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Abstract— In this paper, the problems of delay-dependent
robust stability analysis and robust stabilization are investigated
for uncertain discrete-time singular systems with state delay.
First, by making use of the delay partitioning technique, a new
delay-dependent criterion is given to ensure the nominal system
to be regular, causal and stable. This new criterion is further
extended to singular systems with both delay and parameter
uncertainties. Moreover, without the assumption that the con-
sidered systems being regular and causal, robust controllers are
designed for discrete-time singular time-delay systems such that
the closed-loop systems have the characteristics of regularity,
causality and asymptotic stability. These results are illustrated,
via a few numerical examples, to be much less conservative
than most of the existing results in the literature.

I. INTRODUCTION

Singular systems, also called descriptor systems,

semistate-space systems and generalized state-space

systems, frequently appear in various engineering systems,

such as aircraft attitude control systems, flexible robots,

large-scale electric networks, chemical engineering systems,

lossless transmission lines [10]. Such systems provide

a more natural description of dynamic systems than the

standard state-space systems due to the fact that the

singular systems can preserve the structure of physical

systems more accurately by including non-dynamic

constraints and impulsive elements. On the other hand,

time delays frequently induce instability and are commonly

regarded as one of the main factors that degrade system

performance. Hence, there are a great number of research

results concerning time-delay systems [1], [8], [2], [14].

Singular time-delay systems are in essence delay differential

equations coupled with functional equations, and thus the

robust stability problem for singular systems is much more

complicated than that for state-space systems because it

requires to consider not only stability robustness, but also

regularity and causality (absence of impulses) which may

affect the stability of the system. The problems arising from

singular time-delay systems are significant both in theory

and in practice. A considerable number of studies have been

devoted to singular time-delay systems, such as the results
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on continuous-time systems [7], discrete-time cases [16]

and the references therein.

As problems of fundamental importance, stability analysis

and synthesis have been on the forefront of the research

on time-delay singular systems and a great number of

results based on the theory of state-space systems have

been extended to singular systems [4]. In the continuous

context, the robust stability and robust stabilization problems

are solved based on the concepts of generalized quadratic

stability and generalized quadratic stabilization [19]. While

the results are delay-independent, and thus quite conservative

especially when the delay is comparatively small. Thus,

considerable efforts are devoted to establish delay-dependent

conditions. In [20], a delay-dependent robust stability cri-

terion is proposed and the problem of robust stabilization

is addressed for singular time-delay systems with norm-

bounded parameter uncertainty which improves the results in

[19] to a certain extent. Furthermore, even less conservative

result is obtained in [9] by avoiding an upper bounding on

the weighted cross products of the state and the delayed

state. [7] presents an LMI approach to singular systems

with state delay by utilizing decomposing system technique

and the results are in terms of the coefficient matrices of

the decomposed systems. While [18] provides a new delay-

dependent bound real lemma avoiding some computational

problems arising from decomposition of the original singular

systems and further reduces the conservatism in [7]. In the

discrete setting, the robust stability problem is studied in

[11] which presents the results in terms of strict linear

matrix inequalities (LMIs) making the verification procedure

relatively simple and reliable. By introducing a finite sum

inequality, [15] presents less conservative results than those

in [11] without any additional assumption on the system

matrices. It should be pointed out that the results formulated

above make significant contributions to the development of

the singular system theory. However, to the best of the

authors’ knowledge, the analysis and synthesis problems

for discrete singular time-delay systems with parametric

uncertainties have not been fully investigated yet and the

results reported in the literature still leave much room for

improvement which motivates the present study.

In this paper we consider the problems of delay-dependent

stability analysis and stabilization for linear discrete-time

uncertain singular systems with state delay. With the in-

troduction of the delay partitioning technique, strict LMI

sufficient criteria are obtained for discrete-time singular

systems to be regular, causal, and stable. Based on these

criteria, the robust stabilization problem is addressed and an
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explicit expression of the desired state-feedback controllers

are given. Numerical examples are given to illustrate the

reduction of conservatism of the developed results.

