

Leveraging Performance and Power Savings for

Embedded Systems using Multiple Target

Deadlines
*

Edward Y. Y. Kan

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

yyekan@cs.hku.hk

W. K. Chan
†

Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T. H. Tse

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract — Tasks running on embedded systems are often asso-

ciated with deadlines. While it is important to complete tasks

before their associated deadlines, performance and energy con-

sumption also play important roles in many usages of embedded

systems. To address these issues, we explore the use of Dynamic

Voltage and Frequency Scaling (DVFS), a standard feature avail-

able on many modern processors for embedded systems. Previous

studies often focus on frequency assignment for energy savings

and meeting definite task deadlines. In this paper, we present a

heuristic algorithm based on convex optimization techniques to

compute energy-efficient processor frequencies for soft real-time

tasks. Our novel approach provides performance improvements

by allowing definitions of multiple target deadlines for each task.

We simulate two versions of our algorithm in MATLAB and

evaluate their performance and efficiency. The experimental

results show that our strategy leverages performance and energy

savings, and can be customized to suit practical applications.

Keywords — DVFS; multiple deadlines; power savings; energy;

convex optimization

I. INTRODUCTION *†

The development of embedded systems with real-time con-
straints should consider not only the traditional aspects such as
effective task scheduling and accurate execution time predic-
tion, but also the environmental horizon such as minimizing
energy consumption while providing sufficient performance to
users. Consider a user operating a wireless barcode scanner
running on a real-time OS. Such a scenario frequently occurs
during stocktaking in a supermarket. Provided with a legible
piece of barcode and an operational profile of barcode
scanning, a deadline may be defined for the task of reading the
barcode. If the deadline is missed, the scanner is deemed to be
unable to recognize the barcode. Though undesirable,
occasional deadline violations may be tolerated; hence, this

* This work is supported in part by the General Research Fund of the

Research Grants Council of Hong Kong (project numbers 111107, 123207,

and 717308) and the Strategic Research Grant of City University of Hong

Kong (project numbers 7008039 and 7002464).

† All correspondence should be addressed to Dr. W. K. Chan at Department of

Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong

Kong. Tel: (+852) 2788 9684. Fax: (+852) 2788 8614. Email:

wkchan@cs.cityu.edu.hk.

kind of deadline is called a soft deadline. If we attempt to
increase the power of the laser beam module and the decoding
processor to shorten the scanning time, more cycles can be
completed, which may lead to an improvement in operational
efficiency. On the other hand, if the scanning time is too short,
the collaborating human action may not be able to move the
scanner fast enough to feed the barcode, which worsens the
effective utilization of the application and its battery power.
The issue of energy consumption does not limit itself to
battery-powered embedded devices, but also to embedded
systems that remain running for long periods of time on
stationary power. A scheduling display system in a train
station and a household intruder alarm system are two
examples of such embedded systems.

A recent survey shows that the Information and Commu-
nication Technologies (ICT) sector has a carbon footprint equal
to the aviation industry, accounting for 3–4% of the world’s
carbon emissions [7]. Take the above stocktaking scenario as
an example. If there are only 100 such devices used on Hong
Kong Island and each device can save merely 1 Watt,
according to the calculation provided by National
Semiconductor [13] as shown in Figure 1, it helps save 1666
pounds of CO2 emissions per year.

Figure 1. CO2 emissions from 100 scanners (according to [13]).

To this end, in this paper, we address the problem by
utilizing the dynamic voltage and frequency scaling (DVFS)
that comes with many modern processors such as Intel’s
Enhanced Intel Speedstep® Technology [9]. The general idea
is a well-received concept: By lowering the processor fre-
quency and voltage dynamically, the workload of an applica-
tion could be spread over a period of time in return for energy
savings. For CPU-bound tasks such as decoding barcode strips

2010 10th International Conference on Quality Software

1550-6002/10 $26.00 © 2010 IEEE

DOI 10.1109/QSIC.2010.59

473

into readable characters, we define workload as the number of
processor cycles required to complete the task.

The relationship between power consumption (P), voltage
(V), and frequency (f) can be estimated as follows [23]:

)2(

)1(2

fV

fVP

∝

∝

In other words, as frequency is reduced linearly, voltage is also
reduced linearly in a predetermined, hardware-specific fashion.
This will result in energy savings in approximately cubic order
and only gradual performance degradation.

