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Abstract—In this paper, we study the use of performance-
based allocation of demand in a multiple-server queueing system.
The same problem with two servers have been studied in the
literature. Specifically, it has been proposed and proved that
the linear allocation and mixed threshold allocation policies are,
respectively, the optimal state-independent and state-dependent
allocation policy in the two-server case. The multiple-server
linear allocation has also been shown to be the optimal state-
independent policy with multiple servers. In our study, we focus
on the use of a multiple-server mixed threshold allocation policy
to replicate the demand allocation of a given state-independent
policy to achieve a symmetric equilibrium with lower expected
sojourn time. Our results indicate that, for any given multiple-
server state-independent policy that prohibits server overloading,
there exists a multiple-server mixed threshold policy that gives the
same demand allocation and thus have the same Nash equilibrium
(if any). Moreover, such a policy can be designed so that the
expected sojourn time at a symmetric equilibrium is minimized.
Therefore, our results concur with previous two-server results
and affirm that a trade-off between incentives and efficiency need
not exist in the case of multiple servers.

Index Terms—queueing system, threshold allocation, game
theory

I. INTRODUCTION

The problem of finding the optimal control policy for a
queueing system has been widely studied in the literature
[1]-[3], [5], [6]. Recent studies have focussed on queueing
system with strategic servers [2], [6], particularly on deriving
an optimal policy to induce high service capacities in a
competitive environment [1], [3], [5]. In these systems, the
servers decide their own service capacities and compete with
each other. It is then of interest what kind of policy for
customer allocation and compensation can be used to induce
high service capacities from the servers with minimum cost.

Among different means to motivate faster service, the use
of demand allocation to achieve this goal has first been studied
by Gilbert and Weng in [5], where a common-queue allocation
policy and a separate-queue allocation policy were compared
in a two-server setting. Their results have been extended in [3]
to the case of multiple servers. On the other hand, Cachon and
Zhang [1] have further explored the two-server problem where
the buyer can use demand allocation policy which explicitly
accounts for the servers’ chosen service capacities. A wider
range of allocation policies were then studied, and it was

concluded that the optimal policies in both classes can induce
the maximum feasible service capacity, and thus there are no
trade-off between incentives and efficiency.

The study in Cachon and Zhang [1] was based on a two-
server queueing system where both service times and inter-
arrival times are exponentially distributed. In the demand al-
location problem, the buyer would like to induce a high service
capacity from strategic servers through a performance-based
allocation of demand and a compensation proportional to allo-
cated demand. Two classes of allocation policies, namely the
state-independent allocation policies and the state-dependent
allocation policies were studied and compared. They showed
that linear allocation policy is an optimal state-independent
policy and induces the maximum feasible service capacity
from servers. The same result for the case of more than two
servers can be found in [10]. They further argued that by
randomizing between two-server threshold allocation policies,
one could achieve allocation identical to the linear allocation
policy. They also claimed that an optimal state-dependent
policy exists. We remark that in cases where the capacity of
the primary server is lower than the total demand rate, this
is only possible if we allow ourselves to allocate customers
only to the primary server and pay the server at allocation,
which makes the system unstable even when the total service
capacity is greater than the total demand rate.

The main aim of this paper is to extend the mixed threshold
policies proposed in [1] to multiple-server mixed threshold
policies, and study to what extent they can replicate the
demand allocation of state-independent policies. Our result
shows that, if we restrict the compensation for each customer
to be paid at the time of service completion and prohibits
overloading a server, then the multiple-server mixed threshold
policies can replicate the demand allocation of any state-
independent policy. The replication of the demand allocation
of a state-independent policy with server overloading and pay-
ment at customer allocation is feasible if we allow the inclu-
sion of single-sourcing (with payment at customer allocation)
with some probability in the mixed threshold policy. Moreover,
assuming that all servers are identical, in the Nash equilibrium,
the expected sojourn time with our mixed threshold policy
is optimal with the equilibrium service capacities. In other
words, our results concur with the two-server results of [1]



and indicate that there is no tradeoff between incentive and
efficiency.

