
A Semantic Context Management Framework on Mobile Device ∗

Dexter H. Hu, Fan Dong, Cho-Li Wang
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong

{hyhu, fdong, clwang}@cs.hku.hk

Abstract

We present a semantic context management framework
named ContextTorrent, which can make various types
of context information be semantically searchable and
sharable among local and remote context-aware applica-
tions. We implement this framework on the Google An-
droid platform with its elegant application support. An
open source RDF parser has been extended to effectively
get RDF triples from files or over the network. Three em-
bedded database systems were evaluated for storing ontol-
ogy represented contexts in the resource-constrained mobile
devices. We use the FOAF ontology schema and a synthetic
data set of up to 2500 records to evaluate the context query
and storage performance. Ordinary context queries can be
replied instantaneously.

1 Introduction

Pervasive and ubiquitous computing promise to tran-

scend traditional desktop computers to physical smart

spaces. It envisions a world where people can always ac-

cess the right information at the right time anywhere. A key

component that realizes this vision is context-awareness, an

application’s ability to detect and react to environment vari-

ables during its interaction with the ambient environment

[15].

Many context-aware applications have been engineered

recently. Most of these efforts focus on middleware sup-

port to fast prototype context-aware applications within lo-

cal smart spaces [13]. These middlewares provide com-

monly reusable software components to develop, integrate,

and deploy context-aware applications [16, 14, 18]. How-

ever, most of these systems were built for specific applica-

tion domain and could be used only by a small user group.

∗This work is supported in part by HKU Basic Research programme

(Grant No. 10400018) and National Natural Science Foundation of China

(Grant No. 60773089).

Real-life pervasive applications that benefit people’s daily

life are still far from fruition. There are several reasons.

First, there lacks standardized infrastructure to provide real-

life context information about public utilities, such as traffic

condition, weather forecast, community notice, bus sched-

ule, etc. Although these context information are generally

available in public, semantic interoperability among mul-

tiple types of context sources remains a challenging issue.

Second, personal context information can be of many dif-

ferent types and natures. A typical context-aware applica-

tion usually has to make use of both high-level contexts

(e.g., email addresses, to-do list, and SMS/IM messages)

and low-level contexts (e.g., GPS location information, net-

work condition, and physical device configuration). More-

over, large volume of spatial-temporal contextual data have

to be handled as a city inhabitant’s daily activities may take

place across multiple smart spaces and span among vari-

ous duration. Third, the explosive growth in the popular-

ity of mobile devices and the social networking software

have made the management of context data more challeng-

ing due to the frequent location-dependent interactions and

more complex social relationships. The interactions among

different levels of context data and their spatial-temporal

linkage ought to be thoroughly exploited to realize large-

scale context-aware applications that benefit people’s daily

life.

The whole process of context acquisition, interpreta-

tion and adaptation [24] calls for an abstract and uni-

fied context management framework to facilitate context

searching, sharing, and transferring. The Semantic Web

(OWL/RDF) [19] provides a common framework that al-

lows data to be shared and reused across applications and

community boundaries. The linkage of data in Semantic

Web forms a giant global graph, which has an intuitive

analogy to the semantic relationships among context enti-

ties. These useful semantic relationships can be exploited

to power the context-aware applications, and make them

more intelligent. The potential of using Semantic Web for

cross-domain knowledge representation has also made it a

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE
DOI 10.1109/ICESS.2009.95

329

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE
DOI 10.1109/ICESS.2009.95

329

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE
DOI 10.1109/ICESS.2009.95

329

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE
DOI 10.1109/ICESS.2009.95

329

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE
DOI 10.1109/ICESS.2009.95

331

2009 International Conference on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE
DOI 10.1109/ICESS.2009.95

331

promising technology for effective context sharing among

context-aware applications with different nature, particulary

for those demanding frequent context update during a long

standing process.

We introduce ContextTorrent, a generic yet efficient con-

text data management framework which leverages the Se-

mantic Web technology. ContextTorrent could make var-

ious types of context information be semantically search-

able and sharable among local and remote context-aware

applications. In this framework, a mobile device could act

as a context provider or a context consumer, or both at the

same time. These small devices could be connected to their

desktop counterparts, devices in a smart space, and other

nearby mobile devices through an overlay peer-to-peer net-

work. To achieve fast local and remote context query and

provisioning, we first use the ontology-based context mod-

eler that consistently manage semantic relationships among

RDF triples, which are dynamically generated or modified.

