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Abstract— Terahertz time-domain spectroscopy (THz-TDS) is
an emerging modality for biomedical imaging. It is non-ionizing
and can detect differences between water content and tissue
density, but the detectors are rather expensive and the scan
time tends to be long. Recently, it has been shown that the
compressed sensing theory can lead to a radical re-design of
the imaging system with lower detector cost and shorter scan
time, in exchange for computation in the image reconstruction.
We show in this paper that it is in fact possible to make use
of the multi-frequency nature of the terahertz pulse to achieve
hyperspectral reconstruction. Through effective use of the spatial
sparsity, spectroscopic phase information, and correlations across
the hyperspectral bands, our method can significantly improve
the reconstructed image quality. This is demonstrated through
using a set of experimental THz data captured in a single-pixel
terahertz system.

I. INTRODUCTION

In recent years, terahertz (THz) imaging and spectroscopy

have been successfully applied to a wide range of appli-

cations in medicine and biology, such as tissue diagnosis,

breast tumor investigation, illicit drug detection, etc. [1]–

[5]. Among these possible applications, the THz time-domain

spectroscopy (THz-TDS) has demonstrated to be a powerful

tool for detecting and characterizing biological material by

its response to electromagnetic radiation in the far infrared

spectral range [2], [4]. For example, THz-TDS allows us to

measure the amplitude and phase of the transient electric field

rather than the intensity of the THz radiation. However, most

existing THz-TDS systems suffer from slow acquisition rate

because of their raster-scanning mode [4], [6], [7]. To date,

the fastest raster-scanning time-domain THz imaging system

needs as long as 6 minutes to scan a 100mm2 area at 0.25mm

resolution (equivalently, a 400× 400 pixel image) [7].

Recently, to meet the requirements of practical, time-crucial

applications, Chan et al. [8] design a single-pixel THz imaging

setup following the compressed sensing (CS) theory [9], [10].

The system schematic is illustrated in Fig. 1(a). The single-

pixel THz receiver samples the object that has been spatially

modulated with a random pattern, then one measurement is

obtained. The number of measurements depends on how many

random patterns are used. From these data, one needs to

perform a signal reconstruction step to get the image. The

CS theory suggests the conditions that need to be fulfilled

to allow nearly perfect reconstruction with a much smaller

number of measurements. However, in reality, these conditions
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Fig. 1. (a) Schematic diagram of the single-pixel, pulsed THz imaging system
in [8]. (b) A temporal THz pulse acquired from such a THz system.

may not be fully satisfied, and the reconstruction quality may

be unsatisfactory. We note, however, that THz-TDS offers

two important pieces of information that is not commonly

found in other modalities: (i) the THz pulse (as shown in

Fig. 1(b)) contains information at multiple frequencies, and

therefore has hyperspectral information [11]; and (ii) at each

frequency, the signal is complex, i. e., it has both magnitude

and phase information [8], [12]. Thus, in this paper we present

a hyperspectral image reconstruction algorithm that takes the

spectroscopic phase information and hyperspectral information

carried by the THz pulse into account to deliver better image

quality.
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II. METHODOLOGY

A. Compressed Sensing Reconstruction

The single-pixel pulsed THz system in Fig. 1 implements

a compressed sensing process. Mathematically, at a particular

spectral frequency,

y = Ψx, (1)

where y ∈ CM is a column vector of measurements and x

represents a N × N complex-valued image ordered in an

N2 × 1 vector, sampled by the measurement matrix Ψ ∈
RM×N2

. Since the imaging scheme requires much fewer

measurements (i. e., M ≪ N2), we cannot restore the original

signals directly from the observed measurements. However, a

very good approximation to the original data can be obtained

by solving the following optimization problem [9], [10]

minimize ‖x‖1 subject to ‖Ψx− y‖2 ≤ ǫ, (2)

with ǫ the tolerance to be defined. To solve this, several meth-

ods have been proposed, such as the SPGL1 algorithm [13]

(which is used for reconstruction in [8]). However, the recon-

struction quality is often not satisfactory. On the other hand,

we may note that in the optimization problem in Eq. (2),

aside from sparsity of the amplitude intensity, any other prior

information has not been exploited.