The rest of the paper is structured as follows. Section II
introduces the multiple-server demand allocation problem and
review previous results obtained by [1] and [10]. In Section III,
we generalize the two-server threshold policy to an n-server
threshold policy and show the set of demand allocation that
can be replicated using an n-server mixed threshold policy.
In Section IV, we summarize the results and discuss further
research issues.

II. THE MULTIPLE-SERVER DEMAND ALLOCATION
PROBLEM

We consider a queueing system with n identical strategic
servers. Each server decides its own service capacity p; and
incurs a cost at the rate of ¢(u;), where ¢(.) is assumed to be
strictly increasing and convex, i.e. ¢/(.) > 0 and ¢’(.) > 0.
The time that Server ¢ serves a customer is, independent of
all other service times, exponentially distributed with mean
rate ;. Customers arrive at the system according to a Poisson
process with rate A. The buyer pays each server an amount
of R for each customer it completes serving. The aim of the
buyer is to select an demand allocation policy, through which
the customers are assigned to the servers, that minimizes the
expected sojourn time for a customer in the equilibrium.

For the expected waiting times to be finite in an equilibrium
where the n servers split the demand equally, we require
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Moreover, as a benchmark for comparison, we define the
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maximum feasible service capaczty. as [ Where c(u) =
In other words, the maximum feasible service capacity is the
service capacity at which, when chosen by all servers, each

server receives equal share of the demand and earns zero profit.

A. State-independent and State-dependent Allocation Policies

As proposed in [1], there are two classes of allocation poli-
cies, namely state-independent and state-dependent allocation
policies. Under state-independent policies, customer allocation
is only based on the service capacities of the servers, but not
the states of the servers (i.e., whether it is busy or idle).
Customers can be immediately allocated to a server upon
arrival and a first-in-first-out queue is maintained for each
server. We further assume that the arrival of customers to
each of the servers follows a Poisson process with rate \;,
which can be achieved by allocating each customer to Server
with probability A;/\. Examples of state-independent policies
with multiple servers are the separate-queue allocation [3],
[5], linear allocation and the proportional allocation [1], [10].
In particular, in [10] it was proved that the n-server linear
allocation policy is optimal given that we pay the servers for
the customers at allocation.

The other class of allocation policies, the state-dependent
policies, allows customer allocation to depend on the cur-
rent state of the servers. The most common example is the
common-queue allocation policy [3], [5], but we will focus on

the n-server extension of the mixed threshold policy discussed
in [1].

B. State-independent Policies: A Review of the Multiple-server
Linear Allocation Policy

The two-server linear allocation policy proposed by Cachon
and Zhang [1] has been shown to be an optimal state-
independent policy with appropriate parameters chosen. The
policy and results in the case of n servers have been studied
by Zhang in [10]. Under the multiple-server linear allocation
policy, the allocation to Server 7 is given by

Ailw) = {M “HOZs ) s,
0 1> M.
Here the servers’ capacities are sorted in a decreasing order,
0 >0,0<p<1andn <n is the largest integer such that
An > 0and pp > 0.

It should be noted that under this n-server linear allocation,
the demand allocated to Server i can be greater than the
service capacity chosen by Server ¢, i.e., A; > p; with some
capacity vector p. Moreover, for mathematical tractability and
simplicity, [10] has adopted the assumption that the servers
are paid for the job at allocation instead of completion. In
other words, there are cases where a server is paid for more
customers than it can actually serve, but such cases do not
occur in the Nash equilibrium of the game.

Under the assumption that the servers are paid for the job at
allocation, Zhang [10] has proved the existence and uniqueness
of a Nash equilibrium in which the service capacity equals to
the maximum feasible service capacity when the appropriate
values of 6 and p are chosen. Specifically, when the cost
function ¢(u;) is strictly convex, Zhang [10] proved that a
unique equilibrium exists with
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and p =1 when R > ry = ¢(A\/n)/(A/n). In the equilibrium
w; = py = i for all 7 and expected service times are finite. For
the case where the cost function ¢(u;) is linear, i.e., c(u;) =
bu; (b > 0), Zhang [10] proved that a unique equilibrium
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and p = 1/2 when R > r; = c(A/n)/(A/n). In the
equilibrium p; = p; = p for all ¢ and the expected service
times are finite.