Notation: The notation used throughout the paper is fairly

standard. R
n denotes the n-dimensional Euclidean space and

P > 0 (≥ 0) means that P is real symmetric and positive

definite (semi-definite); I and 0 refer to the identity matrix

and zero matrix with compatible dimensions; ⋆ stands for

the symmetric terms in a symmetric matrix and sym(A)
is defined as A + AT ; • represents matrices that are not

relevant with our discussion. Matrices with the same letters

refer to the same definitions and matrices are assumed to be

compatible for algebraic operations if their dimensions are

not explicitly stated.

II. PROBLEM FORMULATION

Consider a class of linear discrete-time uncertain singular

systems with state delay described by






Ex(k +1) = (A+∆A)x(k)+(Ad +∆Ad)x(k−d)
+(B+∆B)u(k),

x(k) = φ(k), k ∈ [−d̄, 0],
(1)

where x(k) ∈ R
n is the state vector; u(k) ∈ R

q is the control

input; A, Ad and B denote constant matrices with appropriate

dimensions; d is a constant positive integer satisfying 0 <

d ≤ d̄ (d can always be described by d = mτ, where m and

τ are integers), where d̄ is a positive integer representing the

upper bound of the delay; matrix E may be singular and rank

E = r ≤ n; φ(k) is a compatible vector valued initial function;

∆A, ∆Ad and ∆B are time-varying uncertain matrices of the

form

[∆A ∆Ad ∆B] = MF(k)[N1 N2 N3],

where M, N1, N2 and N3 are constant matrices, and F(k) ∈
R

l×b is an unknown real matrix satisfying F(k)F(k)T ≤ I.

Before moving on, we give some definitions and lemmas

concerning the following nominal unforced counterpart of

the system in (1):
{

Ex(k +1) = Ax(k)+Adx(k−d),
x(k) = φ(k), k ∈ [−d̄, 0].

(2)

Definition 1: [4]

1) The pair (E,A) is regular, if det(zE −A) is not identi-

cally zero.

2) The pair (E,A) is said to be causal, if it is regular and

deg{det(zE −A)} = rank E.

Lemma 1: [11] Suppose the pair (E, A) is regular and

causal, then the solution to system (2) is causal and unique

on [0, ∞) for any constant time delay d satisfying 0 < d ≤ d̄.

In view of this, we introduce the following definition for

singular delay system (2).

Definition 2:

1) The singular delay system in (2) is said to be regular

and causal if the pair (E,A) is regular and causal.

2) The singular system in (2) is said to be asymptotically

stable, if for any ε > 0, there exists a scalar δ (ε) > 0, such

that for any compatible initial conditions φ(k) satisfying

sup−d̄≤k≤−1 ‖ φ(k) ‖≤ δ (ε), the solution x(k) of (2) satisfies

‖ x(k) ‖≤ ε for k ≥ 0; furthermore, x(k) → 0, when k →
∞.

3) The discrete singular time-delay system in (2) is said

to be admissible if it is regular, causal and asymptotically

stable.

Lemma 2: [13] The system in (2) is asymptotically stable

if and only if det(zE −A− z−dAd) 6= 0 for |z| ≥ 1.

Lemma 3: [12] Given matrices Ω, Γ and Φ with appro-

priate dimensions and with Ω symmetrical, then

Ω+ΓFΦ+ΦT FT ΓT
< 0

for any F satisfying FT F ≤ I, if and only if there exists a

scalar ε > 0 such that

Ω+ εΓΓT + ε−1ΦT Φ < 0.

The objective of this paper is to establish new robust

stability criteria such that the unforced discrete-time singular

system of (1) is admissible and to develop a procedure to

design stabilizing state-feedback controllers for the uncertain

discrete system in (1) such that the resulting closed-loop

system is admissible.

III. MAIN RESULTS

In this section, we obtain a solution to the robust stability

analysis and robust stabilization problems formulated pre-

viously by using a strict LMI approach. First, we present

the following result for the nominal singular delay systems,

which will play a key role in solving the aforementioned

problems.

A. Stability Analysis: Nominal Case

In this subsection, we will present a new delay-dependent

sufficient condition guaranteeing the nominal system in (2)

is admissible.

