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ABSTRACT

Optical proximity correction (OPC) is one of the most widely used Resolution Enhancement Techniques (RET)
in mask designs. Conventional OPC is often designed for a set of nominal imaging parameters without giving
sufficient attention to the process variations caused by aspherical wavefront leaving the exit pupil of the lithog-
raphy system. As a result, the mask designed may deliver poor performance with process variations. In this
paper, we first describe how a general point spread function (PSF) with wave aberration can degrade the output
pattern quality, and then show how the wave aberration function can be incorporated into an inverse imaging
framework for robust input mask pattern design against aberrations. A level-set-based time-dependent model
can then be applied to solve it with appropriate finite difference schemes. The optimal mask gives more robust
performance against either one specific type of aberration or a combination of different types of aberrations.
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1. INTRODUCTION

Optical microlithography represents an essential technology for manufacturing Integrated Circuits (IC). Demand
for increased density of features on dies and wafers has resulted in the design of circuits with decreasing minimum
dimensions. Due to the wave nature of light, as dimensions approach sizes comparable to or smaller than the
wavelength of the light used in photolithography process, the bandlimited imaging system introduces undesired
distortions and artifacts. Techniques such as Optical Proximity Correction (OPC) attempt to solve this problem
by appropriate pre-distortion of the photomask pattern. OPC has been carried out mainly using two approaches:
rule-based, or model-based.1 In the former, empirical rules are developed to counteract the common problems
around pattern corners, edges and local interactions.2, 3 Rule-based OPC techniques are easy to implement
with relatively low cost and high throughput, however, such approaches do not consider the full spectrum
of possible photomask patterns, and therefore result in sub-optimal designs. Inverse model-based techniques
invert the mathematical model and attempt to directly synthesize the optimized mask pattern, and is not
constrained by the topology of the original design.4, 5 Liu and Zakhor applied branch and bound algorithm6 and
“bacteria” method7 for an optimal binary and phase shifting mask (PSM) design, yet these methods are very time-
consuming. Poonawala and Milanfar designed a model-based OPC system and developed a faster optimization
algorithm using steepest-descent,8, 9 which has been further improved by Chan et al. in using an active set
method and conjugate gradient,10, 11 and by Jia et al. in improving the robustness of the design.12, 13 Meanwhile,
level-set method14 offers a feasible alternative for inverse lithography.4, 15 A detailed level-set formulation for
inverse lithography16 describes the inverse problem as a constrained time-dependent model which is solved using
appropriate difference schemes.

While the above-mentioned algorithms enrich the weaponry for solving inverse lithography problems, the
current performance still falls short, making this a “virtual virtuality” as it is not yet fully applicable to real-
world manufacturing.17, 18 One such concern is that they are mostly applied to calculate solutions under nominal
conditions, without taking process variation into account. With a lower k1 factor, process variations have caused
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more critical dimensions (CD) variations and hotspots, which deserve more attention.18 Consequently, various
efforts have been made to incorporate process conditions into OPC algorithms for robust design of printed
patterns.12, 13, 19 Another major source of CD variation other than defocus and dose variation is aberration20

which is defined as deviation of wavefronts from sphericity. The aberration function can be expressed in terms
of a complete set of polynomials, namely, Zernike polynomials.21, 22 However, the applicability of the original
Nijboer-Zernike theory is limited mainly to wave-front deviations well below the value of one wavelength. An
extended Nijboer-Zernike approach23, 24 is proposed to yield point-spread function of the optical systems in the
case of large aberrations and defocus values.

In this paper, we propose a statistical method which incorporates process variations including both defocus
and aberrations into the inverse lithography problem. The method treats defocus and aberrations as random
variables, taking their statistical properties into account, and develops an optimization set which aims to minimize
the pattern fidelity difference between the printed wafer on the pattern upon various defocus and aberration
conditions and the target pattern. A complete level-set formulation of the optimization problem is provided with
a computationally efficient solution to the proposed level-set-based formulation.16

This paper is organized as follows. Section 2 describes the mathematical model which incorporates defocus and
aberrations into the inverse lithography problem. Section 3 introduces level-set-based optimization framework.
Experimental results are presented in Section 4. Finally, Section 5 draws concluding remarks and provides some
future insights.

