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Abstract
1
 

This paper addresses two problems in visually-controlled 

robots. The first consists of positioning the end-effector 

of a robot manipulator on a plane of interest by using a 

monocular vision system. The problem amounts to 

estimating the transformation between the coordinates 

of an image point and its three-dimensional location 

supposing that only the camera intrinsic parameters are 

known. The second problem consists of positioning the 

robot end-effector with respect to an object of interest 

free to move on a plane, and amounts to estimating the 

camera displacement in a stereo vision system in the 

presence of motion constraints. For these problems, 

some solutions are proposed through dedicated 

optimizations based on decoupling the effects of rotation 

and translation and based on an a-priori imposition of 

the degrees of freedom of the system. These solutions are 

illustrated via simulations and experiments. 

1 Introduction 

Robot control based on artificial vision is an important area 

of robotics with useful applications. Indeed, artificial vision 

may allow robots to imitate human beings in performing 

simple operations such as grasping a cup of coffee, as well as 

difficult operations such as threading a needle. Technically 

speaking, artificial vision may be used as feedback 

information so that a robot can reach a desired location 

and/or touch a desired object with its end-effector. This 

information is provided by visual sensors such as cameras 

that acquire images of the scene around the robot. These 

images describe if and how the robot and its end-effector are 

moving toward the goal, and hence constitute a feedback 

information. 

The applications of robotic systems with artificial vision are 

numerous and various. To name but a few, one can cite the 

industrial manufacture, where robotic arms are used for 

grasping and positioning tools and objects. Other 

applications can be in surveillance, where a mobile camera 

observes an area of interest such as an entrance, and in 
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vehicles alignment, as in car parking and airplane landing. 

Also, robots equipped with vision find application in surgery, 

where an instrument has to be guided to an organ to operate, 

and in dangerous environments such as nuclear stations and 

spatial missions, where humans have to be replaced. 

Depending on the number and position of the cameras, and 

on how the information provided by these cameras is 

exploited by the system, several configurations of robot 

control based on artificial vision can be obtained. For 

instance, the cameras can be mounted on the robot 

end-effector in the so called eye-in-hand configuration (also 

known as hand-eye), or can be positioned somewhere in the 

scene separately from the robot in the so called eye-to-hand 

configuration (also known as static-eye). Then, each camera 

may be used to inspect a different region of the scene 

(monocular vision), or all cameras may be used to observe a 

common set of objects (multi-camera vision, known as 

stereo vision in the case of two cameras). Lastly, the images 

acquired by the cameras can be used by the control system to 

define the goal only at the beginning of the task (open-loop 

control) or exploited during the robot motion in order to 

progressively update the goal (closed-loop control). See for 

instance [1]-[7] and [12]-[15] for details. 

This paper presents some applications of robot control based 

on artificial vision, in particular considering the following 

two problems. First, the task of positioning the end-effector 

of a robot manipulator on a plane of interest by using the 

view of the scene provided by a camera is addressed. 

Specifically, the camera is supposed to observe the robot and 

its workspace, and one defines the target position to be 

reached by the robot end-effector in the view of the camera. 

The problem hence amounts to estimating the transformation 

relating the coordinates of a point chosen on the image and 

its three-dimensional location supposing that only the 

camera intrinsic parameters are known, and for this problem 

an optimization based on decoupling the effects of rotation 

and translation is proposed. The second problem consists of 

positioning this end-effector with respect to an object of 

interest which is free to move on a plane, and hence amounts 

to estimating the camera displacement in a stereo vision 

system in the presence of motion constraints. For this 

problem, a solution is proposed based on the estimation of 

the homography matrix and its decomposition in rotation 

and translation by taking into account the reduced degrees of 
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freedom. Simulations and experiments are reported to 

illustrate the proposed strategies. 

The paper is organized as follows. Section 2 introduces the 

problem formulation. Section 3 presents the proposed 

strategies. Section 4 presents the simulations and experi- 

ments. Lastly, Section 5 provides some final comments. 