Theorem 1: Given positive integers m, τ, the system in (2)

is admissible, if there exist matrices P1 > 0, Q > 0, Z > 0,

Y1, Y2, T1, S1, S2, S3, P2, P3, and P4, such that

[

Θ τY

⋆ −τZ

]

< 0, (3)

where R∈R
n×(n−r) is any full-column rank matrix satisfying
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ET R = 0 and

Θ = W T
P (P1 + τZ)WP +W T

Q Q̃WQ

+sym(W T
P1ET P1WP +PTWP2 +SRTWP +Y EWY ),

Q̃ =

[

Q 0mn,mn

0mn,mn −Q

]

, Q =







Q11 · · · Q1m

⋆
. . .

...

⋆ ⋆ Qmm






,

S =
[

ST
1 ST

2 0n−r,(m−1)n ST
3

]T
,

WY =
[

In −In 0n,mn

]

,

WP1 =
[

In 0n,(m+1)n

]

, WP =
[

0n,(m+1)n In

]

,

P =
[

P2 P4 0n,(m−1)n P3

]

,

Y T =
[

Y T
1 T T

1 Y T
2

]

,

Y1 =
[

Y T
1y Y T

2y · · · Y T
my

]T
,

WQ =

[

Imn 0mn,2n

0mn,n Imn 0mn,n

]

,

WP2 =
[

A−E 0n,(m−1)n Ad −In

]

.

Proof. First, we prove the regularity and causality of the

system. Let

Ē =

[

E 0

0 0

]

, Ā =

[

E I

A−E −I

]

,

P̄ =

[

P1 0

0 0

]

, Ȳ =

[

Y1y 0

Y2 0

]

, T̄ =

[

T1 0

0 0

]

,

Q̄ =

[

Q11 0

0 τZ

]

, S̄ =

[

S1 PT
2

S3 PT
3

]

, R̄ =

[

R 0

0 I

]

.

Since rank Ē = rankE = r ≤ n, there exist nonsingular ma-

trices U and V , such that

UĒV =

[

Ir 0

0 0

]

.

Denote

UĀV =

[

A11 A12

A21 A22

]

, U−T P̄U−1 =

[

P11 P12

P21 P22

]

,

V T ȲU−1 =

[

Y11 Y12

Y21 Y22

]

, V T S̄ =

[

S11

S21

]

,

U−T R̄ =

[

0

I

]

H,

where H ∈R
(2n−r)×(2n−r) is a nonsingular matrix determined

by U−T R̄. From (3), it is easy to see that

Θ < 0. (4)

Define

L =









In 0 0n,(m−1)n 0

0 0 0n,(m−1)n In

0(m−1)n,n 0(m−1)n,n I(m−1)n 0(m−1)n,n

0 In 0 0









.

Then performing a congruence transformation to (4) by L,

we obtain the following inequality








Θ11 Θ13 • •
⋆ Θ33 • •
• • • •
• • • •









< 0. (5)

where

Θ11 = PT
2 (A−E)+(A−E)T P2 +Y1yE +ETY T

1y +Q11,

Θ13 = −PT
2 +(A−E)T P3 +S1RT +ETY T

2 +ET P1,

Θ33 = τZ +P1 −P3 −PT
3 +S3RT +RST

3 .

From (5), we have

ĀT P̄Ā− ĒT P̄Ē + S̄R̄T Ā+ ĀT R̄S̄T + Ȳ Ē + ĒT Ȳ T + Q̄ < 0,

which implies that

−ĒT P̄Ē + S̄R̄T Ā+ ĀT R̄S̄T + Ȳ Ē + ĒT Ȳ T
< 0. (6)

Performing a congruence transformation to (6) by V T and V,

we obtain
[

• •
• S21HT A22 +AT

22HST
21

]

< 0,

which implies that A22 is nonsingular. Hence,

det(zĒ − Ā) = det(U−1)det(zIr −A11 +A12A−1
22 A21)

×det(−A22)det(V−1)

is not identically zero and degdet(zĒ − Ā) = r. This together

with Definition 1 leads to that the pair (Ē, Ā) is regular and

causal. Noticing the fact that

det(zE −A) = det(zĒ − Ā),

deg(det(zE −A)) = deg(det(zĒ − Ā)),

we can easily see that the pair (E, A) is regular and causal.

Then according to Lemma 1 and Definition 2, the system in

(2) is regular and causal.