2. MATHEMATICAL MODEL

For simplicity in both mathematics and implementation, we describes the problem formation using coherent
sources and binary masks, but our methodology can be readily applied to partially coherent illumination and
PSMs. The projection lithography imaging process can be described as a forward model

I(x) = T {U(x)}, (1)

where the boldface x denotes spatial coordinates (x, y), and T {·} maps the input intensity function U(x) to the
output intensity function I(x). Due to the lowpass nature of the optical lithography imaging system, I(x) is
typically a blurred version of U(x). Suppose we denote the desired circuit pattern as I0(x). The objective of
inverse lithography is to find a predistorted input intensity function Û(x) which minimizes its distance with the
desired output, i.e.,

Û(x) = arg min
U(x)

d(I0(x), T {U(x)}), (2)

in which d(·, ·) is an appropriately defined distance metric, such as the �2 norm.

The lithography process T {·} in Eq. (1) can be divided into two functional blocks, namely the projection
optics effects (aerial image formation) and resist effects. If the optical system is coherent, the aerial image
intensity distribution Iaerial(x) is related to the input intensity function U(x) and the point spread function
(PSF) H(x) by

Iaerial(x) = |H(x) ∗ U(x)|2, (3)

where ∗ denotes convolution, and H(x) in an ideal case where there exist no defocus and aberrations, is taken
as the inverse Fourier transform of a disc function.25 The resist effects can be approximated using a logarithmic
sigmoid function9

sig(U(x)) =
1

1 + e−a(U(x)−tr)
, (4)

with a being the steepness of the sigmoid and tr being the threshold. Putting together, we can write the image
formation equation for a coherent imaging system as

I(x) = T {U(x)} = sig(Iaerial(x)) = sig(|H(x) ∗ U(x)|2). (5)
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Figure 1. PSF with (a) no defocus and no aberration, (b) no defocus but coma aberration with c31 = 10 and (c) defocus
f = 20π and coma aberration with c31 = 10.

In what follows, we will drop the arguments x whenever there is no ambiguity. In the normalized form that is
convenient for our purposes, the diffraction integrals that we are concerned with H take the form

H =
1
π

∫ 1

0

∫ 2π

0

e2πjρr cos(θ−φ) dθ dρ, (6)

where j =
√
−1, ρ, θ and r, φ are the polar coordinates in the exit pupil function and in the image plane,

respectively. H is characterized by the function

H(r) = 2
J1(2πr)

2πr
, (7)

also known as the Airy pattern, where J1 is the Bessel function of the first kind. However, when defocus and
aberrations are present, the diffraction pattern concerning H becomes

H =
1
π

∫ 1

0

ρejfρ2 ×
{∫ 2π

0

ejΦ(ρ,θ+φ) × e2πjρr cos θ dθ

}
dρ, (8)

with f being defocus, and Φ being the aberration function which can be expanded using Zernike polynomials
according to the Nijboer-Zernike theory as

Φ(ρ, θ) =
∑
n,m

cnmRm
n (ρ) cosmθ, (9)

in which cnmRm
n (ρ) cos mθ is a polynomial of the Zernike set. The first fifteen polynomials of the Zernike set can

be found in Ref 25.

According to Ref 23 and 24, the diffraction pattern H in Eq. (8) can be expressed in terms of

Tnm :=
∫ 1

0

ρn+1ejfρ2
Jm(2πrρ) cos mφ dρ. (10)

Thus, the integral expression for H in Eq. (8) can be expressed explicitly, in terms of powers of f , cnm in Eq. (9),
and Bessel functions, in a way that is, in principle, practical for computerization. In Fig. 1, the contour plots of
the PSF with (a) no defocus and no aberration, (b) no defocus but coma aberration with c31 = 1 and (c) defocus
f = 20π and coma aberration with c31 = 10 are presented as examples to show how defocus and aberration can
effect the PSF under nominal condition.

