
20i 0 2nd international Conference on Education Technology and Computer (ICETC)

Improving an Interactive Simulator for Computer Systems with Learning Objects

S.T. Fung
Dept. of E.E.E.

Vincent Tam
Dept. of E.E.E.

Edmund Y. Lam
Dept. of E.E.E.

The University of Hong Kong
Hong Kong

The University of Hong Kong
Hong Kong

The University of Hong Kong
Hong Kong

e-mail: stfung@eee.hku.hk e-mail: vtam@eee.hku.hk e-mail: elam@eee.hku.hk

Abstract- In the 21st century, learning is a crucial activity
through which people can assimilate or acquire new knowledge.
However, many existing e-Iearning systems contain
complicated knowledge structure that hinders the reuse or

sharing of knowledge. In a previous project awarded by the
Microsoft Research Asia, we successfully developed an
interactive simulator to facilitate the learning of essential
concepts related to computer systems through live animations.

Here, we propose to integrate learning objects and relevant
technologies into our interactive simulator to illustrate the
underlying knowledge structure and, more importantly,
facilitate the sharing and reuse of relevant concepts. Through

adopting the IEEE learning object metadata (LOM) standard,
our simulator can easily exchange relevant learning objects
with other e-Iearning systems. The system design and
prototype implementation of our LOM-based simulator is

considered in this paper to evaluate how general and
experienced users can benefit from our LOM-based simulator
in various ways.

Keywords- learning objects; simulators; knowledge structure;
sharing of knowledge.

I. INTRODUCTION

With our careful observation obtained on certain
introductory and intermediate-level Computer Systems
courses over the past few years (Year 1 and 2 in our three­
year undergraduate curriculum), we found that most students
encountered difficulty to a certain extent in understanding
some essential concepts in computer systems, such as the
program execution and the underlying data transfer among
the various registers. Intrinsically, these concepts are abstract
and often involve a complex knowledge structure, and
therefore are difficult to understand. Furthermore, most
available simulators for computer systems are text-based and
mainly focused on showing the fmal results after program
execution without clearly showing the underlying
"operations", and particularly the essential
components/concepts involved during such operations. In
many cases, students are simply presented with the fmal
result(s) without knowing how such result(s) are produced.
Undoubtedly, several existing simulators provide a limited
set of debugging functions such as monitoring the values of
selected registers at a certain step during the program
execution. However, without knowing which components, or
specifically internal registers, are actually involved in the
process, it is totally impossible and meaningless to use such

debugging functions for monitoring the changes of values on
all the registers so as to better understand the behavior of
program execution in the corresponding computer system. In
a previous e-Iearning project awarded by the Microsoft
Research Asia (MSRA), we successfully built an interactive
simulator, namely the COMPAD [1] as a "learning PAD for
COMputer systems", that greatly facilitates the learning of
concepts related to computer systems through live animation
of program execution on a specific computer architecture.

In this paper, we further enhance our COMPAD
simulator by providing users with greater flexibility to
interact with the simulator through a repository of learning
objects [4, 8, 1 0, 1 1]. Accordingly, we have carefully
revamped the original design of COMPAD to make it more
flexible and scalable to a large repository of learning objects.
In addition, we developed an efficient animation engine for
general program execution and animation. More importantly,
the procedure of modeling new computer architectures is
drastically simplified through quick modifications of pre­
defmed schemas for various computer systems.

As an e-Iearning system, it is important for our
COMPAD simulator system to have access to extensive
learning resources of relevant topics in computer systems for
learners to assimilate or acquire new knowledge. Therefore,
to facilitate the searching and sharing of relevant learning
resource, we propose in this paper to integrate the concept of
learning objects and relevant technologies into our original
COMPAD simulator. By adopting the IEEE Learning Object
Metadata (LaM) standard [2], we have built a simple yet
efficient learning object management subsystem to construct
a local repository of learning objects. With the available
learning object management subsystem, course content
developers can easily maintain and update the knowledge
structure of the underlying subjects by breaking down their
original content into learning objects. Clearly, this will help
students appreciate the underlying knowledge structure
through the arrangement of learning objects in the content
materials, and also make the content easily available for
sharing between our CaMP AD simulator and any other
learning content management system (LCMS) [3, 1 2, 1 3]
that strictly follows the IEEE LaM standard.