Then we are in position to show that system (2) is asymp-

totically stable. To this end, we choose a new Lyapunov

functional candidate as

V (k) = V1(k)+V2(k)+V3(k), (7)

where

V1(k) = xT (k)ET P1Ex(k),

V2(k) =
k−1

∑
i=k−τ

ϒT (i)Qϒ(i),

V3(k) =
−1

∑
i=−τ

k−1

∑
j=k+i

ηT ( j)Zη( j),

and

ϒ(i) =















x(i)
x(i− τ)

x(i−2τ)
...

x(i− τm+ τ)















, η( j) = Ex( j +1)−Ex( j).

Taking the forward difference of the functional in (7) along

the solution of system (2), and defining

ξ (k) =





ϒ(k)
x(k−mτ)

η(k)



 ,
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we have

∆V1(k) = xT (k +1)ET P1Ex(k +1)− xT (k)ET P1Ex(k)

= [Ex(k +1)−Ex(k)]T P1 [Ex(k +1)−Ex(k)]

+2x(k)T ET P1 [Ex(k +1)−Ex(k)]

+2
[

x(k)T PT
2 +[Ex(k +1)−Ex(k)]T PT

3

+x(k− τ)T PT
4

]

[(A−E)x(k)+Adx(k−mτ)

− [Ex(k +1)−Ex(k)]]+2
[

x(k)T S1RT

+x(k− τ)T S2RT +[Ex(k +1)−Ex(k)]T S3RT
]

× [Ex(k +1)−Ex(k)]

= ξ T (k)W T
P P1WPξ (k)+2ξ T (k)

(

W T
P1ET P1WP

+PTWP2 +SRTWP

)

ξ (k), (8)

∆V2(k) = ϒT (k)Qϒ(k)−ϒT (k− τ)Qϒ(k− τ)

= ξ T (k)W T
Q Q̃WQξ (k), (9)

∆V3(k) = τηT (k)Zη(k)−
k−1

∑
i=k−τ

ηT (i)Zη(i)

≤ τηT (k)Zη(k)+ τξ (k)TY Z−1Y T ξ (k)

+2ξ (k)TY E[x(k)− x(k− τ)] (10)

By connecting (8)–(10), we obtain

∆V (k) ≤ ξ (k)T (Θ+ τY Z−1Y T )ξ (k). (11)

By using Schur complement, (3) implies Θ + τY Z−1Y T <

0, Then from Definition 2, we conclude that the system is

asymptotically stable and this completes the proof. ¤

Remark 1: The main technique utilized in this paper is

the delay partitioning idea which partitions the time delay

for m times. When m = 1, the results obtained in Theorem

2 is equivalent to Theorem 1 in [15].

B. Stabilization: Nominal Case

Based on Theorem 2, a state-feedback controller

u(k) = Kx(k), K ∈ R
q×n

, (12)

will be designed for the nominal singular system such that

the resultant closed-loop system is admissible. The controller

results in the following closed-loop system

Ex(k +1) = (A+BK)x(k)+Adx(k−d). (13)

Then, we have the following result.

Theorem 2: Given scalars γ1, γ2, γ3 and positive integers

m, τ, there exists a state-feedback controller in the form of

(12) such that the closed-loop system in (13) is admissible

if there exist matrices P1 > 0, Q > 0, Z > 0, Y1, Y2, T1, S1,

S2, S3, J, X , such that
[

Ψ τY

⋆ −τZ

]

< 0, (14)

where

Ψ = W T
P (P1 + τZ)WP +W T

Q Q̃WQ

+sym(W T
P1EP1WP +W T

E Λ+SRTWP +Y ETWY ),

WE =
[

γ1In γ3In 0n,(m−1)n γ2In

]

,

Λ = [ JT (A−E)T +XT BT 0n,(m−1)n JT AT
d −JT ].

Moreover, if the above condition is feasible, a desired

controller gain matrix in the form of (12) is given by

K = XJ−1
.

Proof. It is easy to see that

det(zE − (A+BK)) = det(zET − (A+BK)T ),

deg(det(zE − (A+BK))) = deg(det(zET − (A+BK)T )),

and that det(zE−(A+BK)−z−dAd) = 0 and det(zET −(A+
BK)T −z−dAT

d ) = 0 have the same solution set. With respect

to the regularity, causality and stability of a system, we obtain

that the system in (13) is equivalent to the following system

based on Definition 1 and Lemma 2,

ET δ (k +1) = (A+BK)T δ (k)+AT
d δ (k−d).