Reducing voltage and frequency does not necessarily
reduce power consumption owing to the longer time it takes to
complete a task. In our study, we model the problem as a
constrained optimization problem in finding the CPU frequen-
cies that minimize the overall energy consumption for all tasks,
with task deadlines as constraints. Once the optimal frequen-
cies are computed, the processor is set to run at the computed
frequency (and the corresponding stable voltage) during the
execution of each task. The problem is challenging in practice
because the underlying processors only support a discrete
number of frequencies, which makes the problem NP-hard
[21][22]. It is unlikely that there exists an efficient algorithm
that solves the problem in the polynomial time [6]. Conse-
quently, like many other researchers, we first assume a conti-
nuous spectrum of processor speeds being available. After
computing the optimal frequency fi for a task Ti over a time
period ti, we attempt to simulate the execution using the lower
adjacent frequency fA and the higher adjacent frequency fB over
time periods tA and tB such that

)()()(iBA

iBA

BBAAii

fEfEfE

ttt

tftftf

≤+

≤+

+=

where E(fi) denotes the processor energy computation when the
processor is running at frequency fi. Chen et al [3] showed in
their experiment that the above linear combination achieves
lower energy consumption than running at fB over the entire
duration ti.

As pointed out in recent research [2][4][15], it is important
not to overlook the energy consumptions of other system
components such as memory, I/O devices, and basic circuitry.
In our study, we model system-wide energy consumption by
decomposing power usage and execution times into frequency-
dependent and frequency-independent variables to reflect on-
chip (i.e., CPU) and off-chip (i.e., other components)
computations respectively.

In this paper, we consider a novel extension to the tradi-
tional definition of deadlines by allowing a finite number of
possible “deadlines” for each task. To clarify this point, let us
consider a simplistic version of the above-mentioned example
with barcode scanner:

TABLE 1. EXAMPLE OF BARCODE SCANNER

Case Prob
Full-Speed

Time (ms)

Deadline

(ms)

1 95% 500 800

2 5% 1500 2000

We suppose that the scanner can read a barcode in 500 ms

for 95% of the time (case 1), and takes 1500 ms at the worst

case for the remaining 5% (case 2). Moreover, we further
assume that the entire duration is dominant by the CPU
component (i.e., the on-chip component), and that each barcode
scanning should not take more than 2 s (or 2000 ms). Applying
our approach, two “target deadlines” may be defined for this
scanning task: first at 800 ms and the second at 2000 ms. Our
frequency assignment algorithm first takes the value of 800 ms
with respect to the offset of the task as the target deadline for
the task and computes the optimal frequencies. The idea is that
since 95% of all executions complete in 500 ms at full speed,
energy savings by reducing processor frequency is already
possible with the 800 ms deadline. Performance deterioration
can also be controlled to within 800–500=300 ms. If the first
target is missed, the algorithm then takes 2000 ms as the
deadline and computes another set of frequencies. In this case,
the execution is assumed to behave as in the worst-case
scenario, and the goal of the algorithm now is to fulfill the
second deadline while still attempting to conserve energy.

While the worst-case deadline is usually defined based on
application-specific requirements, definition of other target
deadlines does not necessarily involve much additional efforts
because these can be inferred from the operational profiles of
the tasks by adding a fixed percentage of the execution time as
slacks. Referring to the example above, we add 60% slacks to
the usual execution time of 500 ms as the corresponding target
deadline of 800 ms. The fixed percentage can be applied to all
operational profiles to infer multiple target deadlines provided
that the computed deadlines do not exceed the worst-case
deadline (2000 ms in the above example).

The main contribution of this paper is twofold: First, we
develop a multi-deadline frequency assignment strategy that
supports various performance levels for most executions of
each task and attempts to enforce the task deadline with respect
to the worst-case execution scenario. Our strategy is able to
minimize the energy consumption in either case. Second, we
report a simulation study on our strategy. The experiment result
shows that with the presence of 150% slack time, the two
versions of our algorithms achieve 52% energy savings on
average compared to without any power management scheme,
and up to 72% savings if all execution times are accurately
predicted.

For the rest of the paper, unless otherwise noted, we denote
the set of execution times and deadlines for each task as
prediction cases or test cases, and a selected deadline for a task
at any instant of the algorithm execution as a deadline. A test
case holds if it correctly predicts the timing of an execution.

The rest of the paper is organized as follows: Section II
summarizes the related research. Section III formulates our
optimization problem. Section IV describes our algorithm and
its variations. Section V presents the empirical results and our
evaluation. Section VI concludes the paper.

II. RELATED WORK

A. Power-Aware Frequency Assignments

A number of earlier studies focus on processor power
savings without considering energy consumed by other off-chip
system components [8][19]. Existing approaches can be classi-
fied into three categories: interval, inter-task, and intra-task.

474

Weiser et al adopted an interval approach in [19] by
monitoring CPU utilization at regular intervals. Based on the
statistics gathered, the clock frequency and voltage are reduced
whenever the utilization drops below a predefined threshold.
On the other hand, the CPU is accelerated again if the
utilization percentage exceeds a certain threshold. The idea is
to minimize energy consumption by reducing the amount of
idle time in serving the same number of requests. Because the
algorithm only utilizes data from the preceding round of the
task execution, its prediction of future CPU utilization can be
inaccurate, resulting in a suboptimal frequency assignments.