This paper is organized as follows. Section 2 reviews the
system design of our improved COMPAD simulator while
Section 3 details the modifications of the simulation engine.
The LaM management system is clearly explained in
Section 4. Section 5 provides an empirical evaluation of our

978-1-4244-6370-11$26.00 © 2010 IEEE V3-16

20 I 0 2nd International Conference on Education Technology and Computer (ICETC)

implemented prototype. Lastly, concluding remarks are
given in Section 6.

II. THE SYSTEM DESIGN OF OUR LOM-BASED SIMULATOR

Basically, the COM PAD simulator [I] consists of two
major components. The first major component is the
simulation engine which converts any assembly program to
the corresponding animation script. The animation script will
then be used to generate all the real-time animation events as
according to the execution state of the program. The second
key component is the LOM management system that allows
the insertion, deletion and searching of learning object into
our local repository of learning objects about computer
systems. Figure I shows the system architecture of our
enhanced COMPAD simulator.

�.-.-.-.-.-.-.-.-.-.-.-. ,

Repository 1
LOM Results LOM Query

Repository 2

Repository 3

Figure I. The system architecture of our improved COMPAD simulator.

The system flow of our COMPAD simulator can be
explained as follows. The simulator firstly reads in the
system architecture configuration file during its start-up
process. Then, the user can defme the components and data
links for the concerned computer architecture. After the user
enters an assembly program, the simulation engine will try to

interpret the program and convert all the instructions into an
animation script as according to the provided configuration
files. Lastly, the simulator will use the animation script
sequence to generate the live animation for the user to view
at his/her own selected speed, ranging from slow, medium to
fast. After viewing, the user is free to modify the original
assembly program, and run the simulator again to view the
latest changes in program behavior. Through these exercises
of incremental modifications to an assembly program,
students can better understand the operations of the
underlying components/concepts involved in program
execution in different computer architectures.

All in all, the design of our improved COMPAD
simulator emphasizes on two major aspects: flexibility and
scalability. First, our enhanced simulator is developed such
that it can be easily configured to support simulations of
various system architectures with different instruction sets
and components. To define a new computer architecture, a
user can simply edit some existing configuration files,
including the behavior and logic of involved assembly
instructions, and save them as a new set of configurations.
Through providing different configuration set to the
simulation engine, the COMPAD simulator can flexibly
generate the live animation for the corresponding computer
architecture. In this way, our COMPAD simulator is adaptive
to the various computer architectures. Second, for scalability,
our learning object metadata (LOM) management system is
designed to tackle a potentially large repository of learning
objects. It includes a backend database management system
to bridge several connected LOM repositories and then
performing database queries based on keyword searches. It
also includes a graphical user interface for users to
interactively add, remove, view or search any LOM as stored
in the local repository or repositories of other e-Iearning
systems that are both compatible with the IEEE LOM
standard [2] and accessible via the Internet.

III. THE SIMULATION ENGINE

For clarity of presentation, we carefully distinguish the
term architecture and model for our subsequent discussion.
We consistently will use the term architecture to denote any
existing computer system architecture such as the Motorola
MC68HCll micro-controller system whereas the term
model refers to a user-defined set of hardware components
and settings used to display the details for that specific
computer architecture. In other words, for the same computer
architecture, we may have different models, including a
simple or complete model, defmed to show the different
levels of complexities for the concerned architecture.
Therefore, after a user selects a specific configuration file
such as that for the Motorola MC68HCl1 architecture [5, 6,
9] in our improved COMPAD simulator, the user still needs
to specify which model to be used to display the details of
the animation. In case the user may want to focus on the core
components such as the memory and arithmetic logic unit
(ALU) for simple illustration, he/she can adopt the simple
model to be used for animation.