C. State-dependent Policies: A Review of the Two-server
Mixed Threshold Allocation Policy

The two-server threshold allocation has been studied as a
control policy with non-strategic servers in the literature. In
particular, it has been proved in [7] that a buyer’s optimal
allocation with two non-strategic servers is of threshold type.
Under a two-server threshold allocation, a single queue is
maintained for the two servers, but a job may not be allocated



immediately to a server upon arrival, even if the server is idle.
Job allocation is based on the designation of the primary (and
secondary) server and a threshold parameter m. When a job
arrives, it is allocated to the primary server if it is idle or has
fewer than m jobs in queue and allocated to the secondary
server only if it is idle, the primary server is busy, and has m
jobs in queue. A numerical method for evaluating the system’s
performance under threshold allocation has been studied by
Rubinovitch [9]. It can be seen that, when different values of
m are chosen, the demand allocation to the servers would be
different.

In [1], Cachon and Zhang studied the two-server allocation
problem with strategic servers. They proposed randomizing
between the threshold allocation with different parameters
to replicate the demand allocation of the linear allocation
policy, so that the maximum feasible service capacity can
be attained in the Nash equilibrium. Specifically, they argued
that the buyer can allocate any portion of the buyer’s demand
to the primary server by varying which server is designated
the primary server and randomizing among different threshold
values m.

However, it is worth noting that, when the primary server’s
service capacity pq is less than the total demand A, with any
finite values of m, the secondary server is allocated at least
A—p1 of demand. The limit of the primary server’s demand, as
m goes to infinity, is p1. The only way to allocate more than
11 demand to the primary server is not to use the secondary
server at all, i.e. setting m = oo and making A\; = )\, and
to pay for the customers to the server at allocation instead of
service completion. This will cause the system to be unstable,
even in cases where p1 + g > A, and is undesirable. It is
therefore important to identify the state-indepedent policies
which can be replicated by a mixed threshold policy without
overloading (i.e. a policy such that \; < p;).

III. Multiple-Server Threshold Policies

In this section, we will generalize the two-server threshold
policy to an n-server threshold policy. We will follow the
convention that the buyer pays the server for a customer when
the service is completed.

A. The n-server Policy

With n servers, where n > 2, it is natural to extend the two-
server case by assigning the servers as the 15t 274 . nth
servers and specifying n — 1 threshold parameters. Similar
control policies for non-strategic servers have been studied in
[8]. In some of these studies the threshold parameters may
depend on the state of the other servers. (More precisely,
the threshold for the i*" server can be different depending
on the state of the (i + 1)*" ... n'* servers). However, for
simplicity and due to the reason that randomization gives
enough flexibility for parameterizing the policy, we shall
assume that m; is a constant for each policy in our study.

A n-server (pure) threshold allocation policy 7' is spec-
ified by an assignment of the Servers 1,2,...,n as the
1t 2nd . nbh servers and the thresholds ma, . . ., m,, where

each m; is a nonnegative integer. We define m; = 0. A single
queue is maintained in the system. When a customer arrives,
it is assigned to Server 1 if it is idle. If Servers 1,2,...,71—1
are all busy and the number of waiting customers (including
the new arrival) is more than my + ...+ m;, the customer is
assigned to Server 7. Otherwise, it waits in the queue. When
a Server ¢ completes service of a customer, if the number of
waiting customers is more than m + ...+ m;, then the first
customer in the queue is assigned to Server ¢. If m; = oo for
some ¢, then no customer is allocated to Servers i,i+1,...,n.