2 Problem Formulation 

We consider the problem of positioning a robot end-effector 

on a plane using a fixed camera. This problem is addressed 

in the following two situations. 

2.1 Positioning with one view 

Let FR be the coordinate frame of the robot, and let FC be the 

coordinate frame of a camera observing the robot 

end-effector. It is assumed that the origin and orientation of 

FC coincide respectively with the center and axes of the 

camera, and that the motion of the robot end-effector is 

restricted on a plane Π as shown in Figure 1.  

 

Figure 1: Problem formulation of position with one view 

Let ri ∈ R
3
 be a feature point on Π expressed with respect to 

FR. This point satisfies the relation: 

0=+ bra i

T     (1) 

where a ∈ R
3
 and b ∈ R are constants describing Π with 

respect to FR. 

Let RRC ∈ R
3×3

 and tRC ∈ R
3
 be the rotation matrix and 

translation vector describing the motion between FR and FC. 

The point ri can be hence expressed as: 

RCiRCi tqRr +=     (2) 

where qi ∈ R
3 
is the point ri expressed with respect to FC. 

Let pi ∈ R
3 

denote the projection (in homogeneous 

coordinates) on the image plane of the camera of ri. The 

standard pin-hole camera projection model provides the 

relation: 

iii Kqp =λ      (3) 

where λi ∈ R is the scaling factor and K ∈ R
3×3

 is the 

upper-triangular intrinsic camera calibration matrix. 

The problem consists of estimating RRC, tRC, a and b 

satisfying (1)-(3) using a set of training pairs (ri, pi), i=1,…,k, 

that are assumed to be known initially. Subsequently, the 

estimated RRC, tRC, a and b allow one to estimate ri from any 

user defined pi, and hence to position the robot end-effector 

to a desired point lying on Π  specified in the image. 

2.2 Positioning with two views 

Let us consider a planar object ϕ in two different locations 

with coordinate frames FP and FP
* 

observed by a fixed 

camera with coordinate frame FC as shown in Figure 2. We 

assume that the object has undergone a planar motion from 

FP to FP
*
, i.e. FP

* 
is obtained from FP via a translation on the 

object plane and a rotation about the normal to the object 

plane. Let si ∈ R
3 
denote the ith feature point on the object. 

Let mi, mi
*
 ∈ R

3 
denote the projections on the image plane of 

the camera of the point si with the object in the locations FP 

and FP
*
 respectively. These projections are given by: 

)( PCiPCii tsRKm += ξ    (4) 

)(
****

PCiPCii tsRKm += ξ    (5) 

where ξi , ξi
*∈ R are scaling factors, and RPC, RPC

*
 ∈ R

3×3
 and 

tPC , tPC
*
 ∈ R

3
 are the rotation matrices and translation 

vectors describing the motions between FP and FC and 

between FP
*
 and FC. 

 

Figure 2: Problem formulation of position with two views 

The problem consists of estimating the rotation matrix and 

translation vector describing the motion between FP and FP
*
, 

denoted by R ∈ R
3×3

 and t ∈ R
3
 respectively, supposing that 

an estimate of K and a set of image measurements (mi, mi
*
), 

i=1,…,j, are available. In fact, R and t allow one to move the 

robot end-effector from the current location FP to the desired 

(unknown) location FP
*
. 

3 Proposed Solution 

3.1 Positioning with one view 

Assume pi is expressed in homogenous coordinates, i.e.: 

[ ]T

iii vup 1=    (6) 

for some ui, vi ∈ R. 

From (3), the following equations can be deduced: 

i

T

i

T

i
Kqe

Kqe
u

3

1=  , 

i

T

i

T

i
Kqe

Kqe
v

3

2=   (7)  

FC 

FR 

Π ri 

FP 

si 
si 

ϕ 
ϕ 

FC 

FP
*
 

7th ASCC, Hong Kong, China, Aug. 27-29, 2009 ThB5.2

373



where ei is the ith column of the 3×3 identity matrix I3. 