Basically, in our enhanced COMPAD simulator, each
architecture is defmed with a configuration file containing

V3-17

2010 2nd International Conforence on Education Technology and Computer (ICETC)

the general infonnation about the specific architecture and all
its available instruction sets. Each user can flexibly
customize the instruction sets to simulate the behavior of
new architectures. The configuration file essentially keeps
track of all the static infonnation about the current computer
architecture used for simulation. On the other hand, the
dynamic infonnation generated to describe the logic and
behavior of each inputted assembly program with respect to
the selected architecture and model is contained in the
animation script. The animation script is generated
efficiently in a real-time manner by the animation engine that
will be considered in the following subsection.

A. The Animation Engine

Intrinsically, the animation script is not simply used for
generating live animation. In fact, it is also used to represent
all the arithmetic and logical operations involved during the
simulation of program behavior for the specific computer
architecture. From this perspective, the animation script can
be viewed as a set of low-level arithmetic operations
involving a number of key components, for which each
instruction in the original assembly program will be
translated into a sequence of such low-level operations inside
the ultimately generated animation script.

Typically, an animation script can be represented as a
sequence of low-level operation specified in the following
fonnat:

(Source /) (Operator) (Source 2) -7 (Target)

Both Source / and Source 2 refer to the data operands
required for the binary and low-level operation. The Target

• COMPAD r;]�ts<J
""

!ToobIx ... 1 � l"-IStep! NwnaOonSpeed-

1 1�� I ����86.f��1d"@'S.f �=
��I r�: . : - �

.5 (6 Ie Id.b .U9
...

o 9006 suba .S91
o 9008 bne loop

(a) Simulation of an assembly program on the MC68HCI I.

is the destination for the current operation. The Operator
simply describes the required operation to be perfonned. Our
current implementation of the animation script engine
supports most of the common operations such as SUM,
SUBTRACT, NOT, AND, OR, XOR, ROTATE, etc. The
animation script enables any user to flexibly modify the
behavior and logic of the inputted assembly program without
the need to modify the original settings of the whole
application. Furthennore, the animation script greatly
simplifies the process of animation generation since live
animation can be dynamically and effectively generated by
mapping or adapting various low-level animation operations
to a specific animation model of the selected computer
architecture.

B. Defining New Models/or Animation

In our design, a user can defme their own model by
inserting new components or linking them up by specifying
the data links. Our improved COMPAD simulator uses LOM
as a container of component data for which each component
is a LOM. Accordingly, the user can easily search or link up
learning objects related to the corresponding components by
completing the "Relation" and/or "Keyword" field of the
LOM management system. As the COMPAD simulator also
allows the user with the flexibility of defming their own
model, conflicts between the selected model and architecture
like missing components and connections may arise.
However, our simulator will try to resolve this conflict by
constructing virtual components and data links which are
invisible to user.

Title DII$,."TI�DOfI t:�lh Fr.II T'tJ)C s.; 8 ��c_ �...::.� �.��I_ ������.-J "wloooo"fldf 2.""
� � Motorola MC68HC T'I"Ie reference mal MC68HCll .j ResourceJApplicationjh cll
r [] Course Webpage (Course Webpage c ELECl401, Exerds https:/lwVo'w.eee. hku .hk/cOl

.J . '" _ • • •• • � ••• � II" • "-�. • • •• • • ;...�. - .�. r: o. ..
MC58HCll MCU b The picuture of Me MC68HCll ./ Resource/lmageJ2009622 :
68HCI1 I nstructio Complete list of M MC68HCl1, http : //home .earthlink.netJ

Assembly programming g uide for �1C68 series

This book is written for an underg rad uate m icrocontroller or microp
engineers who want to leam the subject on their own . The entire bo
following three goals: fu nd amental assembly language programmin
mic rocontroUer components, and skills to interface a variety of exte

Assembly, programming, MC68HC11

. /Resource!ApplicationjHC12 Assembler . pdf

(b) Screenshot of the LOM management tool.