Inter-task approach works at a finer granularity by
assigning different frequencies per task rather than per interval.
Shin and Choi [17] considered a modified scheduler for fixed
priority scheduling in hard real-time systems. Their approach
aims at lowering the frequency during the intervals in between
executions of different tasks when the CPU is idle. CPU
frequency and voltage of the active task is reduced whenever
there is no task pending for immediate execution (i.e., in the
run queue). If the CPU is predicted to be idle for sufficiently
long time, the system enters power-down mode. Shin and Choi
incorporated the rate of change of processor speed into their
calculation of the optimal frequency. However, due to the
expensive computation involved, they resorted to a heuristic
solution that disregarded this factor in return for less overhead
in the scheduling algorithm. The algorithm works well
experimentally across several subject applications, and
achieves better energy savings than the selected interval
techniques despite that its accuracy is subject to the duration in
between speed changes. If the processor speed changes
frequently, the simplified heuristics in the algorithm may not
harvest all potential power savings. Our approach can be
classified as an inter-task as we compute distinct frequency per
task. However our approach is different from [17] in that we
utilize operational profiles of the tasks to compute CPU
frequencies instead of referring to the current workload. Unlike
[17], in our approach, the rate of change of processor speed
does not depend on whether the run queue is empty.

Intra-task energy optimization allows a task to be run at
different frequencies throughout its execution period. Unlike
the inter-task strategies, the intra-task approach may require
additional information of each task at the design time or at the
run-time (e.g., function/method of the high-level application
being executed on a virtual machine) to determine its optimal
frequency at any point in time. An example of this approach is
presented by Rauch et al [14] where the Java Virtual Machine
(JVM) is used to profile the CPU, memory, and I/O access of
an application. The statistics collected in the execution context
are checked by a separate thread at regular intervals and the
processor frequency is changed if the application exhibits a
high degree of off-chip activities in the past interval. Therefore
their approach can be classified as a hybrid intra-task/interval
approach where statistics of a task is collected alongside its
execution in the JVM, and CPU frequency is adjusted at
regular intervals. Implementing energy saving algorithms at the
JVM level is beneficial in the sense that more programming
constructs are available for considerations by a frequency
assignment algorithm compared to relying solely on an
operating system. The proposed algorithm is implemented as a
standard Java interface, which targets it to be platform-

independent. Conversely, the implementation is limited to
applications where runtime instrumentation is possible (such as
those written in Java), and imposes 2–6% instrumentation
overhead by inserting profiling codes within the execution
context of applications monitored. Our approach can also be
classified as intra-task in the case if an initial test case fails to
predict the completion of a task (after 800 ms in our previous
example in Section I), our algorithm computes the frequency
assignment for the remaining execution of this task and
assumes that the next test case holds under the newly computed
frequency assignment.

Variable deadlines have been proposed and studied by Shih
and Liu [16]. They considered the case when deadlines of tasks
can be constantly changing during their executions. Their
approach models the deadline as a random process, and utilizes
historical data sampling and simulations to construct
probability distribution functions for different elapsed times
since the first arrival of a task. A requirement engine is
introduced to track changes in timing requirements for the
underlying scheduling algorithm. Although our approach is
similar in that each task may be associated with different
deadlines at different times, our approach focuses on finding
optimal frequency assignments with predefined deadlines,
while Shih and Liu focus on how to gather updated deadlines
without providing a concrete implementation of frequency
assignment.

B. Virtual Machine Instrumentation and Profiling

It is important to mention virtual machine instrumentation
because it can help automate the test case generation process.
Similar to [10], [14], and many other studies, our approach
relies on execution timing and deadlines (namely test cases as
we define in Section I) which can be programmatically
collected by means of instrumentation without the need to
change the application source code. For instance, functions and
methods of a program written in a high-level programming
language can be instrumented for timing prediction of normal
and worst-case executions. Deadlines for normal test cases can
also be deduced manually or automatically from these data.
Wilhelm et al [20] presented an overview of the methodology
and tools available to determine worst-case execution times for
real-time tasks. Although in this paper we assume that we are
given the test cases, the analysis and automation tools
described above show that gathering the execution times
required in our approach is technically feasible.

III. OUR MODEL

In this section, we formulate our model formally.

A. Worst-Case Execution Time

Consider a set of independent tasks {T1, …, Tn}. To
compute the energy consumption of a task Ti, we need to
examine the effect of processor frequency on the execution
time. Following the previous work [4], we define the worst-
case execution time (WCET) as the longest time to complete a
task at the full processor speed. In the presence of off-chip
computations, similar to [4], we further decompose the WCET
of each task execution into an on-chip component and an off-
chip component. Assuming a single processor system, the
WCET wi of task Ti is:

475

off

i

on

ii www +=

where on

iw is the execution time on-chip and is dependent on

CPU frequency; off

iw is the execution time off-chip and is

independent of CPU frequency. To reflect the change in CPU
frequency on the overall execution time, we assume that at a
lower frequency, the on-chip component takes proportionally

longer period (i.e.,
f

w
on

i) to do the same amount of work in

terms of number of CPU cycles. The execution time ti (f) of
task Ti is:

]1,0()(

,
∈+= fw

f

w
ft

off

i

on

i
i

 (3)

where f is frequency normalized to 1 when the CPU is at its
maximum speed.