These relationships are further persistently reflected to an

embedded object-oriented database, which consumes a rel-

atively small storage overhead on resource-constrained mo-

bile devices. Lastly, due to the semantic relationship linker,

multiple concurrent applications can get their desired con-

texts quickly with much better perceived experience. The

proposed framework has the following new features:

• Unified Context Representation. We treat all types of

context equally regardless if they are low-level or high-

level contexts, or inherit different spatial-temporal

characteristics.

• Lightweight Semantic Labeling of Native and Exten-
sible Context Sources. Existing context information

and extensible context source are labeled or connected

as semantic resources. Additional context types can

be easily defined with minimal programming effort

through Android’s Content Provider [3] interface.

• Embedded Object-Oriented Database for Storing Se-
mantic Relationships. We adopted an embedded

object-oriented database scheme to store the rapidly

changing semantic relationships with little storage

space overhead, while achieving fast query response.

• Adaptive Relevant Context Suggestion. We record

context-aware application’s interaction with contexts

on mobile devices, such that this information will have

indirect enforcement for future relevant context search,

when dealing with semantic relationship ambiguity.

Related context entities will be ranked by the N-gram

based matching algorithm.

The prototype of ContextTorrent was built atop of the

Google Android platform [2]. We demonstrate the pro-

grammability and simplicity of using ContextTorrent by im-

plementing a context-aware personal information manage-
ment (PIM) application. We took advantages of Android

rich API to uniformly represent the low-level system data

(e.g. WiFi, GPS data) and high-level context (e.g., user

profile). This application can automatically create a con-

tact entry for each new incoming call, and let user associate

other semantic resources as this contact’s property values,

which are further materialized to persistent storage on mo-

bile devices. The optimized VM instance process of An-

droid, together with its Activity [1] switching, have greatly

improved user perceived experience in sharing real-life con-

text information on mobile platforms.

The rest of this paper is organized as follows. We review

related work in Section 2. Our proposed design is explained

in Section 3. We report the experiment settings and evalu-

ate query and storage performance in Section 4. Section 5

concludes the paper with future work.

2 Related Work

Our work is inspired from an independent research field

semantic desktop, which combines semantic technologies

with traditional desktop search for personal information

management (PIM).

The semantic desktop is a unified data abstraction layer

which supplements the user’s long-term memory by auto-

matic provisioning of related information based on contex-

tual relevance. Typical functionalities of a semantic desk-

top include filing and finding related documents in a desk-

top computer. The Gnowsis system [23] is a good exam-

ple of semantic desktop systems. It has a back-end daemon

performs data processing and provides storage service for

native applications. External application that wants to uti-

lize the metadata can be easily integrated with standardized

interfaces. However both Gnowsis and its successor NEPO-

MUK are rather heavy-weight, for example, the HTTP in-

terface of typical RDF frameworks (Jena and Sesame) does

not directly fit in a normal mobile device.

“Stuff I’ve seen” (SIS) [17] is another similar project

that supports unified index of contents for email, web page,

document, appointment, etc. It provides an interface for

rich contextual information discovery. Naturally, we ex-

tend these unified semantic data management services to

the context management framework for context-aware ap-

plications, particularly in mobile situation that calls for

light-weight query/storage, semantic inter-interoperability

and easy application development.

Although there already exist many popular PIM soft-

wares [11, 5] on desktop or mobile devices, their usage sce-

narios are simply for archiving or browsing. There are two

main problems in existing PIM systems. First, these PIM

softwares lack a common data management framework,

which can address the semantic aspect of data consumption

330330330330332332

in a networked environment. This is further complicated

in the pervasive computing environment, which consists of

heterogeneous software platforms and device capabilities.

Second, the personal information consumption goes beyond

simple data synchronization or sharing. Despite some stan-

dard integration protocols (e.g., SyncML [12]) and synchro-

nization platforms (e.g., Sun Open Mobile Sync [9]), legacy

software vendors can not benefit from the promising Se-

mantic Web technologies.