Figure 2. The screen captures of our improved COMPAD simulator

IV. THE LOM MANAGEMENT SYSTEM

By following the IEEE-1484 LOM standard [2], the
LOM management system of our COMPAD simulator [1]
can facilitate the searching of learning object using

standardized metadata fonnat. Basically, LOM is used in our
simulator to capture explicit knowledge, context,
perspectives, and opinions. Learning objects of the fonn of
text, image or video can be imported and searched by
keywords. Therefore, each user is free to access, discover

V3-J8

2010 2nd International Conforence on Education Technology and Computer (ICETC)

and find information using the LOM. In this way, the process
of learning and knowledge creation will be significantly
enhanced and smoothed.

The LOM management system provides the basic
functionality of managing the local LOM database and also
an interface for bridging the COMP AD simulator with other
online learning content management system (LCMS) [7, 1 3].
After a user uses any keyword(s) to query the LOM
management system, the system will redistribute the specific
query to all connected LOM repositories and then respond to
the user by displaying the resulting LOM when the search is
successful. For efficiency of the search, the implementation
of LOM in the COMPAD simulator is simplified since the
subjects are mainly restricted to computer system and
assembly programming. As most of the LOM search is in the
form of keyword(s), the LOM management system will try
to match any LOM with the provided keyword(s) at the title,
description or keyword field. Accordingly, we only need to
implement the corresponding search function on a relatively
small subset of fields as dermed in the original IEEE-1484
LOM schema, including the title, description, keyword and
technical related fields.

V. AN EMPIRICAL EVALUATION OF OUR PROTOTYPE

The prototype of our COMPAD simulator was written in
C# using the Microsoft .NET Framework 3. 5 and the
Windows Presentation Foundation (WPF) graphical
subsystem. To demonstrate the feasibility of our proposal on
integrating the LOM and relevant technologies into the
COMPAD simulator, our current prototype implementation
simulates the Motorola MC68HCli microcontroller [5]
using the predefined architecture configuration file and a set
of component files. The LOM management system in our
COMPAD simulator uses a local LOM repository to store
the relevant learning objects and a specific reference file for
a clear demonstration.

A. Simulation

Figure 2(a) shows the main window of our improved
COMPAD simulator to simulate the execution of a specific
assembly program on the MC68HCli computer architecture.
As clearly shown in the concerned interface, a user can edit
or create their model by dragging components from the pull­
down menu on the left-hand side into the central working
space. After formulating the model used for animation, the
user can directly enter hislher own assembly program in the
code box below the working space. The COMP AD simulator
will then verify the assembly program by checking its syntax
and any conflict(s) occurred among the involved components
for a successful compilation of the program. Upon a
successful program compilation, the user can start the
simulation process. During simulation, the simulator will
generate live animation to illustrate the data flow and
essential operations issued by each instruction in the
assembly program.

B. The LOM Management System

The LOM management system consists of a LOM
manager used to manage the LOM inside its local LOM
repository, and a LOM explorer to perform keyword search
or browsing through LOM in the repository. Figure 2(b)
shows the user interface of the LOM manager used in our
COMPAD simulator.

The LOM management system is fully integrated into the
COMPAD simulator such that a user can view or search
extensive learning objects from its local repository by
double-clicking on any component or assembly instruction in
the simulator. The LOM management system will
automatically generate the appropriate LOM search query
according to the nature of the selected component or
instruction.

After completing our prototype implementation, we plan
to provide our enhanced COMPAD simulator to students
enrolled in certain Year-l and Year-2 compulsory courses on
computer systems to try out in both semesters of 2010/201 1 .
By the end of each semester, a set of carefully designed
evaluation forms will be distributed to all students attending
the courses so as to collect their feedbacks so as to further
enhance our system. By then, we would conduct a detailed
analysis to evaluate about the effectiveness of our improved
COMPAD simulator to facilitate the students' understanding
in computer systems through live animation and learning
object technologies.