B. Test Cases and Deadlines

We define test cases τij for task Ti as triples sorted in
ascending order of target deadlines:

 τij = (on

jit , off

jit , Dij), 1 ≤ i ≤ n, 1 ≤ j ≤ |τi|

*

iτ =),,(***

i

off

i

on

i Dtt , 1 ≤ i ≤ n

 Di j ≤ Di k , if 1 ≤ j < k ≤ |τi| (4)

where on

jit , off

jit , and Dij are the on-chip, off-chip execution

times, and deadline of each test case respectively; |τi| is the

number of test cases for the task; and
*

iτ is the test case selected

by the algorithm for Ti. Note that if there is any task that cannot
meet its deadline even when the processor is running at full
speed, we will refer to the default rule of arbitration (i.e., reject
the task or simply run at full speed).

We recall that the purpose of allowing multiple test cases
for a task is to sustain the performance for execution scenarios
that are more likely to occur than the worst-case scenario, it
follows that for each task Ti,
 P(τij) ≥ P(τik), if 1 ≤ j < k ≤ ci (5)

 1)(
1

≤∑ = ij

c

j

i

P τ  for all i

where P(τij) is the probability that τij holds for task Ti.

C. Energy Model

We adopt the system-wide energy model presented in [22]
and [23], which also takes into account the off-chip and on-
chip power consumptions. For any unit of time (tA) spent
performing task Ti, power is consumed by the following active
components during the execution of Ti: frequency-sensitive
components (denoted as)(fP

on

i
), frequency-insensitive

components that can be put into sleep modes when not running
Ti (denoted as off

iP), and other components that consume static

power during the execution of Ti (denoted as PS). Sensitivity to
frequency is defined as whether a component consumes
different amounts of energy when the corresponding CPU
frequency is changed. Following equations (1) and (2), we
model energy utilization as:

)())(

)())(()(

3
ftfCPtP

ftfPPtPfE

ii

off

iAs

i

on

i

off

iAsi

++=

++= (6)

where tA is the time period allocated to Ti; Ci is the task-specific
effective capacitance being switched per clock cycle. Note that
we refer to equation (3) in the context of WCET and expand

ti(f) to on

iw and off

iw in equations (7) and (8) below. These

terms can be replaced with on

it
* and off

it
* in the context of test

cases. Taking the first derivative, we have:

22 23)(−−+=′ fwPfwCfwCfE

on

i

off

i

on

ii

off

iii (7)

We further take the second derivative:

3226)(−++=′′ fwPwCfwCfE

on

i

off

i

on

ii

off

iii (8)

For ,0,0, ≥> off

ii Pwf we have equation (8) > 0, which

shows that equation (6) is convex.
We can set equation (7) to 0 and solve the quartic equation

for f analytically. It has been shown that solving v quartic
equations can be achieved in O(v3) time [12]. For the special
case where there is no off-chip time, reference [22] presents a
close formula for solving the optimal frequency f*. We define

*

if as the maximum of f* considering only task Ti, and fmin, the

lowest frequency supported by the processor normalized to 1.
In general, since dom(Ei) is the set of all positive real numbers
which is also convex, our problem can be formulated into a
convex optimization problem with constraints.

D. Convex Optimization Problem

Given the above model, we formulate our optimization
problem as follows:

(10) 1 0 ,1

(9)n 1,...,ifor ,) (s.t.

)(min

*
i

*

**
*

i

i

≤<≤≤

=≤+∑

∑

fff

Dt
f

t

fE

ii

i
off

i
i

on
i

ii

Constraint (9) ensures that each task is completed before its
selected deadline. Since the objective function is a summation
of convex functions of fi as discussed in the previous
subsection, the optimization problem is also convex.

IV. ALGORITHM

A. Preprocessing of Test Cases

Constraints (4) and (5) specify the rules when defining test
cases. It is worthy to note that real-life executions of tasks may
not follow these constraints. We illustrate our algorithm using
the hypothetical execution times of an arbitrary task Ti as
shown in Table 2. First of all, notice that τi2 and τi3 are nearly
identical. We can combine them into τi23 = (10, 0, 20) with
probability 0.2 in order to reduce the incurred computation
overhead. To satisfy constraint (4), we first sort the test cases
by deadlines in ascending order: {τi23, τi5, τi4, τi1}. However, this
sequence violates constraint (5) because P(τi23) < P(τi5). In this
case, we remove τi23 from the test suite. If further reduction of
the test suite size is required owing to practical limitations, test

476

cases may be combined further to achieve this goal. For
instance if only 2 test cases are allowed per task, one may
combine τi2, τi3, τi4, and τi5 into a new test case with the
weighted average of the execution times. For the rest of the
discussion, we assume the given test cases are preprocessed
and follow these constraints. It will be interesting to investigate
as a separate study whether automatic preprocessing can be
done effectively.

