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Abstract— Linear matrix inequalities (LMIs) provide a pow-
erful analysis and synthesis framework for linear systems.
In this paper, we use LMIs to develop positive observers
for positive linear discrete-time (PLDT) systems with both
parameter uncertainties and time delay. Specifically, we first
present some equivalent conditions for the asymptotic stability
of positive linear discrete-time delay systems, which will be
employed to design the positive observers. Then, necessary and
sufficient conditions are proposed to check the existence of
positive observers for interval PLDT systems with time delay
when the positivity of the error signals is considered, and the
observer matrices to be constructed can be easily obtained
through the solutions of LMIs. Finally, a numerical example is
provided to demonstrate the efficacy of the proposed approach.

I. INTRODUCTION

In many practical systems, variables are constrained to be

positive. Such constraints naturally arise in physical systems

where variables are used to represent concentrations of ma-

terial, population numbers of bacteria or cells or, in general,

measures. Examples include pollutant transport, chemotaxis,

pharmacokinetics, industrial engineering involving chemical

reactors, heat exchangers, storage systems. These systems

are commonly referred to as positive systems, whose state

variables and outputs are constrained to be positive (or at

least nonnegative) in value at all times whenever the initial

condition and input are nonnegative. The mathematical the-

ory of positive systems is based on the theory of nonnegative

matrices founded by Perron and Frobenius. For references,

we refer readers to [1], [2].

Due to the wide range of applications of positive systems,

it is important to study their analysis and synthesis problems.

However, the positivity of the system state will bring about

many new issues, which cannot be simply solved by using

well-established results for general linear systems, since

positive systems are defined on convex cones rather than

linear spaces. For instance, similarity transformation, which

plays an important role in exploring the property of general

linear systems, may not be applicable for positive systems in

general due to the positivity constraints on system matrices.

Therefore, problems of positive systems have attracted a lot

of attention from researchers all over the world, and many
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fundamental results have been reported recently [3] [4] [5]

[6] [7] [8] [9] [10] [11] [12]. To mention a few, the stability

issue of positive systems has been treated in [4] [7] [13], and

the positive realization problem has been extensively studied

in the past few years, see the tutorial paper [8] and references

therein. Reachability and controllability for positive systems

can be found in [3] and [9]. In terms of linear matrix inequal-

ity (LMI) approach and linear programming techniques, the

synthesis problem of controllers ensuring the stability and

positivity of the closed-loop systems has been proposed in

[10] and [11], respectively.

In contrast with the abundance in the property charac-

terization, and stabilization, little attention has been paid

to the positive observer design problem. The first study

of such subject is initiated in [6], where a structural de-

composition approach has been presented to design the

positive observers for compartmental systems. In [12], both

the Sylvester equation approach and the positive realization

approach are proposed to study the existence and synthesis

of positive observers of positive linear systems. It should be

emphasized that most aforementioned results shared a severe

restriction that system parameters should be known exactly

such that some nice techniques, like matrix decomposition

and coordinates transformation, can be applied to construct

the desired observers. However, in practice, it is unavoidable

that there exist uncertainties due to the limitation in param-

eter acquisition and errors in measurement. Although some

results on robust stability of positive systems are available in

[4], the existence and design scheme of positive observers for

positive systems have not been fully investigated, see [14].

In addition, a key limitation of modeling the positive com-

partmental systems is that material transfers among different

compartments are not instantaneous, which further implies

that time delays should be accounted for when capturing

the realistic dynamics of these systems. On one hand, it

has been well known that, for general linear systems, delay

plays a crucial role in the stability performances, and may be

the source of some complicated behavior, such as instability,

oscillation, and even chaos. On the other hand, it is shown

that the presence of time delays does not affect the stability

performance of positive linear systems, see [7], [15]. In

[16], an identical time-delay (Luenberger-type) observer is

proposed to estimate the state of positive time-delay systems,

where the observer should be designed based upon the

original system with exactly known parameters. Note that,

as we mentioned before, such an approach cannot be applied

to the systems with parameter uncertainties any more. Thus,

how to study the synthesis of positive observers for positive
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systems in the presence of both parameter uncertainties and

time delay is still an open question; moreover, how can we

access the effect of time delays on the synthesis of positive

observers? These constitute the main focuses of the present

paper.

Based on the above discussion, in this paper, we are

concerned with the positive observer design for positive

linear discrete-time systems with both interval parameter

uncertainties and time delay. To achieve this, we first present

some equivalent conditions to guarantee the stability of posi-

tive discrete-time systems with time delay. Then, we develop

a novel characterization for the positive observer synthesis

in terms of vertical matrices of the uncertain domain which

system matrices belong to. More specifically, we provide

not only necessary and sufficient conditions to check the

existence of positive observers for interval PLDT systems

with time delay, but also an easily computable approach to

construct the observer matrices. It should be noted that these

conditions are independent of time delay when the positivity

of the error signals is specified. Also, the observer matrices

can be obtained through the solution of LMIs, which can be

easily checked by using standard software packages.

The rest of this paper is organized as follows. Section II

gives some notations and preliminaries. In Section III, we

first present some equivalent conditions to characterize the

stability of positive time-delay systems, and further treat the

synthesis problem of positive observers for interval PLDT

systems with time delay. In Section IV, a numerical example

is provided to demonstrate the efficacy of the proposed

approach. Finally, we summarize our results in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notation: Let N be the set of nonnegative integers; R is the

set of real numbers; R
n denotes the n-column vectors; R

m×n

is the set of all real matrices of dimension m × n. R
m×n
+

represents the m×n dimensional matrices with nonnegative

components and R
n
+ , R

1×n
+ . For a matrix A ∈ R

m×n,

aij denotes the element located at the ith row and the jth

column. Matrix A is said to be nonnegative if ∀(i, j) aij ≥ 0;
it is said to be positive, if ∀(i, j) aij ≥ 0, ∃(i, j) aij > 0.