WikiCity [22] provides a digital representation of a real-

world city that allows city inhabitants to access, add, and

modify information and enjoy location-based services, in-

cluding nearest emergency facilities, information broadcast

on public spaces. Core of WikiCity is a real-time data ex-

change platform that accommodates various types of public

utility information from heterogeneous sources. Manhattan

Story Mashup [26] is another interesting large-scale perva-

sive system that combines the Web, camera phones, and a

large public display. Its storytelling involves a new form

of interaction, which lets distant people collaborate in real-

time. However the underlying mechanisms for connecting

photo and story content are simple. We believe the high-

level semantic relationships could be exploited to achieve

more advanced features in storytelling. Story Mashup also

lacks a formal infrastructure for massive data delivery, when

the number of game participants become large.

Live Mesh [8] and DropBox [4] are more recent indus-

try softwares that could be used to synchronize a group

of shared files among peers. However the data sharing

and synchronization in Live Mesh are limited to ordinary

user files. How to manage context information containing

semantic relationships among entities was not addressed.

ContextTorrent supports fine-grained synchronization con-

trol on shared data. Through a more flexible context entity

labeling scheme, more accurate and relevant context data

can be searched and located.

3 ContextTorrent Architecture

3.1 Overview

Figure 1 shows an overview of the proposed ContextTor-
rent framework and the interactions among its core compo-

nents.

We use standard Semantic Web interface (e.g., OWL and

RDF) for context modeling, as in many pervasive appli-

cations [20]. The ontology-based context modeler (OCM)

models various types of contexts as semantic resource using

an embedded RDF/OWL parser that parses external RDF

files or RDF triples brought in by the overlay peer net-
working component over the network. Besides parsing the

OWL/RDF schema, the context modeler also performs in-

sertion, deletion and modification of RDF triples, either ob-

Sensor data, file system

RDF/OWL files

Embedded Context Storage

Native Context Wrapper

Semantic Relationship
Linker

Extended Context
Connector

Ontology-based Context
Modeler

(Embedded RDF/OWL Parser)

RDF triples from
P2P network

O
verlay P

eer N
etw

o
rkin

g

ContextTorrent Framework

Figure 1. The Overview of ContextTorrent
Framework

tained from from the network or imposed by the local se-
mantic relationship linker, to dynamically update semantic

relationships.

The semantic relationship linker (SRL) is responsible for

the management of semantic relationships among context

entities. Any context-aware application can issue a context

query to SRL, which will return a context resource URI ac-

cording to its relevancy ranking. This context resource URI

could later be used to locate all its associated properties to

get the property values.

To provide unified interface for accessing context data,

native context wrapper (NCW) and extended context con-
nector (ECE) are developed. NCW wraps up existing and

application-defined context data using ontology schemas,

making them accessible by applications via standard URIs.

ECE creates links to external context sources (e.g., file re-

sources on a remote device) and does the format adaptation

of various sensor data (e.g. GPS receiver). Unique URIs

are created for all context sources. The separation of access

interface and data storage management makes it possible

for the upper layer context modeler to build customized and

extensible storage independently. For example, we build

the embedded context storage (ECS) based on an embedded

object-oriented database to store the ontological relation-

ships among context entities.

Lastly, the overlay peer networking (OPN) component

is implemented to transfer RDF triples among nearby mo-

bile devices, their desktop counterparts, or other devices

in a smart space. We adopt a peer-to-peer overlay net-

work to connect all these devices. Such overlay peer-to-peer

331331331331333333

networking could facilitate context searching, provisioning,

and delegation more efficiently in a large-scale network en-

vironment.

The rest of this section explains the technical details of

SRL, OCM, and ECS, three main components that are cru-

cial for the realization of ContextTorrent framework.

3.2 Semantic Relationship Linker

Relationships between resources are defined as prop-
erties in OWL. Besides manual creation of rather static

semantic relationships between resources, in reality more

useful properties are created during user’s interaction with

context-aware applications. An appropriate mechanism to

capture these runtime contexts and dynamically extend the

semantic relationships could improve the context awareness

of the applications.

The semantic relationship linker is designed to capture

application-level interactions at runtime and link up seman-

tic relationships in a dynamic fashion. The key functions

of SRL are realized based on the concept of SmartLink 1,

originally used to associate words in a plain text with more

meaningful semantic data. For example, we can link a pre-

sentation file (e.g. ppt, pdf) to an “Activity” of a “Calendar”

event.

We make use of Android’s Intent [7] interface to enable

context sharing across applications. It is an abstraction that

combines an operation with the data to operate on. This

feature enables the runtime binding of program code of con-

cerned applications to certain shared context data, thus ef-

ficient multitasking can be achieved, which is a key advan-

tage over other Java-based mobile platform (e.g. J2ME).