The expression (7) can be rewritten as: 

0=ii qM      (8) 

where 









−

−
=

KeKev

KeKeu
M

TT

i

TT

i
i

23

13  ∈ R
2×3

     (9) 

is independent of qi. 

From (2), qi can be expressed in terms of ri as follows: 

)( RCi

T

RCi trRq −=    (10) 

By combining (8) and (10), the following relationship is 

obtained: 

0=− RC

T

RCii

T

RCi tRMrRM   (11) 

With several samples of ri and pi, the problem is hence: 

2

,
min ∑ −

i

RC

T

RCii

T

RCi
tR

tRMrRM
RCRC

  (12) 

Since RRC is a rotation matrix, it can be expressed as a matrix 

exponential of a skew-symmetric matrix, i.e.: 

[ ]xeRRC

θ=     (13) 

where θ ∈ R
3
 and [ ]

x
 denotes the skew-symmetric matrix as 

follows: 

[ ]


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



−

−

−

=

0
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θθ

θθ

θθ
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 , 

















=

3

2

1

θ

θ

θ

θ   (14) 

If θ  is fixed, (11) reduces to a linear system in tRC, in 

particular: 

iRCi ctA =      (15) 

where T

RCii RMA = and 
i

T

RCii rRMc = . 

If k pairs of corresponding ri and pi are used to solve for tRC, 

the equations are stacked up in the following form: 

cAtRC =     (16) 



















=

kA

A

A

A
⋮

2

1

 ∈ R
2k×3

 , 



















=

kc

c

c

c
⋮

2

1

∈ R
2k

 (17) 

From (16) tRC can be estimated via linear least-squares as 

follows: 

cAAAt TT

RC

1)(ˆ −=    (18) 

The least-squares error is hence given by: 

ctA RC −= ˆε     (19) 

Since this error depends on θ, we can estimate θ  by solving: 

)(min θε
θ

    (20) 

for instance via gradient-descent methods. This provides an 

estimate θ̂ . From θ̂ , we find 
RCR̂  via (13) and 

RCt̂  via (18).  

Lastly, a and b are estimated from (1) via simple linear 

least-squares, hence obtaining â  and b̂ . 

Let us observe now that, each pair of corresponding ri and pi, 

gives two scalar equations from (8) and one scalar equation 

from (1). Since in (11) there are six scalar variables (three in 

θ  and three in tRC) and in (1) there are four scalar variables, it 

follows that at least 4 pairs of corresponding ri and pi are 

required, i.e. k ≥ 4. 

Once 
RCR̂ , 

RCt̂  â  and b̂ have been found, one can estimate 

the position of a new feature point r ∈ R
3
 on the plane 

Π from an estimate of its projection p ∈ R
3
 on the camera. 

Indeed, from (1) and (2), it follows that (replacing ri and qi 

with r and q respectively): 

0ˆ)ˆˆ(ˆ =++ btqRa RCRC

T    (21) 

0=+ bqa
T

    (22) 

where aRa
T

RC
ˆˆ=  and btab RC

T ˆˆˆ += . Then, by using (8) and 

(22), one has that: 










−
=









b
q

a

M
T

0     (23) 

where M is calculated as in (9) with pi replaced by p. This 

provides q, and consequently r from (2). 

3.2 Positioning with two views 

Since the feature points are on the plane, mi and mi
*
 are 

related as follows: 

ii Gmm =*      (24) 

where G ∈ R
3×3

 is known as a collineation matrix which can 

be further decomposed as follows: 

1−= KHKG     (25) 

where H ∈ R
3×3

 is known as a homography matrix, see for 

instance [11]. 

H can be estimated given an estimate of K and a set of 

estimates (mi, mi
*
), i=1,…,j. From H, the rotation R ∈ R

3×3
 

and translation t ∈ R
3
 between FP and FP

*
 can be obtained by 

using suitable decomposition methods (see, e.g., [8] and 

[10]). 