3. LEVEL-SET-BASED OPTIMIZATION FRAMEWORK

In optical lithography, the image does not always lie on the focal plane, but may vary randomly around it. In
other words, the defocus f between the image plane and focal plane behaves like a random variable. In the
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Nijboer-Zernike theory, defocus can also be represented as Zernike polynomials.25 As a reasonable assumption,
the coefficients are modeled as independent, normally distributed random variables with zero mean and identical
non-zero variance. The root-mean-square (rms) deformation

ΔΦrms =
√∑

n,m

c2
nm, (11)

becomes a χ2 (chi-square distribution) random variable with degree of freedom equal to the number of Zernike
polynomials in the combined aberration.

The statistical method proposed in this paper states that in order to optimize the average performance of
layouts, the objective function takes expectations of the difference under various aberration conditions with a
certain distribution of the rms deformation. The optimization problem we aim to solve becomes

Uoptimal = min
U

E
{
‖I − I0‖2

2

}
, (12)

where ‖ · ‖2
2 denotes �2 norm and E denotes expectation. Various algorithms have been developed to solve the

inverse lithography problem in Eq. (12), including steepest descent and conjugate gradient.26 Alternatively, a
level-set-based inverse lithography technology (ILT) has been developed to solve the ILT problem,16 the advantage
of which being pattern error improvement and elimination of unwanted small blocks in mask manufacturing. As
such, a stable explicit time-dependent model is applied,

∂U

∂t
= −|∇U |α(x, t), (13)

in which α(x, t) is computed as

α(x) =
1
2

∂

∂U

(
sig(|H ∗ U |2) − I0

)2

= a × E{H ∗ [(I0 − sig(|H ∗ U |2)) � sig(|H ∗ U |2) � (1 − sig(|H ∗ U |2)) � (H ∗ U)]}, (14)

where � denotes element-by-element multiplication. One can immediately notice that Eq. (13) is a partial
differential equation (PDE) which could be solved by various finite difference schemes. The authors suggest
that first-order temporal accuracy and second-order essentially nonoscillatory spatial accuracy are appropriate
difference schemes to compute the PDE.16 The computation stops after a certain number of iterations or when
the value of the cost function has decreased below a certain threshold value.

It should be noted that by employing the expectation operator, the average amount of change under different
defocus and aberration conditions is incorporated into the time-dependent model in Eq. (13). Therefore, it
optimizes the mask pattern over the defocus range and aberration coefficients, which makes it more robust
against defocus and aberrations than an optimization at nominal conditions.

4. EXPERIMENTAL RESULTS

We apply the proposed level-set-based aberration-aware ILT to design binary masks which are robust against
different aberrations. System parameters are set as follows: λ = 193nm, NA=0.85, resolution= 10nm/pixel,
PSF H is a jinc function of the same size as the required pattern, steepness of the sigmoid function a = 85,
thresholding tr = 0.3. The algorithm stops after 400 iterations.

In one set of photomask synthesis simulations, the proposed algorithm is applied to intended target pattern
in Fig. 2(a) for aberration-aware input mask pattern against coma. The Zernike coefficient associated with this
coma aberration is c31, which when it is the only aberration present without defocus, is defined as a normally
distributed variable with zero mean and nonzero variance. Fig. 2(b) shows the coma-degraded output pattern
using the target pattern in Fig. 2(a), suggesting an off-axis effect on output pattern when c31 = 100. Fig. 2(c)
shows the optimal input mask pattern computed under nominal condition, i.e., when there is no aberration

Proc. of SPIE Vol. 7748  77481U-4

Downloaded from SPIE Digital Library on 12 Jul 2011 to 147.8.21.43. Terms of Use:  http://spiedl.org/terms



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Simulation with optimal input mask under nominal condition and optimal input mask against coma. (a) Target
pattern. (b) Output mask under coma (c31=100) with input (a). (c) Optimal input mask under nominal condition. (d)
Optimal input mask against coma. (e) Output mask under nominal condition with input (b). (f) Output mask under
nominal condition with input (c). (g) Output mask under coma (c31=100) with input (b). (h) Output mask under coma
(c31=100) with input (c).