So context sharing across applications will have much bet-

ter user experience. We also make use of the notification
mechanism of Android to implement context-aware notifi-

cations.

SRL is also responsible for maintaining a persistent stor-

age to reflect the usage statistics, through native context

wrapper to update the ECS. Since all context-ware appli-

cations will send its context query to semantic relationship
linker by simple keywords or RDF triples with variables,

semantic relationship linker can easily record various usage

statistics of context entity URIs. We feed the instance data

into native storage by Android’s Content Provider [3]. Ev-

ery context-aware application could issue its context query

to SRL, which will return a matched context URI to further

retrieve its associated property values.

Besides the above basic functions, the following en-

hancements are provided in SRL to improve the quality of

context search: (1) We adopt an N-gram algorithm [21],

a widely used string matching algorithm in sequence anal-

ysis, to do fuzzy search on related resource entities. We

1http://code.google.com/p/smartlink/

extend the CentralTagging of OpenIntent 2 to label context

resources. It enables client applications to edit tags that are

related to a context entity. This method is helpful to improve

the similarity ranking of the basic N-gram matching algo-

rithm. (2) We design a chained relationship tracker, which

involves two or more depth traverse of existing relationships

to identify more related entities. (3) For each property of a

context entity, we attach a degree rank to reflect its impor-

tance, which is recomputed whenever it is selected for use.

The definition of the degree rank can be as simple as its us-

age frequency, or subject to any relevancy update made by

other applications. (4) We allow off-line annotation of re-

lationships on newly generated context from environment.

For example, we record each new incoming call as a new

contact entry and let user fill other detailed information.

3.3 Ontology-based Context Modeler

The ontology-based context modeler (OCM) models

both static and dynamic contexts. Static contexts are gener-

ally those high-level information about personal particulars,

description of a resource entity, etc. These information are

contained in RDF/OWL files that can be imported at start

time. We adopt published ontologies, such as PIMO [10]

and Friend Of A Friend [6], to model personal information

and social relationships. User can also extend existing on-

tology schema to define new relationships as OWL proper-

ties. All these static contexts are stored in embedded context
storage.

Dynamic contexts are mainly those spatial-temporal in-

formation (e.g. GPS trajectory of the mobile user), which

are used by applications to trigger actions. To support time-

based and location-based context modeling and provision-

ing, OCM annotates every event sample in a form of RDF

triple (subject, predicate, object). For example, when an

RFID reader detects an object, an RDF triple (subject, pred-
icate, object) = (CT-subject:readerID, CT-predicate:Detect,
CT-object:ObjectID) will be created to update local seman-

tic relationships or trigger the adaption of a local applica-

tion. The RDF triple could also be transferred to a remote

peer by the overlay peer networking component to activate

necessary actions in a remote application.

To import static contexts and update dynamic contexts,

OCM has implemented an embedded RDF/OWL parser

which can feed in contexts as RDF triples from files or

over the network. We port an open source NanoXML RDF

parser 3 from J2ME platform to Android platform to real-

ize part of the functions required by OCM. The new parser

can quickly traverse relationships among resource entities

to extract their properties and values.

2http://code.google.com/p/openintents/
3http://nanoxml-j2me.wiki.sourceforge.net/

332332332332334334

The OCM also does the insertion, deletion and modifi-

cation of RDF triples that are imposed by semantic rela-

tionship linker, in order to consistently maintain semantic

relationships. Figure 2 shows the typical functions to parse

and traverse RDF resources.

getTypeName()

getResourceValueofSubtag(�hasName�)

<User rdf:ID="User_1">
 <hasName rdf:datatype="&xsd;string">Dexter H. Hu</hasName>
 <hasContact rdf:resource="#Contact_1"/>
 <hasFriend rdf:resource="#User_2"/>
 <hasNote rdf:resource="#Note_1"/>
</User >

getContentsofSubtag(�hasName�)

Figure 2. Functions supported to manipulate
materialized OWL by NanoXML

This component is also responsible for translating se-

mantic context queries (e.g. RQL) to native queries that

can be handled by NCW and ECC. The semantic context

queries usually come from a remote peer’s context subscrip-

tion.

3.4 Embedded Context Storage

To store ontology represented context information on

mobile devices, we need an efficient persistent storage

scheme. The semantic relationships among different con-

text entities resemble links in a connected graph. While tra-

ditional relational database management systems (RDMS)

pose as big flat files, it is not an intuitive reflection of se-

mantic relationships.