The THz imaging system in Fig. 1 is a transmission-type

spectroscopy. We assume that the object is isotropic, piecewise

homogeneous, and has uniform thickness. In this case, one

additional piece of prior knowledge about the original data is

that the smooth regions in the spatial distribution of amplitude

should be the same as those in the spatial distribution of

phase. Mathematically, let x1 = A1e
jφ1 and x2 = A2e

jφ2

be the complex intensities of two different pixels. If these two

pixels are in the same homogeneous region, then A1 = A2

and φ1 = φ2. Accordingly, we can conclude that the first-

order difference of the complex intensities in a homogeneous

region is zero. Therefore, if we define the total variation of

the complex data as

‖x‖TV ,
∑

i

|∆h
i x|+ |∆v

i x| (3)

with ∆h
i and ∆v

i as linear operators corresponding to, respec-

tively, horizontal and vertical first-order differences at pixel i,

then minimizing Eq. (3) will not only be a more appropriate

choice for sparse reconstruction, but also lead to a solution

closer to the reality.

Furthermore, in our recent work [14], we show that the

reconstruction can be significantly improved by considering

the phase information provided by pulsed THz spectroscopies.

Let φ(xi) and φ(xi) be the phase value of the i-th pixel and

the mean value of a neighborhood with the i-th pixel as the

center, respectively. The smoothness constraint on the phase

image is defined as

∥

∥

∥
φ(x)− φ(x)

∥

∥

∥

2
=





N2
∑

i=1

[

φ(xi)− φ(xi)
]2





1/2

≤ σ (4)

with

φ(xi) =

{

−j log xi

|xi|
if |xi| ≥ T

0 otherwise

}

∈ [−π, π). (5)

Here T refers to a given threshold for separating the regions

containing signal and noise only. If we just consider the case

at a single spectral band, the reconstruction algorithm for the

CS THz-TDS can be interpreted as an optimization given by

minimize ‖x‖TV

subject to ‖Ψx− y‖2 ≤ ǫ
∥

∥

∥φ(x)− φ(x)
∥

∥

∥

2
≤ σ

(6)

or, equivalently, by the following criterion

x̂ = argmin
x

1

2
‖Ψx− y‖

2
2 + λ‖x‖TV + µ

∥

∥

∥φ(x)− φ(x)
∥

∥

∥

2
.

(7)

B. Multiscale Intensity Estimation

While we have shown that the above single-band method

can improve the reconstructed image quality [14], there is

still room for further improvement. In particular, THz-TDS

provides hyperspectral information about the test object at the

THz frequency range, which has not been taken into account in

any THz-TDS reconstruction scheme to the best of our knowl-

edge. Information across different spectral bands has high

correlation, and that can be used, for example, in [15] where a

multiscale photon-limited hyperspectral image reconstruction

method is proposed to estimate the true hyperspectral images

from the observations corrupted by Poisson noise. Here, we

extend this multiscale intensity estimation method to our THz-

TDS case.

For the hyperspectral images, there is a key feature that

the spatial boundaries and singularities at each spectral band

are located at the same positions, even when the contrast

or perceptibility is very low at some bands [15]. This is

also true in THz-TDS. Since the data acquired are complex,

we now consider the amplitude and phase separately. We

respectively perform recursive dyadic partitioning (RDP) in

the amplitude and phase domain. The RDP process on an

image produces the quad-tree representation of the image

by recursively decomposing any part of an existing partition

into dyadic squares which means to replace a square by four

similar squares of half the size [16]. Since the partition defined

by the RDP is not unique, we use a maximum penalized

likelihood estimation to select the optimal partition P̂ which

provides the best fit to the observations from the space of

possible partitions ΣP . Each of the terminal squares of this

data-adaptive RDP P̂ corresponds to a spatially homogeneous

region. Let f , b ⊙ ejθ denote the degraded hyperspectral

observations of size N × N × K , where e is the Euler’s

number, ⊙ represents element-by-element multiplication and

K is the number of spectral bands. The optimal hyperspectral
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Fig. 2. Hyperspectral reconstruction results with a 600 × 16 practical hyperspectral THz data cube. (a) The rectangular object mask. (b) and (e) The
amplitude and phase obtained by applying SPGL1 algorithm [13] at 0.1 THz. (c) and (f) The amplitude and phase reconstructed by using the method presented
in Section II-A at 0.1 THz. (d) and (h) The amplitude and phase obtained by performing the proposed hyperspectral algorithm, displayed at 0.1 THz.

estimation of x , a⊙ ejφ ∈ CN×N×K is then calculated by

â(ca) = argmin
a
(ca)