TABLE 2. EXAMPLE OF TEST CASE PREPROCESSING

Case P(τi j)
on

jit
off

jit Di j

τi1 0.1 40 0 100

τi2 0.1 10.001 0 20

τi3 0.1 10 0 20

τi4 0.3 30 0 60

τi5 0.4 20 0 40

Preprocessing test sets may reduce the number of test cases
per task but we can never be definite which test case will most
accurately describe the on-chip and off-chip execution times of
a task. To ensure that deadlines are met in all cases, a simple
solution is to consider all test cases in constraint (9). However
this prevents maximum energy savings since additional con-
straints that do not accurately predict task executions are
included into the computation. In this paper, we present our
heuristic Test-Guided Power Management (TGPM) algorithms
to tackle this problem.

B. TGPM-ALL Algorithm

The following is the baseline version of our algorithm:
Algorithm 1. TGPM-ALL

1: Q ← insert new test cases into queue sorted according to constraint

(4);

2: T_guess ← get earliest test case for each task from Q;

3: compute f* for each task in T_guess;

4: f ← call barrier(T_guess, f *) to find optimal frequencies;

5: update f for each task;

6: T ← Task for T_guess(1);

7: run checker(T) at the expected or actual completion of T;

8: procedure checker(T)

9: if T_guess(1) is for task T then remove it from T_guess;

10: if T is actually completed then remove all test cases of T from Q;

11: else

12: remove T_guess(1) and unfeasible test cases of T from Q;

13: if no more test case of T exists in Q then

14: run at full speed and run checker(T) on completion of T;

15: return;

16: end if;

17: T_guess ← insert earliest test case for T from Q;

18: repeat 4–5;

19: end if;

20: repeat 6–7;

21: end procedure

In lines 1−2, we assume Earliest Deadline First (EDF)
scheduling [18], sort all test cases for all tasks, and put them in

Q. For each task Ti, we pick the first test case as *

iτ and store

them in T_guess. In lines 3−4, the chosen test cases and con-
straints are passed into the Interior Point algorithm to compute
an optimal set of frequencies. The algorithm is described in
details in the next subsection. In line 5, the computed frequen-
cies are enforced. In line 6−7, the expected completion time of

the first task is computed and checker is scheduled to run at
that time or when the task actually completes.

In lines 9−10 if the task is actually completed, all test cases
of the task is removed in line 11. Otherwise, the task does not
complete as expected. Lines 12−13 remove all unfeasible test
cases from Q and checks if there is another feasible test case
for this task. A test case is feasible if the actual elapsed on-chip
and off-chip times are smaller than or equal to those of the test
case. If no such test case exists, line 14 runs the arbitration rule
for missing deadlines. Otherwise, lines 17−20 put the next test
case into T_guess, and the algorithm retrieves the task with the
earliest deadline from T_guess and repeats itself.

C. Interior Point and Infeasible-Start Newton Methods

To solve the constrained optimization problem described by
equation (9), we employ the Interior Point Method with

indicator function φ(f), and the infeasible start Newton method
[1]. These algorithms run in polynomial time and are well
studied in the field of Convex Optimization. Following the

literature in [1], φ(f) can be approximated using a logarithmic
barrier function

)*1log(
1

)log(
1

) log(
1

)(*

i

i

ii

off

i

i

on

i
i

f
t

ff
t

w
f

w
D

t
f

−−

−−−−−= ∑φ
, t→∞

We let 1* denote a real number slightly larger than 1 (we use
1.000001 in our experiment). This is to overcome the non-zero
input domain of the log function. The gradient and Hessian
terms for the problem described by (9) are as follows:

(11)
1

*1

1

)(*2 













−
−

−
+

−
−=











∂

∂
=∇

iiiii

on
i

i fffwDf

w

f

φ
φ



















<

−
+

−

=+
−

+−

>
−

=














∂∂

∂
=∇

ji

fff

ji
wDf

wwDfw

ji
fwDf

wfw

ff

iii

ii

on
iii

on
i

jii

on
ji

on
i

ji

, 0

)(

1

)*1(

1

(12) ,
)(

))(2(

,
)(

2*2

24

224

2

2
2 φ
φ

∑
=

+=

i

j

off
j

j

on
j

w
f

w
w

1

(13)

We implement the infeasible-start Newton algorithm by
making use of equations (11) to (13). The optimization algo-
rithm is outlined below. Initializations of parameters in lines
1−2 are typical values suggested from empirical studies. We
start the algorithm with a feasible input of normalized
frequencies of 1 (i.e., full CPU speed). Lines 2−4 narrow down
the range of the optimal values for the input vector f. Lines
4−10 are the implementation of Newton method. Specifically,
lines 7–8 performs backtracking line search by checking
whether the Euclidean norm of the gradient in equation (11) is
sufficiently small before updating the vector f. Note that the

477

feasibility check in line 7 ensures that all values in the vector f#
satisfy constraint (10).