However, these methods consider a general motion between 

FP and FP
*
 with six degrees of freedom, while in our case the 

motion between FP and FP
*
 is constrained to a planar class 

with three degrees of freedom. It can be expected that, by 

taking into account this constraint in the decomposition of H, 

more accurate results can be obtained compared with the 

case where this constraint is not considered. Therefore, our 

target is to derive a new procedure for decomposing H into R 
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and t where the motion constraint is taken into account a 

priori. 

Let us start by observing that the problem of planar object in 

two positions can be reduced to stereo camera problem [9]. 

Using [8], the homography matrix H can be decomposed as: 

d

nt
RH

T

get

get +=    (26) 

where:   T

PC

T

PCget RRRR =    (27) 

and   tRRtRRRIt
T

PCPC

T

PCPCget −−= )( 3
  (28) 

Since the motion between FP and FP
*
 is restricted to be 

planar, R and t should have the following forms: 









=

10

0#R
R   , 









=

0

#t
t    (29) 

where R# ∈ R
2×2

 is a rotation matrix and t# ∈ R
2
 is a 

translation vector. 

If H is pre- and post-multiplied by RPC
T
 and RPC respectively, 

we have: 

 
d

nRtR
RHRRH

TT

PCget

T

PCT

PC

T

PC

)(
+==   (30) 

Concerning RPC
T
n, since the motion between FP and FP

*
 is 

restricted to be planar, the normal vector is parallel to the 

z-axis of FP or FP
*
, which means that if the normal vector is 

expressed with respect to FC, the following relationship can 

be deduced: 

3wn =  where ][ 321 wwwRPC =  (31) 

Therefore,   [ ]TT

PC nR 100=    (32) 

Concerning RPC
T
tget, by using (29), it can be shown that: 














=

0

~

ttR get

T

PC
    (33) 

Combining the results in (29), (30), (32) and (33), the 

following relationship can be found: 














=

10

/
~

# dtRH
T

   (34) 

As a result, the following relationship holds: 

ii mHm =*    (35) 

where *1*

i

T

PCi mKRm
−=  and 

i

T

PCi mKRm
1−= . 

In other words, the degree of freedom of the homography 

matrix is reduced in the case of planar motion and hence a 

more accurate result should be obtained.  

4 Results 

Experiments with simulation and real data are done in order 

to justify the proposed solution and compare with other 

existing methods. 

4.1 Simulation results 

Simulations are done with synthetic data in order to illustrate 

the performance of the proposed method. 

4.1.1 Simulation results of positioning with one view 

Eight points are selected as the position of the end-effector 

of the robot with their coordinates ri being known such that 

all the points are coplanar. The camera, with its intrinsic 

parameters defined, is placed randomly with respect to the 

robot coordinate frame such that the rotation and translation 

between the robot and the camera are known. The points ri 

are projected onto the image plane by (2) and (3) so that their 

corresponding pixel coordinates are calculated. Due to 

optimization error, the retrieved rotation and translation is 

not exactly the same as originally defined. The pixel 

coordinates are back-projected to the robot coordinate frame 

assuming that the equation of the plane is known. Simulation 

is done in order to examine the average rotation and 

translation errors and the average back-projection error. 

Gaussian noise with standard deviation ranging from 0 to 4 

units is added to the pixel coordinates. The algorithm is run 

20 times for each noise level. The average rotation and 

translation errors are plotted in Figure 3 and Figure 4. 
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Figure 3: Average rotation error 
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Figure 4: Average translation error 
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4.1.2 Simulation results of positioning with two views 

Four feature points si are selected on a planar object. The 

camera is placed randomly with respect to the object 

provided that the rotation and translation between the 

camera and the object are known. The intrinsic camera 

calibration matrix is also defined. Using (4), the pixel 

coordinates can be calculated.  Next the object is moved 

randomly provided that the rotation and translation of the 

object at two locations are known. The new pixel 

coordinates are calculated using (5). 