For any service capacity vector g = (1, b2, - - - , fin), the
demand allocated to the servers via the allocation policy T’
is A1), where /\Z(-T) is defined to be Server ’s expected rate
of receiving customers. In each state, if Server ¢ is idle, its
rate of receiving customers is the arrival rate of customers
multiplied by the probability that an arriving customer is
allocated to Server ¢. On the other hand, if Server ¢ is busy
and there are customers waiting in the system, its rate of
receiving customers is p; if the waiting customers can be
assigned to Server ¢ upon service completion of the current
customer, and is zero otherwise. Because the n-server policy is
much more complicated, it is not straightforward to see what
demand allocation can be achieved by the pure policy and
by randomizing between some n-server threshold policies. In
the following, we give some properties of an n-server pure
threshold allocation policy.

Lemma 1: Given n servers with service capacity vector
p = (p1,...,pun) where >0 p; > A Suppose Server i
is designated as the i-th server. Let A = (A1,...,\,) be the
allocated demand of an n-server pure threhold policy with
threshold mq, ms, ..., m,. We have the following:

() Let £ = max{t : 1 < ¢ < n,m; < o0 Vj =

1,2,...,i}. Then the system is stable if and only if
Zle i > A. When the system is stable, we have

A= E?:l Ai-

(ii) If m; = o0, then A\; =0forall j =1¢,¢+1,...,n.

(iii) For any 7 = 2,...,n, given fixed and finite values of
m; for j = 1,...,7—1, then for any € > 0, there exists
m; such that for any m;4q,...,m, and m; > m; we
have

i—1 i—1 i—1
min ij,)\ ZZ)\j>min ij,)\ — €
j=1 j=1 j=1

All proofs can be found in [4].

We have seen that the demand allocation to the servers can
be varied by adjusting the thresholds of a policy. However,
because the thresholds only take integral values, the demand
allocation is limited to a countable set of points. To enable us
to select from a wider range of demand allocation, we intro-
duce the n-server mixed policy, which randomizes between a
number of pure threshold policies.

Definition 1: An n-server mixed threshold allocation policy
T is specified by an integer k > 1, real numbers aq, ..., ag
such that Zf;l a; = 1 and k n-server threshold policies
Ti,...,Tx. When the mixed threshold allocation policy is



used, each of the threshold policy 7; is used with probability
«;. The demand allocated via the mixed threshold policy T is
then denoted by A™ and given by

k
T __ T
Aj =ik
i=1

for any server j =1,2,...,n.

It is clear that the set of demand vectors that can be allocated
by a pure threshold policy when Z?:l W > A is contained in
the set

Sp={A":0 <A <min(p;, A) and > A=A} (5)
i=1

Since S, is a convex set, it follows immediately that the set of
feasible allocation vectors, i.e., the set of demand vectors that
can be allocated by a mixed threshold policy, is also contained
in Sy,. In the following, we explore which allocation vectors
in S,, can be achieved by mixed threshold policy given a fixed
service capacity vector p such that pq +. .. 4y, > A. Unless
otherwise specified, we shall assume that we have such a fixed
service capacity vector in the following.

Suppose we have A® such that A} + ... + A, = \. We
say that an allocation policy 7 with demand allocation X is
X'-dominated in the order (iy,is, ..., iy,) if

Z)\ij§2/\fj foralll=2,...,n. (6)
j=l j=l

where 41,42, ...,9, € {1,2,...,n} and are distinct.
We note also that the above condition implies that A;, > )\§1

since " "
DA =D A=A (7)
j=1 =1

Lemma 2: Given n servers with service capacity vector
n = (ul,...,,un) such that H1 + po + oo+ iy > /\,
and an allocation vector A* = (A, AL ... Al) such that
M+ X+ A, = A IE A, < min(uy, A) for all
7 =1,2,...,n, then there exists an n-server (pure) threshold
policy that is A’-dominated in the order (1,2,...,7n).

The pure threshold policies in Lemma 2 will be used in the
following to compose a mixed threshold policies that gives the
our target demand allocation. The following two lemmas are
used to show that we can construct mixed threshold policies
with some nice properties for the construction of the one that
fulfills our goal.

To facilitate our discussion, we say that an allocation policy
7 with demand allocation X\ is A'-dominated and m-smaller
in the order (iy,is,...,i,) if the policy is A’-dominated in

the order (iy,i2,...,i,) and \;, < )\ﬁj for all j = m,m +
1,...,n, where m is an integer such that 2 < m < n and
11,12, .,in € {1,2,...,n} and are distinct.