Algorithm 2. Interior Point Method (barrier)

1: initialize: � = 0.000001, t = 1, α = 1/3, β = 5/6, µ = 2, and strictly

feasible f = 1 and f# = 1;

2: while 3|T|/t ≥ � do

3: norm_r ← Compute ∇φ according to equation 11;

4: while norm_r > � and f <> f# do

5: t ← 1;

6: ∆f ← Compute ∇2φ according to equation 12 and 13;

7: while norm(∇φ) > (1-α*t)*norm_r or f# not feasible

8: t ← β*t, f # ← f+t*∆f, compute ∇φ according to equation 11;

9: f ← f#, norm_r ← norm(∇φ);

10: end do;

11: end do

D. Asymptotic Complexity

The overall complexity of TGPM-ALL depends on a

number of parameters, namely n and ∑ =
=

n

i ic
1
τ , the total

number of test cases. Lines 1, 2, and 17 of Algorithm 1 have
complexity O(log(c)). Line 3 involves solving n quartic
equations, which can be achieved in O(n3) as described
previously. Line 4 converges in exactly b =









+

−








6

*

log

)/||3log(

γµ

ε EET NPM iterations [1] where ENPM is the

energy consumed when there is no power management (i.e.,
processor at full speed); E* is the optimal energy consumption;

and γ is the upper bound on the component values of ∆f
between two successive Newton iterations (line 4 of Algorithm
2). In the worst case, the barrier method is called c times. The
overall complexity of TGPM-ALL is, therefore, O(n3 + log(c) +
cb), or O(n2 + (log(c) + cb) / n) for each task.

E. TGPM-N Algorithm

The number of calls to the barrier method may become
overwhelming when the total number of test cases is
reasonably large. To address this problem, we present an
enhanced version TGPM-N based on TGPM-ALL:

Algorithm 3. TGPM-N

1–7: (same as TGPM-ALL)

8: k(Ti) ← 0 for all tasks Ti;

 procedure checker(T)

9: if T_guess(1) is for task T then remove it from T_guess;

10: if T is actually expected then remove all test cases of T from Q;

11: else

12: k(T) ← k(T)+1;

13: remove T_guess(1) and unfeasible test cases of T from Q;

14: if no more test case of T exists in Q or k(T)=N then

15: remove all test cases of T from Q;

16: run at full speed and run checker(T) on completion of T;

17: return;

18: end if;

19: repeat 6–7;

20: end procedure

Line 8 initializes k to 0 for all tasks. Line 12 keeps track of
the number of failed test case attempts for task T. If it meets the
predefined value N, lines 15–16 discard remaining test cases
for the task and execute the task at full speed until completion.
The overall complexity is then reduced to O(n2+log(c)/n+Nb)
for each task.

V. EVALUATION

We implemented TGPM-ALL and TGPM-1 in MATLAB
and compared their performance in terms of energy savings.
Owing to the potentially large number of tasks and test cases,
the algorithm must also run efficiently and should not incur too
much overhead on the system. Hence, we also instrumented the
two versions to report the number of Newton iterations ex-
ecuted in line 4 of Algorithm 2. In our evaluation, we selected
the BEST algorithm as the one that always correctly identified
the test case that best described each task. Although it is not a
plausible algorithm unless we have knowledge into the future
as to how all tasks will execute, it nevertheless serves as a
theoretical bound of our strategy and a reference for compari-
son.

A. Experimental Setup

Without loss of generality, we let Ps tA in equation (6) be 0,
as this factor does not depend on the variables (time or
frequency) manipulated by our algorithm.

For the number of tasks n, we experimented with 10, 20,
and 50 simultaneous tasks for the optimization problem and
find that for the evaluation criteria stated above, their statistical
patterns agree with each other. Therefore in the following
discussions, we only present the results with 20 simultaneous
tasks. Note that each data point in our figures represents
average values of 50 trial runs.

We evaluate the effectiveness of our approach using the
baseline energy consumption ENPM when all tasks are running
at full speed. The reported energy consumptions are normalized
to ENPM. First we study the effects of energy savings with

respect to test suite sizes by setting
)(fP

P
on

off = 0.05, C = 1, off

it
* =

0 and fmin = 0.2. (We note that the effects of these parameters
have also been studied by Zhu and Aydin [22].) We summarize
the findings in Section V-B.

In our simulation, we randomly generate on

it
* from 0.1 to

1.0 based on uniform distribution. To guarantee achievable
deadlines, we define S > 0 as the amount of slack time between
task completion at full speed and the deadline. S is expressed as
a multiple of the full speed execution time. We let S = 1.5 to
ensure sufficient slack time while we study the effects of test
suite sizes. After generating all test cases, we randomly pick
one test case for each task as the true runtime characteristic of
the task.