The standard homography decomposition method (see, e.g., 

[8] and [10]) is applied to the same data for the purpose of 

comparison with the proposed method. Gaussian noise with 

standard deviation ranging from 0 to 4 pixels with 0.5 pixel 

interval is added to the pixel coordinates.  The algorithms are 

run 100 times for each noise level and the average errors of 

rotation and translation of the object retrieved using two 

methods are plotted in Figure 5 and Figure 6.  
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Figure 5: Average error in rotation 
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Figure 6: Average error in translation 

It can be seen that the average errors on rotation and 

translation of the proposed method are significantly less than 

that of the standard homography decomposition method. 

4.2 Experimental results  

The algorithm is tested using a 6-DoF articulated robot arm 

and a calibrated camera mounted at a fixed position looking 

at the workspace of the robot where a piece of A4 paper with 

marks on it is used as the planar object as shown in Figure 7.  

 

Figure 7: Testing environment 

4.2.1 Experimental results of positioning with one view 

The robot is manipulated to move to eight designated 

positions on a plane parallel to the x-y plane of the base 

coordinate frame so that their coordinates with respect to the 

base coordinate frame are known. The pixel coordinates of 

the end-effector of the robot are recorded corresponding to 

its 3D positions. The pairs of coordinates are used as training 

samples to calibrate the robot with respect to the camera 

using the method proposed in Section 3.1.  

Thirteen points printed on a piece of paper are used to 

estimate the actual error of the algorithm. Those points 

visible by the camera are selected on the image so their pixel 

coordinates are known. Their back-projected coordinates are 

calculated where the robot is driven to. The errors are 

measured as the distance between the positions of the 

end-effector of the robot and the corresponding points.  

We define x-direction being parallel to the long side of the 

paper while y-direction being parallel to the short side of the 

paper. The errors are measured and presented at the 

following table: 

 max. error min. error avg. error 

x-direction 3mm 0mm 1.31mm 

y-direction 6mm 1mm 3.73mm 

Table 1: Back-projection errors 

That errors in the y-direction are larger than in the 

x-direction is expected because disparity in depth is less 

discernable than in the lateral direction of the camera, given 

that only one view of the scene is available. 

4.2.2 Experimental results of positioning with two views 

A sheet of A4 paper is used as the planar object with its four 
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corners and four additional markers on the paper as the 

feature points. The robot is used to verify the algorithm. First, 

the initial position of the paper, as shown in Figure 7, is 

identified by the camera and a line segment is drawn on the 

paper by a robot. Next, the paper is moved to an arbitrary 

position as shown in Figure 8 and the robot is to draw an 

extension of the line segment from its previous endpoint 

according to the rotation and translation calculated using 

both the standard and the proposed method of homography 

decomposition. If the situation is perfect, there should be no 

gap between the two line segments and their orientations 

should be consistent. This experiment can be used to 

estimate the rotation and translation errors of both methods 

in a real scenario.  

 

Figure 8: Paper in new position 

The errors are measured and recorded. The orientations of 

the lines are basically consistent using both methods, which 

means that the rotation error is small. The translation error 

using proposed method is 7mm while that using standard 

homography decomposition method is 9mm, which means 

that the proposed method achieves about 22% improvement 

in translation.  

5 Conclusion 

We have considered two applications of visually- controlled 

robots, addressing the problems of positioning the 

end-effector of a robot manipulator on a plane of interest by 

using monocular and two-view vision. The problems amount 

to estimating the existing transformations between the 

coordinates of some available image points and the 

three-dimensional location of the robot end-effector 

corresponding to these points. Solutions have been proposed 

through dedicated optimizations based on a-priori 

imposition of the degrees of freedom of the system. Future 

work will be devoted to improving the proposed solutions in 

order to achieve higher positioning accuracies. 
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