Table 1. Pattern error in Fig. 2

Experiments Fig. 2(b) Fig. 2(e) Fig. 2(f) Fig. 2(g) Fig. 2(h)
Pattern Error 3275 231 416 3030 725
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(a) (b)

(c) (d) (e)

Figure 3. Simulation with optimal input mask under nominal condition and optimal input mask against defocus and coma.
(a) and (b) Coma-defocus-degraded output pattern with input Fig. 2(a)and Fig. 3(b) under defocus f = 800 and coma
c31 = 80, respectively. (c) Optimal input mask against defocus and coma. (d) Output mask under nominal condition
with input (c). (e) Output mask under coma defocus f = 800 and coma c31 = 80 with input (c).

Table 2. Pattern error in Fig. 3

Experiments Fig. 3(b) Fig. 3(c) Fig. 3(f) Fig. 3(g)
Pattern Error 3752 3669 797 884

at all. Fig. 2(d) shows the aberration-aware input mask pattern out of the proposed algorithm. Fig. 2(e)
and (f) are the resulting output pattern under nominal condition with Fig. 2(b) and (c) as input respectively.
Fig. 2(g) and (h) are the resulting output pattern under coma when c31 = 100. Pattern error of simulation
results in Fig. 2 is given in Table 1, where pattern error is examined numerically by counting how many pixels
are different between the intended circuit pattern and the one obtained after the simulated lithographic system.
From Fig. 2 and Table 1, it is concluded that while under nominal conditions, the optimal input mask pattern
under nominal condition outperforms the proposed aberration-aware input mask, which is not a surprise since the
former is intended specifically for nominal conditions and the latter is not, the proposed aberration-aware input
mask greatly improves pattern fidelity against coma, with much less pattern error than the optimal input mask
pattern computed under nominal condition. These observations justify the proposed algorithm in producing
aberration-aware input mask pattern for critical structures.

Another set of simulation is given in Fig. 3 to compute aberration-aware input mask against defocus and
coma. Fig. 3(a) and (b) show the coma-defocus-degraded output patterns using target pattern in Fig. 2(a),and
optimal input mask pattern computed under nominal condition in Fig. 2(c) as input pattern under defocus
f = 800 and coma c31 = 80, respectively. Fig. 3(c) shows the computed aberration-aware mask. Fig. 3(d)
and (e) are the resulting output pattern with Fig. 3(c) as input under nominal conditions and under defocus
f = 800 and coma c31 = 80, respectively. Pattern error of the simulation results in Fig. 3(c) is given in Table 2.
Observations from this set of simulation show that the proposed algorithm produces input masks which improve
pattern fidelity against coma and defocus.

It should be noted that in the above-mentioned simulations, the defocus parameter f and aberration coef-
ficients cnm are chosen to be relatively large. However, when the aberrations are modest, the aberration-aware
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present PSF can be computed using an approximation to enhance processing speed.23, 24 Relatively large aberra-
tions are used to better show the robustness against aberrations of the proposed method. It should also be noted
that when more aberrations other than coma are present, the root mean square deformation of the combined
aberration becomes a chi-square distribution, and the proposed algorithm will produce aberration-aware input
masks against this combined aberration similarly.

5. CONCLUSION

In this paper, we propose a level-set-based ILT algorithm incorporating statistical variations of different aber-
rations into the inverse imaging system. Point spread function with aberrations is computed explicitly, and
the inverse problem is solved efficiently using level-set-based time-dependent model. Experimental results show
that the proposed method produce aberration-aware input mask pattern which shows great robustness against
aberrations.
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