed test 
cases increases. Note that the performance of BEST is 
unaffected by test suite size since we assume that it always 
picks the correct test case regardless of test suite size. 

 
Figure 2. Effects of test suite size on energy consumption. 

D. Effects of Slacks on Energy Consumption 

Another important factor that affects energy savings is the 
amount of available slacks. Figure 3 shows that all three 
algorithms achieve more energy savings as the available slacks 
increase. Note that TGPM-ALL and BEST have very similar 
sensitivity to available slacks. As S increases from 0.1 to 1.5 
times of the full speed execution time, both can achieve 
additional energy savings of about 54% (from 17% to 71%). 
On the other hands, TGPM-1’s energy savings only increases 
by 29% (from 14% to 43%) for the same increase of available 
slacks. This can be explained by the fact that TGPM-1 only 
benefits from the additional slacks of the first test case, and 
then switches to full speed immediately if the case fails. 

To put the energy savings in the context of CO2 emissions, 
let us consider the amount of CO2 emissions generated by the 
ICT sector, which was 3.5% [7] of total global emissions as of 
2006 [11]. Suppose 1% of the emissions is related to embedded 
systems with devices capable of implementing our proposed 
algorithm TGPM-1 with an average of 10% slack time in 
deadlines. The reduction of CO2 emissions will be roughly 
equivalent to the emission of 255,437 average cars commuting 
for one year [5]. 

 
Figure 3. Effects of slacks on energy consumption. 

E. Effects of Test Case Size on Efficiency 

In the previous criteria, TGPM-ALL is shown to be effective in 
energy savings. Figure 3 shows that TGPM-1 is more efficient 
and is comparable to the BEST algorithm. The runtime of the 
algorithm increases linearly for TGPM-ALL; whereas the other 
two algorithms are unaffected by test suite size. It is also 
interesting to note that the position of the best test case for each 
task also plays a role in the efficiency of TGPM-ALL. In 
Figure 4, we include two scenarios: ALL (worst) and ALL 
(random). ALL (worst) always assigns the test case with the 
latest deadline as the correct test case of each task. ALL 
(random), on the other hand, randomly assigns the correct test 
case for each task in the simulation. We see that the increase of 
execution time in the scenario of ALL (worst) is noticeably 
faster than in the scenario of ALL (random). This reflects the 
performance / energy tradeoff for both the tasks and the 
frequency assignment algorithm itself. TGPM-1 ensures shorter 
completion of tasks and efficient frequency assignment by 
switching to full speed after the most probable test case fails to 
hold. 

 
Figure 4. Effects of test suite size on efficiency. 

There are a couple of threats to validity about the experi-
ment. First, owing to the use of synthetic test cases, our simula-
tion model cannot accurately model the fact that the first test 
case for each task always has the highest probability of predict-
ing the actual execution times than remaining cases. It may be 
to the advantage of TGPM-1 if we consider overall energy 
consumption in the long run with probabilities. Second, we 
only compare one instance of TGPM-N in this paper. The 
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results of other instances are uncertain. However, we believe 
that they tend to lie between TGPM-ALL and TGPM-1. 

VI. CONCLUSION 

Energy efficiency of embedded systems is becoming more 
important owing to environmental issues. Most processors 
today support DVFS, which allows the scaling down of CPU 
voltage and frequency to save energy. Many proposed 
frequency assignment strategies only consider minimization of 
power consumption and meeting real-time task deadlines. We 
have presented a heuristic algorithm to handle the frequency 
assignment problem for embedded systems with multiple soft 
deadlines. We have modeled the problem as a convex 
optimization problem and utilized the Interior Point method in 
our algorithm to solve for optimal frequencies. To allow 
flexibility in maintaining performance, our approach accepts 
multiple target deadlines for each task. We have developed the 
TGPM algorithms to try all or part of the supplied test cases. 
We also reported an experiment on the performance and 
efficiency aspect of our MATLAB implementation. The 
empirical results show that the TGPM algorithms can be 
effective in leveraging performance and energy savings. 

There are various future directions to explore. First, it will 
be interesting to study the effects of multiple deadlines with a 
real execution on an embedded system possibly with multi-core 
processors. Careful selection and filtering of test cases can 
significantly improve the performance of TGPM. Automation 
of this process will simplify and contribute to better energy 
savings. Another direction is to explore more efficient 
algorithms to solve the optimization problem. 
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