The embedded context storage (ECS) provides persis-

tent storage services for ContextTorrent, which is imple-

mented on an Object-oriented Database Management Sys-

tem (ODBMS). We propose to adopt an object-oriented ap-

proach to store context information as the object-oriented

concept has a good analogy to the ontological representa-

tion. The object-oriented database allows users to define

arbitrary types of context as objects without much burden-

ing the program designers (e.g. troubles in using RDMS

schema) or administration of databases. Therefore, pro-

grammers are able to focus more on the business logic of

context-aware applications. Moreover, the schema evolu-
tion mechanism of object-orient database could be lever-

aged to dynamically reflect relationship changes to persis-

tent storage.

Although ODBMS provides good programmability, it

potentially could consume more storage space and be less

efficient in context search, which are essential in a mo-

bile context-aware application. This might require specif-

ically optimized indices on different data types to speed up

a context search. We investigated two different implemen-

tations of object-oriented database: Perst 4 vs. db4objects5,

and compared their query performance against the built-in

SQLite database.

We use Content Provider of Android to implement native
context wrapper (NCW), which allows the context modeler

to connect to embedded context storage (ECS), regardless

which database model is used. Existing context data that

are pre-stored in the built-in database can also be accessed

via the native context wrapper.

4 Evaluation

4.1 Experiment Setting

We implemented ContextTorrent in Android 1.0 SDK

emulator, Release 2 on a Linux machine with 2GB RAM

and an Intel Duo core CPU running at 2.66GHz. The em-

ulator configures any application with maximum memory

size of 16MB.

Existing context data, such as “contacts”, “call log”, and

“bookmarks” could be pre-stored in the native storage place

and accessed via the native context wrapper. We also define

additional context sources that represent “task/to-do list”,

“email”, “IM message”, “calendar event”, “GPS location

history”, and “buddylist”.

At current stage, we adopt the JXTA [25] P2P protocol,

and have ported the JXME (JXTA on J2ME framework) as

a background service in Android to transfer context RDF

triples (e.g. GPS trace) over the network.

We prototyped a context-aware PIM management appli-

cation to demonstrate the use of various components im-

plemented by ContextTorrent that facilitate context search-

ing, sharing, and transferring on mobile devices. For exam-

ple, we are able to issue a query to find a person’s phone

number with his name as the keyword. The returned re-

sult is a FOAF URI, which is used later to navigate its

associated property values. We adopted the FOAF ontol-

ogy schema and prepared a synthetic data set of up to 2500

records to evaluate the query and storage performance. The

NanoXML RDF parser feeds the FOAF data sets into An-

droid’s built-in SQLite, db4o (version 7.4.84) and Perst

(version 4.02) separately.

4.2 Query & Storage Performance

Since the user experience on mobile device is critical for

its adoption, we evaluate the query latency when a user tries

to find a related context entity.

The user experienced query latency can be divided into

two parts: (1) link retrieval: time to retrieve all semantic

4http://www.mcobject.com/perst/
5http://www.db4o.com/

333333333333335335

links to be ranked later on; (2) fuzzy search: time spent on

similarity matching among retrieved semantic links to find

the most relevant context entity. We also evaluate the time

of popping up a context entity’s properties, denoted as prop-
erty popping, after the user determines the context entity to

navigate.

Figure 3 compares the consumed storage space (in byte)

with respect to the number of context entities stored in the

database. As we can see, the storage consumption of Perst is

around 2-3 times larger than the built-in SQLite RDMS. The

db4o is the poorest, which can consume up to 10 times more

space than SQLite. So among object-oriented databases,

Perst is better than db4o in terms of space requirement.

700 1000 1300 1600 1900 2200 2500
0

0.5

1

1.5

2

2.5

x 10
6

Number of context entities

S
to

ra
ge

 s
iz

e
in

 b
yt

e

SQLite
db4o
Perst

Figure 3. Storage consumption comparison

Figure 4 shows the continuous query time of the three

database schemes. The tested data set consists of 2500 con-

text entities. We report the total query time by increasing

the number of continuous queries. The Perst database per-

forms the best with the fastest query time, and the slowest

scaling slope. The db4o remains the worst among the three.