Substituting E, A, and Ad with ET , (A + BK)T and AT
d in

(3), respectively, we have the following inequality
[

Ψ1 τY

⋆ −τZ

]

< 0,

where

Ψ1 = W T
P (P1 + τZ)WP +W T

Q Q̃WQ

+sym(W T
P1EP1WP +SRTWP +Y ETWY

+
[

P2 P4 0n,(m−1)n P3

]T

×
[

(A−E +BK)T 0n,(m−1)n AT
d −In

]

).

Then, by denoting P2 = γ1J, P3 = γ2J, P4 = γ3J, and X = KJ,

(14) is readily obtained and theorem is proved. ¤

C. Uncertain Case

In this subsection, the problems of robust stability analysis

and stabilization for the uncertain singular system in (1)

are considered. For system (1) with time-varying structured

uncertainties, we have the following theorem.

Theorem 3: Given positive integers m, τ, the time-delay

system in (1) with u(t) = 0 is admissible for all parameter

uncertainties if there exist matrices P1 > 0, Q > 0, Z > 0, Y1,

Y2, T1, S1, S2, S3, P2, P3, P4, and a scalar ε > 0, such that




Θ+ εΞT Ξ τY PT M

⋆ −τZ 0

⋆ ⋆ −εI



 < 0, (15)

where

Ξ =
[

N1 0b,(m−1)n N2 0b,n

]

.

Proof. Based on Theorem 2, by replacing A and Ad in

(3) with A+MF(k)N1 and Ad +MF(k)N2, respectively, the

stability criterion for the uncertain system can be rewritten

as
[

Θ+ sym(PT MF(k)Ξ) τY

⋆ −τZ

]

< 0. (16)

Applying the Schur complement to (15), then we can obtain

(16) by Lemma 3 and the proof is completed. ¤

Next, we will consider the robust controller design for

the system in (1) with u(k) = Kx(k) such that the closed-

loop system is admissible for all parameter uncertainties.
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Applying the inequality in (14) to the uncertain singular

system in (1), we can easily obtain the following theorem.

Theorem 4: Given scalars γ1, γ2, γ3 and positive integers

m, τ, there exists a state-feedback controller in the form of

(12) such that the closed-loop system in (1) is admissible if

there exist matrices P1 > 0, Q > 0, Z > 0, Y1, Y2, T1, S1, S2,

S3, J, X , and a positive scalar γ,such that








Ψ+ γΓΓT τY ΦT
1 ΦT

2

⋆ −τZ 0n,n 0n,n

⋆ ⋆ −γ 0n,n

⋆ ⋆ ⋆ −γ









< 0, (17)

where

Φ1 =
[

γ1(N1J +N3X) γ3(N1J +N3X)

0b,(m−1)n γ2(N1J +N3X)
]

,

Φ2 =
[

γ1N2J γ3N2J 0b,(m−1)n γ2N2J
]

,

ΓT =

[

MT 0l,(m−1)n 0l,n 0l,n

0l,n 0l,(m−1)n MT 0l,n

]

.

Moreover, if the above condition is feasible, a desired

controller gain matrix in the form of (12) is given by

K = XJ−1
.

Remark 2: In order to establish the stability conditions

for the singular systems with constant delay, the considered

systems are converted to delay-free systems by the state

augmentation approach in [17], [16]. However, the order of

the transformed systems is high if the delay is large and

the method becomes difficult to apply for unknown delay or

time-varying delay cases. On the other hand, although the

state augmentation method might be good for stability anal-

ysis as it may provide necessary and sufficient conditions, it

does not provide an easy way for controller design problem.

Remark 3: The reduced conservatism of the above results

benefits from the construction of the new Lyapunov func-

tional candidate in (7) by utilizing the delay partitioning

technique. This reduced conservatism is more prominent

when the partitioning number m increases. In addition the

delay partitioning technique has also been applied to stability

analysis of continuous systems with multiple delay compo-

nents in [5] and neutral delay systems in [6].