B. Effects of P
off

, C, and off

it
*

It has been shown in [22] that the effects of these
parameters are similar on all DVFS-based power management

schemes. As
)(fP

P
on

off increases, off-chip components consume

relatively more energy. Intuitively this has an adverse effect on
all processor-based power management schemes as less power
can be saved on-chip relatively by frequency and voltage
manipulation. Conversely, increased switching capacitance (C)
and off-chip workload reduce energy-efficient frequencies, and
will therefore benefit all DVFS power schemes.

478

C. Effects of Test Case Size on Energy Consumption

Figure 2 shows the effects of test suite size on energy savings.
As expected, TGPM-ALL performs better than TGPM-1
(denoted by ONCE) in the simulation. TGPM-ALL behaves
much closer to the hypothetical BEST algorithm. From Figure
2 with as many as 20 simultaneous tasks and 10 test cases per
task, it can still save up to 60% of CPU power compared to the
case when no power management scheme is active, although it
slowly deteriorates as the number of test cases and failed test
cases increases. Note that the performance of BEST is
unaffected by test suite size since we assume that it always
picks the correct test case regardless of test suite size.

Figure 2. Effects of test suite size on energy consumption.

D. Effects of Slacks on Energy Consumption

Another important factor that affects energy savings is the
amount of available slacks. Figure 3 shows that all three
algorithms achieve more energy savings as the available slacks
increase. Note that TGPM-ALL and BEST have very similar
sensitivity to available slacks. As S increases from 0.1 to 1.5
times of the full speed execution time, both can achieve
additional energy savings of about 54% (from 17% to 71%).
On the other hands, TGPM-1’s energy savings only increases
by 29% (from 14% to 43%) for the same increase of available
slacks. This can be explained by the fact that TGPM-1 only
benefits from the additional slacks of the first test case, and
then switches to full speed immediately if the case fails.

To put the energy savings in the context of CO2 emissions,
let us consider the amount of CO2 emissions generated by the
ICT sector, which was 3.5% [7] of total global emissions as of
2006 [11]. Suppose 1% of the emissions is related to embedded
systems with devices capable of implementing our proposed
algorithm TGPM-1 with an average of 10% slack time in
deadlines. The reduction of CO2 emissions will be roughly
equivalent to the emission of 255,437 average cars commuting
for one year [5].

Figure 3. Effects of slacks on energy consumption.

E. Effects of Test Case Size on Efficiency

In the previous criteria, TGPM-ALL is shown to be effective in
energy savings. Figure 3 shows that TGPM-1 is more efficient
and is comparable to the BEST algorithm. The runtime of the
algorithm increases linearly for TGPM-ALL; whereas the other
two algorithms are unaffected by test suite size. It is also
interesting to note that the position of the best test case for each
task also plays a role in the efficiency of TGPM-ALL. In
Figure 4, we include two scenarios: ALL (worst) and ALL
(random). ALL (worst) always assigns the test case with the
latest deadline as the correct test case of each task. ALL
(random), on the other hand, randomly assigns the correct test
case for each task in the simulation. We see that the increase of
execution time in the scenario of ALL (worst) is noticeably
faster than in the scenario of ALL (random). This reflects the
performance / energy tradeoff for both the tasks and the
frequency assignment algorithm itself. TGPM-1 ensures shorter
completion of tasks and efficient frequency assignment by
switching to full speed after the most probable test case fails to
hold.

Figure 4. Effects of test suite size on efficiency.

There are a couple of threats to validity about the experi-
ment. First, owing to the use of synthetic test cases, our simula-
tion model cannot accurately model the fact that the first test
case for each task always has the highest probability of predict-
ing the actual execution times than remaining cases. It may be
to the advantage of TGPM-1 if we consider overall energy
consumption in the long run with probabilities. Second, we
only compare one instance of TGPM-N in this paper. The

479

results of other instances are uncertain. However, we believe
that they tend to lie between TGPM-ALL and TGPM-1.

VI. CONCLUSION

Energy efficiency of embedded systems is becoming more
important owing to environmental issues. Most processors
today support DVFS, which allows the scaling down of CPU
voltage and frequency to save energy. Many proposed
frequency assignment strategies only consider minimization of
power consumption and meeting real-time task deadlines. We
have presented a heuristic algorithm to handle the frequency
assignment problem for embedded systems with multiple soft
deadlines. We have modeled the problem as a convex
optimization problem and utilized the Interior Point method in
our algorithm to solve for optimal frequencies. To allow
flexibility in maintaining performance, our approach accepts
multiple target deadlines for each task. We have developed the
TGPM algorithms to try all or part of the supplied test cases.
We also reported an experiment on the performance and
efficiency aspect of our MATLAB implementation. The
empirical results show that the TGPM algorithms can be
effective in leveraging performance and energy savings.