These results can be explained by Figure 5, which shows

the average latency time for randomly querying a single

context record with respect to different database sizes (i.e.,

number of context entities). We take the average latency of

20 random context queries for each database size and plot

the performance curves. As shown, the query time for all

databases are relatively stable under various data sizes. The

query time of db4o is the largest, while the query time for

Perst is the smallest, and is much faster than SQLite.

The reason behind is that Perst database has optimal in-

dices for different primitive data types, including R-Tree

(for GIS data), T-Tree (for in-memory access), Patricia Trie,

700 1000 1300 1600 1900 2200 2500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of queries

Q
ue

ry
 ti

m
e

in
 m

s

SQLite
db4o
Perst

Figure 4. Continuous query test

and many others. The dedicated index type is especially im-

portant for mobile devices with limited memory, and scarce

CPU/storage. With the above comparisons, we conclude

that Perst is the best database scheme among the three, be-

cause it has the fastest query speed and a relatively small

storage overhead than the built-in SQLite and db4o.

700 1000 1300 1600 1900 2200 2500
0

5

10

15

20

25

30

Number of context entities

Q
ue

ry
 ti

m
e

in
 m

s

SQLite
db4o
Perst

Figure 5. Evaluation on the query response
time w.r.t database size

Figure 6 shows the latency breakdown with respect to

link retrieval and fuzzy search time under three database

schemes. Test cases with response time exceeding 3000 ms
were truncated because three seconds are the normal latency

tolerance of user experience. As we can see, Perst is the

best among the three, while db4o is the worst. Note that the

334334334334336336

link retrieval time of SQLite is almost negligible (5-10 ms).

This is because SQLite does not directly return a set of con-

text entities, but a cursor that can iterate through the context

entities. For db4o, the total query time exceeds three sec-

onds when context entity size is 1000 or more. Thus db4o

is the worst scheme among the three.

 0

 500

 1000

 1500

 2000

 2500

 3000

700
1000

1300
1600

1900
2200

2500
700

1000
1300

1600
1900

2200
2500

700
1000

1300
1600

1900
2200

2500

Q
ue

ry
 ti

m
e

in
 m

s

Number of context entities

Histogram of average query time to search related context entity

sqlite(link retrieval)
sqlite(fuzzy search)

db4o(link retrieval)

db4o(fuzzy search)

Perst(link retrieval)
Perst(fuzzy search)

Perstdb4oSQLite

Figure 6. Breakdown of user experienced la-
tency under various data size

Despite the linear growth of query time as the data size

increases, we found the N-gram similarity matching algo-

rithm could consume more than 80% of the total latency

time in all cases. This could be a performance bottleneck,

when there exists more context types and large context vol-

ume. We will improve this fuzzy search on the Perst embed-

ded database by tag filtering or imposing time-bound query

in our future work.

We also took a closer look at the property popping time

for returning different number of properties upon a query

of a single context entity. The time consumed involves ac-

tivity creation and switching in Android, and the sorting on

the degree rank (usage frequency in this case) on different

properties for the requested context entity. Figure 7 shows

that the time used for popping up properties is nearly instan-

taneous (less than 100 ms), when the number of returned

properties is less than 30. This result is satisfactory because

an ordinary user is unlikely to navigate a large number of

properties about the resource entities in a single query.

5 Conclusions

In this research, we address various issues of context data

management and provisioning for supporting context-aware

computing. The proposed ContextTorrent framework can

semantically organize, search, and store various types of

contexts and their semantic relationships using an ontology-

5 10 15 20 25 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

Number of properties

P
op

in
g

up
 ti

m
e

in
 m

s

Figure 7. Time consumed by popping up
properties of a context entity

based context modeler. We leverage several powerful fea-

tures of Google’s Android platform to make context sharing

among multiple applications efficient and lightweight. In

general, given any OWL/RDFs schema and its associated

instances, it is possible to build a tool within Android to au-

tomatically parse the schema with Intent declaration for all

subjects’ properties. It can also feed the instance data into

native storage by Content Provider, such that other applica-

tions can easily access these semantic resource entities by

their URIs.

Through intensive evaluation, we show that context

queries using the API of ContextTorrent could perform ef-

ficiently. The proposed context annotation scheme using

RDF triple could be a promising solution to support ad-

vanced context provisioning in a large-scale network. We

also evaluate three database schemes for managing context

storage on mobile devices. The Perst embedded database

turns out to be the best as compared to SQLite and db4o.

The object-oriented database allows users to define arbi-

trary types of context as objects, which seems to be the right

choice for context storage.