L(ca)
a

= argmin
a
(ca)

{

− log p(b(ca)|a(ca))
}

, (8a)

P̂a = argmin
Pa

{

∑

ca∈Pa

L(ca)
a

+ ηa(Pa)

}

, (8b)

â =







∑

ca∈P̂a

â(ca)







, (8c)

and

φ̂
(cφ)

= argmin
φ

(cφ)

L
(cφ)
φ

= argmin
φ

(cφ)

{

− log p(θ(cφ)|φ(cφ))
}

, (9a)

P̂φ = argmin
Pφ







∑

cφ∈Pφ

L
(cφ)
φ + ηφ(Pφ)







, (9b)

φ̂ =







∑

cφ∈P̂φ

φ̂
(cφ)







. (9c)

Here, p(b(ca)|a(ca)) and p(θ(cφ)|φ(cφ)) refer to the likelihood

of observing b(ca) and θ(cφ) given the amplitude estimate

a(ca) and the phase estimate φ(cφ) in each partition cell

ca ∈ Pa and cφ ∈ Pφ. They are directly related to the noise

distributions in the THz system. The ηa(Pa) and ηφ(Pφ) are

penalties assigned to the amplitude and phase for encouraging

spatial smoothing [17].

C. Hyperspectral Reconstruction

Incorporating the sparse reconstruction mentioned in Sec-

tion II-A with the multiscale estimation technique, we can

devise a hyperspectral reconstruction method for the THz-

TDS. It consists of two alternating steps:

Step 1: Let x̂(t) be the input of the t-th iteration. Obtain the

solution f (t) of Eq. (7) across all the observed spectral bands.

Step 2: Considering f̂ (t) as the observations, deal with the

amplitude and phase parts separately and get the respective

optimal estimators â(t+1) and φ̂
(t+1)

according to Eqs. (8–9),

then

x̂(t+1) = â(t+1) ⊙ eφ̂
(t+1)

.

These two steps are executed repeatedly, and the algorithm

terminates when
‖x̂(t+1) − x̂(t)‖21

‖x̂(t)‖21

is less than a given value.

III. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our

proposed hyperspectral reconstruction method on a set of

hyperspectral THz data acquired through an experimental

system at Rice University. The test object is a rectangular

hole embedded in an opaque screen, filled with two transparent

plastic plates of different thickness (see Fig. 2(a)). The reason

to choose this kind of object is that it contains different types
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of materials and has features on a relatively small length scale,

which mimics the nature of some biomedical specimens.

Our goal in this experiment is to reconstruct the amplitude

and phase intensities of size 32×32 at each observed spectral

band with only 600 measurements. Since each measurement

obtained from the THz system is actually a whole pulse

signal containing frequency information across the THz fre-

quency range, we sample the measurements at 16 spectral

bands uniformly distributed over the frequency range between

0.1 THz and 0.2 THz. Mathematically, we seek to obtain a

good 32× 32× 16 estimation with 600× 16 measurements.

Figs. 2(b) and (e) show the amplitude and phase obtained

by applying the SPGL1 algorithm [13] at 0.1 THz. The recon-

structed amplitude and phase by using the method presented in

Section II-A at the same frequency are shown in Figs. 2(c) and

(f). The latter performs much better than SPGL1. However,

this single spectral band method fails to preserve some fine

edges, and its results can be further improved. Now let us com-

pare our proposed hyperspectral algorithm, shown in Figs. 2(d)

and (g), with those two single-band reconstruction approaches.

The reconstruction quality is visually the best on both the

amplitude and phase images, i. e., sharper edges with less

noticeable artifacts. Furthermore, the estimates corresponding

to our hyperspectral method is closer to the reality which is

indicated in Section II-A.

IV. CONCLUSION

In this paper, we present an effective hyperspectral re-

construction algorithm for biomedical imaging with THz-

TDS. The key feature of our algorithm is that it effectively

employs spatial sparsity, spectroscopic phase information and

correlations across the hyperspectral bands to improve the

reconstruction quality, despite the limited number of mea-

surements collected. Through the experiments on practical

hyperspectral THz data, our proposed method shows good

performance in preserving edges and alleviating artifacts in

both amplitude and phase domain. Although in this paper we

only discuss THz-TDS in the transmission mode, our method

can be readily extended to other modes of THz spectroscopy,

e. g., reflection-type THz-TDS.
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