Note that in the above definition, the property is equivalent
up to any permutation of ¢,,%m+1,--.,%,. Also, note that
any policy A’-dominated in the order (i1,ia,...,%,) is A’-
dominated and n-smaller in the order (i1,ia,...,%y).

Lemma 3: For fixed p and fixed m € {3,...,n}, suppose
for each £ = m,m + 1,...,n — 1, we have a mixed
threshold policy 7y, that is A'-dominated and m-smaller in
the order (1,2,...,m—2,k,m—1,m,....k—1,k+1,...,n).
Then there exists a mixed threshold policy 7,,,—1 that is AL
dominated and (m — 1)-smaller in the order (1,2,...,n).

Lemma 4: Given n servers with service capacity vector
p = (u1,...,n) such that py + po + ..o + pp > A,
and an allocation vector A* = (A AL ... AL) such that
M X+ A, = A IE A, < min(uy, A) for all
7 =1,2,...,n, then for any fixed k, there exists an n-server
mixed threshold policy such that A\, > A} and \; < )\g for all
J# k.

Proposition 1: Given some fixed service capacity vec-

tor o = (u1,...,0n) and target allocation vector A* =
(AL L) with 2 A = X and 0 < A <
min(u;, A) for 4= 1,2,...,n. Then there exists a mixed

threshold allocation policy such that \; = A! for all i =
1,2,...,n.

The above lemmas show that for any p with g +po+.. .+
tn > A, any demand allocation vector set in the interior of
the set S, is the allocated demand of some mixed threshold
policy. Moreover, if )\f» = 0 for some 7, the allocated demand
can be achieved by removing all servers with \! = 0 and
considering a mixed threshold policy for the reduced set of
servers. On the other hand, if /\’Z§ = ) for some ¢, then it can
be achieved by only using Server . Therefore, the set

n
S, ={A0< M <p M < Aand Y A=A} (8)
i=1
is achievable. It remains to investigate whether we could find
a mixed threshold policy that achieves A* when \! = p; < A
for some ¢. However, this is impossible, because whenever
other servers are used, the demand allocated to Server i, \;,
would be strictly less than p;. In order to have \; to equal
1, we must not use any of the other servers. The remaining
demand \—p; then cannot be allocated to other servers and the
system would be unstable. Thus it is impossible to allocate to
a Server ¢ exactly a demand of y; using a threshold allocation
if all demand has to be allocated.

Still, there are two ways to solve the problem. First, since
A; approaches p; in the limit, for any small number ¢ > 0
one can find a value of the threshold such that |p; — A\;| < e.
Second, one can use a state-independent allocation and assign
a proportion of u; /) of the arrivals to Server ¢ for such cases.

B. Analysis on Unstable Queueing System

In the above sections, we have mainly focussed on the case
where the total service capacities exceed the total demand rate
and so all demand are allocated, i.e. 2?21 A; = A. If the sum
of the chosen service capacities are less than the total demand
rate, i1 + ...+ u, < A, the queueing system is not stable
regardless of the values of mo, ..., m,. Although it is natural
to utilize the servers as much as possible when the system
is not stable, the alternative may be useful with strategic
servers to induce the servers to switch to higher service



capacities in the long run, since we are mainly concerned
with the equilibrium service capacities. Technically, designing
an allocation policy that assigns \; < p; to Server 4 in these
cases may help to prevent the existence of an undesirable Nash
equilibrium where the queueing system is unstable.

In [1], under the state-independent linear allocation, a server
may be given an allocated demand more than, equal to or
less than its service capacity when the queueing system is
not stable. We remark that with threshold allocation, when
the system is unstable, it remains impossible to allocate to a
server a demand level that is higher than its capacity, because
a customer is only assigned to the server when it is idle. Thus
any demand allocation where A\; > p; is not possible. As a
pure strategy, the buyer can choose to allocate a demand of
zero or p to Server ¢ by setting m,; to be infinite or finite,
respectively. Under the condition that p1 4+ po + ...+ tn < A,
the threshold m; does not affect the allocated demand of other
servers. Consequently, we can randomize between the values
of m,; and obtain any allocated demand \; such that 0 < \; <
;. Therefore we conclude that the set of feasible allocation
when i1 + po + ...+ pp, < A s the set of allocation vectors
satisfying 0 < \; < p;.