Future work includes the design and implementation of

a fully-fledged desktop ContextTorrent counterpart (e.g.,

based on KDE-Nepomuk), which is compatible with the

mobile version to form a context provisioning network. An

important task in this design is the implementation of QoS

control to cope with both system-level performance metrics

(e.g., delivery latency, data quality) and high-level context-

aware application requirements.

335335335335337337

References

[1] Activity: http://developer.android.com/reference/android/app/

activity.html.
[2] Android platform: http://developer.android.com/.
[3] Content provider: http://d.android.com/guide/topics/

providers/content-providers.html.
[4] Dropbox: http://www.getdropbox.com/.
[5] Essentialpim: http://www.essentialpim.com/.
[6] Foaf vocabulary specification: http://xmlns.com/foaf/0.1/.
[7] Intent: http://developer.android.com/reference/android/

content/intent.html.
[8] Live mesh: https://www.mesh.com/welcome/default.aspx.
[9] Open data sync: http://dsc.sun.com/learning/javaoneonline

/2008/pdf/ts-5957.pdf.
[10] Personal information model ontology: http://dev.nepomuk.

semanticdesktop.org/wiki/pimoontology.
[11] Pimone software: http://www.pimone.com/pimone.htm.
[12] The syncml initiative: http://www.openmobilealliance.org/.
[13] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on

context-aware systems. Int. J. Ad Hoc Ubiquitous Comput.,
2(4):263–277, 2007.

[14] G. Biegel and V. Cahill. A framework for developing mo-

bile, context-aware applications. In Proceedings of the Sec-
ond IEEE Annual Conference on Pervasive Computing and
Communications, pages 361–365, March 2004.

[15] A. K. Dey. Understanding and using context. Personal Ubiq-
uitous Comput., 5(1):4–7, February 2001.

[16] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual

framework and a toolkit for supporting the rapid prototyp-

ing of context-aware applications. Human-Computer Inter-
action, 16(2–4):97–166, 2001.

[17] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and

D. C. Robbins. Stuff i’ve seen: a system for personal infor-

mation retrieval and re-use. In Proceedings of the 26th ACM
Annual International Conference on Research and Develop-
ment in Informaion Retrieval, pages 72–79, 2003.

[18] S. Long, R. Kooper, G. D. Abowd, and C. G. Atkeson. Rapid

prototyping of mobile context-aware applications: the cy-

berguide case study. In Proceedings of the 2nd Annual Inter-
national Conference on Mobile Computing and Networking,

pages 97–107, 1996.
[19] S. Lu, M. Dong, and F. Fotouhi. The semantic web: opportu-

nities and challenges for next-generation web applications.

International Journal of Information Research, 7(4), 2002.
[20] R. Masuoka, Y. Labrou, B. Parsia, and E. Sirin. Ontology-

enabled pervasive computing applications. Intelligent Sys-
tems, IEEE, 18(5):68–72, 2003.

[21] E. Miller, D. Shen, J. Liu, and C. Nicholas. Performance

and scalability of a large-scale n-gram based information re-

trieval system. Journal of Digital Information, 1(5), 2000.
[22] B. Resch, F. Calabrese, A. Biderman, and C. Ratti. An

approach towards real-time data exchange platform sys-

tem architecture. In Proceedings of the 2008 Sixth An-
nual IEEE International Conference on Pervasive Comput-
ing and Communications, pages 153–159, 2008.

[23] L. Sauermann, G. A. Grimnes, M. Kiesel, C. Fluit, H. Maus,

D. Heim, D. Nadeem, B. Horak, and A. Dengel. Semantic
Desktop 2.0: The Gnowsis Experience. 2006.

[24] B. Schilit, N. Adams, and R. Want. Context-aware com-

puting applications. In Proceedings of Workshop on Mo-
bile Computing Systems and Applications, pages 85–90, Dec

1994.
[25] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J. C.

Hugly, and E. Pouyoul. Project jxta-c: enabling a web of

things. In Proceedings of the 36th Annual Hawaii Inter-
national Conference on System Sciences, pages 282–290,

2003.
[26] V. Tuulos, J. Scheible, and H. Nyholm. Combining web,

mobile phones and public displays in large-scale: Manhat-

tan story mashup. In Proceedings of the Fifth International
Conference on Pervasive Computing, pages 37–54, 2007.

336336336336338338