VI. CONCLUDING REMARKS

We successfully integrated the learning object metadata
(LOM) [2] and relevant technologies into our interactive
COMPAD simulator [1] for users to quickly create and work
with related learning objects in the underlying subject area of
computer systems. Our enhanced simulator is so generic that
users may reuse or modify the information inside the existing
learning objects so as to create learning objects in derming
new models. This will help to shorten the development time
of relevant course or simulation materials. All in all, this
paper reports our on-going work that has initiated many
interesting directions for future investigation including the
uses of sophisticated visualization techniques to guide the
systematic structure of learning objects in a specific field, or
the integration of an interactive discussion forum to foster
the exchange of ideas among students over a peer-to-peer
network. More importantly, the pedagogical impacts brought
by our LOM-based simulation tool should be thoroughly
studied.

ACKNOWLEDGMENT

The authors are grateful to the generous supports from
Department of Electrical and Electronic Engineering, the
University of Hong Kong. Furthermore, the authors would
like to express their gratitude to Professor Yi Shang and Dr.
Daniel Churchill for their fruitful discussions on learning
objects and e-learning systems.

REFERENCES

V3-19

2010 2nd International Conference on Education Technology and Computer (ICETC)

[1] J. Yeung, V. Tam, E. Lam, and C. Leung, "Developing an innovative
and pen-based simulator to enhance education and research in
computer systems," in Proceedings of the 9th IEEE ICAL T 2009.
Riga, Latvia: The IEEE Computer Society Press, 2009, pp. 267-269.

[2] "Draft standard for learning object metadata. (ieee 1484.12.1-2002),"
The IEEE WG12 Working Group. [Online]. Available at:
http://Itsc. ieee.org/wg 12/fiIeslLOM _1484 _12_1_ v I_Final Draft.pdf

[3] "The MoodIe System." [Online]. Available at: http://moodle.org/

[4] F. Porto, A. M. de C. Moura, and F. J. C. da Silva, "Rosa: A
repository of objects with semantic access for e-Ieaming," Database
Engineering and Applications Symposium, International, vol. 0, pp.
486-488, 2004.

[5] "The MC68HCll Reference Manual Rev. 6.1", Freescale
Semiconductor Inc. [Online]. Available at:
http://www.fi"eescale.com/flles/microcontrollers/doc/reCmanual/M68
HCIIRM.pdf

[6] R. J. Tocci and F. J. Ambrosio, Microprocessors And
Microcomputers: Hardware And Software, 6th ed. Englewood Cliffs,
N.J.: Prentice Hall PTR, 2002.

[7] T. Kleinberger and P. Miler, "Content management in web based
education," in Proceedings of the Webnet 2000 Conference on the
WWW and Internet, San Antonio, Texas, USA, 2000, pp. 329-334.

[8] J. Vargo, J. Nesbit, K. Belfer, and A. Archambault, "Learning object
evaluation: Computer-mediated collaboration and interrater

reliability," International Journal of Computers and Applications, vol.
25, no. 3, pp. 198-205, 2003.

[9] T. Dickens, "Dickens 68hcll - documentations and references."
[Online]. Available at:
http://home.earthlink.netUdickens/68hc 111 docs Jeferences. htrnl

[10] M. Hatala, G. Richards, T. Eap, and J. Willms, "The interoperability
of learning object repositories and services: standards,
implementations and lessons learned," in Proceedings of the 13th

International World Wide Web conference, New York, NY, USA,
2004, pp. 19--27.

[11] G. Richards and M. Hatala, "Semantic cobblestones: An
interoperability mechanism for learning object repositories," in
McGreal, R.(ed.) Online Education Using Learning Objects,
Routledge-Falmer, London, 2004, pp. 301-313.

[12] X. Liu, A. EISaddik, and N. D. Georganas, "An implementable
architecture of an e-Iearning system," in Proceedings of CCECE,
Montreal, QC, Canada, 2003, pp. 717-720.

[13] S. Rapuano and F. Zoino, "A learning management system including
laboratory experiments on measurement instrumentation,"Trans. on
Instrumentation and Measurement, vol. 55, no. 5, pp. 1757-1766, Oct
2006.

V3-20