C. Efficient Mixed Threshold Policies
We have shown that the set of demand allocation vectors
{At:0 <A <min(p;, A) and D01 A=A}

for Y0 pi > A
{At:0 < A <min(p;, A} for

Su =
Z?:l pi <A
)
can be replicated by mixed threshold policies. However, it
is not yet certain whether such policies perform better than
the state-independent policies. It has been shown that for
servers with different service capacities, the optimal policy
that gives the lowest expected sojourn time is of threshold
type [8], but some thresholds may depend on the states of the
other servers, and the mixed threshold policy we discussed
earlier may not give the lowest expected sojourn time with
respect to the chosen service capacities. Indeed, in order to
design an allocation policy that induces the server to choose
the maximum feasible capacity, efficiency must be given up
with some out-of-equilibrium choices of service capacities.
Hence, our aim in this section is to find out whether the mixed
threshold policy can give a lower expected sojourn time in
equilibrium when compared to the state-independent policies.

As we deal with identical servers, we expect a symmetric
equilibrium, where all servers choose the same service capac-
ity and receive equal share of the demand. It is desirable that
our mixed threshold policy gives the minimal expected sojourn
time in this case, which will be shown in the following two
propositions:

Proposition 2: When p1 = po = ... = fiy, = e > A/n,
we can randomize among some threshold allocation policies
with zero thresholds to obtain the allocation \;y = Ay = ... =
An = A/n.

Proposition 3: In an n-server queueing system, given that
W1 = {2 = ... = [y = f¢, any n-server threshold allocation
with all thresholds being zero gives the same expected sojourn
time as an n-server common-queue system where each server
has service capacity p..

Finally, note that because any pure threshold policy with all
threshold being zeros has an expected sojourn time identical to
that of the n-server common queue, any mixed policy that is
composed of such pure threshold policies would have the same
expected sojourn time too. Combining with Proposition 2, we
have shown that the mixed threshold policy used to replicate
a state-independent policy could be designed to have minimal
sojourn times in a symmetric equilibrium that is better than
the state-independent policy. Thus the use of a mixed threshold
policy could indeed help to improve efficiency and lower the
expected sojourn time in the equilibrium.

D. Interpretations and Discussions

We have shown that for any fixed service capacity vector
p and any target demand allocation vector A such that
0 < N < M AN < pgand M+ ...+ X, = X (Gf
w1+ ...+ pn > A), it is possible to choose a mixed threshold
policy that gives the demand allocation A. The case where
A; = p; can be catered for by using a state-independent
allocation. Applying the respective policy for each service
capacity vector when it is observed, we have a state-dependent
policy that gives the demand allocation A(x). In other words,
for any state-independent policy P; with demand allocation
A such that 0 < X; < min(p;, A), there exists a state-
dependent policy that replicates the demand allocation of the
policy P;. Moreover, from the discussion in section 3.3, we
see that the expected sojourn time under the state-dependent
policy is lower than that under policy P;. We conclude that
for any state-independent policy that does not overload the
servers, i.e., \; < p;, there exists a state-dependent policy
that replicates the same demand allocation, thus giving the
same Nash equilibrium but a lower expected sojourn time in
the equilibrium.

We then discuss the case where server overloading is per-
mitted. In the above, we have always imposed the conditions
Ai < p; for i = 1,2,...,n and assumed that the servers
are paid at service completion. However, as we have seen in
[10], there could be a state-independent allocation that gives an
optimal equilibrium but does not satisfy the above criteria. To
replicate the allocation of such policies, we must allow servers
to be overloaded and paid at customer allocation instead of
service completion.