IV. ILLUSTRATIVE EXAMPLES

Example 1: Consider the singular system with the follow-

ing parameters
[

3.5 0

0 0

]

x(k+1)=

[

a11 0

0 −3

]

x(k)+

[

−1.3 1.5

0 0.5

]

x(k−d).

Our purpose is to determine the allowable time delay upper

bounds d̄ such that the system is admissible. To compare

our results with those in [11], [15], we consider a11 = 2.3,

or a11 = 2.4. Table 1 gives more detailed comparison results

on the maximum allowed bounds for d̄ via the methods in

[11], [15] and Theorem 1 in this paper. The results in Table

1 clearly show that the result in this paper outperforms those

in [11], [15] in terms of conservatism.

Next, the advantages of our results will be shown by

considering an uncertain discrete-time singular delay system

in Example 2.

Example 2: Consider the uncertain discrete-time singular

system with the following parameters (borrowed from [15])

[

2 0

0 0

]

x(k +1) =

[

0.9977+0.1α 1.1972

0.1001 −1.9

]

x(k)

+
[

−1.1972 1.5772
0 0.9757+0.1α

]

x(k−d).

The purpose is to determine the upper bounds for the abso-

lute value of uncertain parameter α, that is ᾱ. To illustrate

the benefits of our results, Table 2 gives the comparison

results on ᾱ .

These comparison results show that the result in

Theorem 3 for delay singular systems with uncertainties

in this paper is less conservative than those in [11], [15].

In Example 3, the applicability of the proposed controller

design methods will be demonstrated.

Example 3: Consider the uncertain singular system in (1)

with the following parameters:

E =

[

1 0

0 0

]

, A =

[

1.7 2

1 2

]

, Ad =
[

1.5 1
1 0.05

]

,

B =

[

−2 3

0 −2

]

, M =

[

0.2

0.2

]

, F(k) = sin(k),

N1 = N2 =
[

0.2 0.2
]

, N3 =
[

0.01 0.02
]

.

In this example, we choose that

γ1 = 0.6, γ2 = 1, γ3 = −0.35, R =
[

0 1
]T

, d = 3.

Therefore, by Theorem 4, an admissible state-feedback con-

trol law can be obtained by solving the LMIs in (17):

u(k) =

[

−2.9773 −0.5313

−2.3906 −0.9896

]

x(k).

Figure 1 and Figure 2 give the simulation results of two states

with and without the state-feedback control, respectively.

From Figure 1 and Figure 2, we can see that the open-loop

system is unstable and the closed-loop system is stable.

V. CONCLUSIONS

In this paper, improved functionals based on the delay

partitioning technique have been introduced to derive im-

proved results for robust stability and stabilization of linear

uncertain discrete-time singular systems with state delay. The

resulting criteria have been formulated in terms of strict

LMIs involving no decomposition of the system matrices.

Numerical examples have been given to demonstrate the

advantages and the merits of the proposed results.
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Table 1 Comparisons of maximum allowed delay d̄

a11 2.3 2.4

d̄ [11] 10 7

d̄ [15] 11 7

d̄ (Theorem 1) 11 (m = 1, τ = 11) 7 (m = 1, τ = 7)
d̄ (Theorem 1) 12 (m = 3, τ = 4) 9 (m = 3, τ = 3)
d̄ (Theorem 1) 14 (m = 7, τ = 2) 10 (m = 5,τ = 2)

Table 2 Allowable maximum absolute value of α obtained by different methods

d̄ 2 3 4

ᾱ [11] 1.9464 0.8033 0.1563

ᾱ [15] 2.1359 1.0325 0.2853

ᾱ (Theorem 3) 2.1359 (m = 1, τ = 2) 1.0325 (m = 1, τ = 3) 0.2853 (m = 1, τ = 4)
ᾱ (Theorem 3) 2.6847 (m = 2, τ = 1) 1.6734 (m = 3, τ = 1) 0.8972 (m = 4, τ = 1)

0 10 20 30 40 50 60
−20

−15

−10

−5

0

5

10

15

20

time (s)

S
ta

te
 r

e
s
p

o
n

s
e

 w
it
h

o
u

t 
c
o

n
tr

o
l

 

 

x1

x2

Fig. 1. The state trajectories of the open-loop system
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Fig. 2. The state trajectories of the closed-loop system
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