There are various future directions to explore. First, it will
be interesting to study the effects of multiple deadlines with a
real execution on an embedded system possibly with multi-core
processors. Careful selection and filtering of test cases can
significantly improve the performance of TGPM. Automation
of this process will simplify and contribute to better energy
savings. Another direction is to explore more efficient
algorithms to solve the optimization problem.

REFERENCES

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, 2004.

[2] D. J. Brown and C. Reams. Toward energy-efficient computing.
ACM Queue, 8 (2): 30–43, 2010.

[3] B. Chen, W. P. T. Ma, Y. Tan, A. Fedorova, and G. Mori. GreenRT:
a framework for the design of power-aware soft real-time
applications. In Proceedings of the Workshop on the Interaction
between Operating Systems and Computer Architecture (in
conjunction with the 35th International Symposium on Computer
Architecture (ISCA-35)). Beijing, China, 2008.

[4] K. Choi, W. Lee, R. Soma, and M. Pedram. Dynamic voltage and
frequency scaling under a precise energy model considering variable
and fixed components of the system power dissipation. In
Proceedings of the 2004 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD 2004), pages 29–34. IEEE
Computer Society Press, Los Alamitos, CA, 2004.

[5] Drive Smart Calculator. Available at http://www.
drivesmartsavegreen.com/calculator.html. Last access March 2010.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, New
York, NY, 1990.

[7] Global Action Plan. Inefficient ICT Sector’s Carbon Emissions Set
to Surpass Aviation Industry: December 2007. Available at http://
globalactionplan.org.uk/first-national-survey-reveals-60-businesses-
are-lacking-support-sustainable-ict-strategies-december-.

[8] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis
techniques for low-power hard real-time systems on variable voltage

processors. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS 1998), pages 178–187. IEEE Computer Society
Press, Los Alamitos, CA, 1998.

[9] Intel Corporation. Processors: Frequently asked questions for Intel
Speedstep Technology. Available at http://www.intel.com/support/
processors/sb/CS-028855.htm. Last access March 2010.

[10] S. Liu, Q. Wu, and Q. Qiu. An adaptive scheduling and
voltage/frequency selection algorithm for real-time energy
harvesting systems. In Proceedings of the 46th Annual Design
Automation Conference (DAC 2009), pages 782–787. ACM Press,
New York, NY, 2009.

[11] Millennium Development Goals Indicators. Carbon Dioxide
Emissions (CO2), Thousand Metric Tons of CO2 (CDIAC). 2009.
Available at
http://mdgs.un.org/unsd/mdg/SeriesDetail.aspx?srid=749&crid=.

[12] C. Moler. Cleve's corner: roots — of polynomials, that is. The
MathWorks Newsletter, 5 (1): 8–9, 1991.

[13] National Semicondutor. CO2 Calculator. Available at http://www.
national.com/analog/powerwise/co2_calculator. Last access March
2010.

[14] M. Rauch, A. Gal, and M. Franz. Dynamic adaptive power
management for — and by — a Java virtual machine. Technical
Report No. 06-19. Donald Bren School of Information and
Computer Science, University of California, Irvine, Irvine, CA,
2006.

[15] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. FAST:
frequency-aware static timing analysis. ACM Transactions on
Embedded Computing Systems, 5 (1): 200–224, 2006.

[16] C.-S. Shih and J.W.S. Liu. Acquiring and incorporating state-
dependent timing requirements. Requirements Engineering, 9 (2):
121–131, 2004.

[17] Y. Shin and K. Choi. Power conscious fixed priority scheduling for
hard real-time systems. In Proceedings of the 36th annual
ACM/IEEE Design Automation Conference (DAC 1999), pages
134–139. ACM Press, New York, NY, 1999.

[18] J. A. Stankovic, K. Ramamritham, and M. Spuri. Deadline
Scheduling for Real-Time Systems: Edf and Related Algorithms.
Kluwer Academic Publishers, Norwell, MA, 1998.

[19] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced CPU energy. In Proceedings of the 1st USENIX conference
on Operating Systems Design and Implementation (OSDI 1994),
page Article No. 2. USENIX Association, Berkeley, CA, 1994.

[20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F.
Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom. The
worst-case execution-time problem: overview of methods and
survey of tools. ACM Transactions on Embedded Computing
Systems, 7 (3): Article No. 36, 2008.

[21] X. Zhong and C.-Z. Xu. System-wide energy minimization for real-
time tasks: lower bound and approximation. In Proceedings of the
2006 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD 2006), pages 516–521. ACM Press, New York, NY,
2006.

[22] D. Zhu and H. Aydin. Energy management for real-time embedded
systems with reliability requirements. In Proceedings of the 2006
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD 2006), pages 528–534. ACM Press, New York, NY, 2006.

[23] D. Zhu, R. Melhem, and D. Mosse. The effects of energy
management on reliability in real-time embedded systems. In
Proceedings of the 2004 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD 2004), pages 35–40. IEEE
Computer Society Press, Los Alamitos, CA, 2004.

480