If we assign all the demand to one server, say Server ¢,
and pay the server at customer allocation, then the demand
allocated to Server ¢ and its rate of revenue, would be A
and AR respectively. Randomizing this allocation with other
mixed threshold policies, it is possible to achieve any target
demand allocation A such that 0 < \; < A and Z?:l i = A
This can be easily proved by noting that allocating all de-
mand to Server i gives the demand allocation A = e; =



(0,...,0, \1/,0,..
ithentry

demand allocation can be expressed as a convex combinations
of these vectors. However, such an allocation results in infinite
waiting times and should be avoided as far as possible. Thus,
for demand vectors such that 0 < \; < min(u;, A), we can
apply the results in previous subsections and use a mixed
threshold policy that comprises of only threshold policies
with finite threshold to replicate the demand allocation. In
particular, at equilibrium we only need to randomize between
threshold policies with zero thresholds, so that the expected
sojourn time is equal to that in an n-server common queue
system with the maximum feasible service capacity chosen.

.,0), for i = 1,...,n, and any target

IV. CONCLUDING REMARKS

In this paper, we have extended the two-server mixed
threshold allocation policy proposed by by [1] to the case of n
servers. For any state-independent policy that prohibits server
overloading, we have shown that it is possible replicate the
demand allocation by a mixed threshold allocation policy. For
state-independent policy that includes server overloading, we
have also shown that a mixed threshold allocation policy can
replicate the allocated demand if we include a single-sourcing
strategy in the mixed policy and allows payment at customer
allocation. For identical servers, the mixed threshold policy at
the symmetric equilibrium can be composed of only threshold
policies with zero thresholds. As a result, it provides the
minimal expected sojourn time with the equilibrium service
capacities.

Our results concur with existing results with two servers
that there are no trade-off between incentive and efficiency.
Whether or not we allow server overloading, we can find a n-
server mixed threshold policy that induces the same service
capacity from the servers as any given state-independent
policy. Moreover, in the symmetric equilibrium, the mixed
threshold policy always gives a lower expected sojourn time.

Our results have been derived under several assumptions.
First, we have assumed that all servers are identical, i.e.
they have the same cost function c(u). Nevertheless, the
results in Section III-A and III-B are independent of the cost
structure of the servers. Therefore, with asymmetric servers,
it is also possible to replicate the demand allocation of any
state-independent policy that prohibits server overloading by
an n-server threshold allocation policy. However, because the
Nash equilibrium, when exists, may not be symmetric, it has
yet to be investigated whether a suitable n-server threshold
allocation policy gives a lower expected sojourn time than
a state-independent policy. Second, our model is based on a
Markovian queueing system. A similar analysis can be carried
out in the cases with more general distributions of the inter-
arrival times or service times. However, the computation of
the n-server mixed threshold policy may be more difficult due
to the difficulty in the computation of the allocated demand
in a n-server threshold system. Thirdly, we have assumed that
the service capacities chosen by the servers are observable
by the buyer. In reality, the buyer has to infer the service

capacities from realized service times. In our study we have
not considered how statistical errors may affect our results.
In Zhang’s work [10], it has been shown that the multiple
linear allocation can achieve the maximum feasible service ca-
pacity z in the Nash equilibrium, as long as server overloading
and payment at customer allocation is allowed. However, as
mentioned in earlier sections, server overloading and payment
at allocation cause unnecessary infinite-waiting times at some
out-of-equilibrium plays, and may be undesirable. It remains to
be investigated whether there exists a state-independent policy
without server overloading that achieves the maximum feasible
service capacity. If such a policy exists, then our results would
imply that such an optimal state-independent policy without
server overloading (i.e. A; < u; in all allocation) also exists.
Our work has proved the existence of a n-server threshold
policy that replicates any given state-independent policy that
prohibits server overloading. For any fixed service capacity
and given target demand allocation, it is desirable to find
a mixed policy that gives the lowest expected sojourn time
and randomizes between minimum number of policies. Thus,
finding an efficient way to identify such a mixed policy may
be a direction for future research. Since the n-server threshold
policy involves a set of parameters for each service capacity
vectors, another future research issue may be to investigate
whether there could be simpler state-dependent policy with
fewer parameters that gives the same incentives and efficiency.
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