Considering the fact that the definitions of nonnegative and

positive matrices are equivalent, except when a nonnegative

matrix is identically zero which is the degenerate case and

is of no interest, we do not distinguish these two throughout

this paper. That is to say that we consider these two are

equivalent in general cases. A is said to be strictly positive,

denoted as A >> 0, if ∀(i, j) aij > 0. For matrices A,

B ∈ R
m×n, the notation A ≥≥ B (respectively, A >> B)

means that A−B is positive (respectively, strictly positive).

For matrices A, Am, AM ∈ R
m×n, the notation A ∈

[Am, AM ] means that Am ≤≤ A ≤≤ AM . For any real

symmetric matrices P, Q, the notation P � Q (respectively,

P ≻ Q) means that the matrix P−Q is positive semi-definite

(respectively, positive definite). For any matrix A ∈ R
n×n,

ρ (A) , max {|λ| : λ ∈ σ (A)} denotes the spectral radius

of A, where σ (A) is the spectrum of A. A is said to be

Schur stable if and only if ρ (A) < 1.

I and 0 represent identity matrix and zero matrix respec-

tively; diag (. . .) stands for a block-diagonal matrix. The

superscript “T ” denotes matrix transpose and the symbol

# is used to represent a matrix which can be inferred by

symmetry. Matrices, if their dimensions are not explicitly

stated, are assumed to be with compatible dimensions for

algebraic operations.

A. Preliminaries

Consider the following linear discrete-time system with

time delay







x(k + 1) = Ax(k) + Adx (k − d) + Bu(k),
y(k) = Cx(k) + Cdx (k − d) ,

x(θ) = ϕ(θ), θ = −d,−d + 1, . . . , 0
(1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

p is the input,

y(k) ∈ R
q is the output or measurement, respectively; A, Ad,

B, C, and Cd are real constant matrices with appropriate

dimensions. d ∈ N is constant, and ϕ(θ) is the initial

condition. When there is no time delay in (1), that is, Ad = 0,

we recover the usual linear discrete-time system
{

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k), x(0) = x0.

(2)

Next, we recall some definitions and characterizations of

positive linear systems.

Definition 1: A linear dynamic system in the form of (2)

is said to be positive, if for every x0 ∈ R
n
+ and every u(k) ∈

R
p
+, we have x(k) ∈ R

n
+, y(k) ∈ R

q
+ for k ≥ 0.

Definition 2: A linear dynamic system in the form of (1)

is said to be positive, if for every ϕ(θ) ∈ R
n
+ (θ = −d,−d+

1, . . . , 0) and every u(k) ∈ R
p
+, we have x(k) ∈ R

n
+, y(k) ∈

R
q
+ for k ≥ 0.

The following two lemmas show that one can verify

whether a discrete-time system is positive or not by sim-

ply checking the sign of system matrices involved in the

mathematical model of the corresponding system.

Lemma 1 ([2]): System (2) is positive if and only if

A, B, and C are positive matrices.

Lemma 2 ([7]): System (1) is positive if and only if A,

Ad, B, C, and Cd are positive matrices.

To facilitate the subsequent analysis, a characterization on

the stability of positive linear discrete-time systems (2) is

introduced as follows:

Lemma 3 ([2]): The positive linear discrete-time systems

in (2) with u(t) = 0 is asymptotically stable if and only if

there exists a matrix P = diag (p1, p2, . . . , pn) ≻ 0 such

that

AT PA − P ≺ 0.

B. Problem Formulation

Consider the following positive interval system with time

delay:






x(k + 1) = Ax(k) + Adx (k − d) ,

y(k) = Cx(k) + Cdx (k − d) ,

x(θ) = ϕ(θ), θ = −d,−d + 1, . . . , 0.

(3)
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Here, the system matrices A, Ad, B, C, and Cd are not

known but belong to the uncertainty set

S = {(A, Ad, C, Cd) : A ∈ [Am, AM ] , Ad ∈ [Adm, AdM ] ,

C ∈ [Cm, CM ] , Cτ ∈ [Cdm, CdM ]}

where Am ∈ R
n×n
+ , Adm ∈ R

n×n
+ , Cm ∈ R

q×n
+ , Cdm ∈

R
q×n
+ .

In this paper, we aim at estimating the system state x(k)
in (3). To be more specific, we are interested in constructing

the following general observer:

x̂(k + 1) = Âx̂(k) + B̂y(k), (4)

where x̂(k) ∈ R
n for k ≥ 0. Â and B̂ are observer matrices

to be determined.

Let e(k) = x(k) − x̂(k), then the augmented system of

(3) and (4) can be described by

ξ(k + 1) = Aξ(k) + Adξ(k − d) (5)

where ξ(k) =
[

xT (k), eT (k)
]T

, and

A =

[

A 0

A − Â − B̂C Â

]

, Ad =

[

Ad 0

Ad − B̂Cd 0

]

.

As far as the state observation problem is concerned, it

is well known that, for general linear time-delay system, to

design an observer in (4) is equivalent to require that (5)

is asymptotically stable. However, such a specification may

not be enough for the positive systems (3), since it is highly

desirable that the estimate x̂(k) should be positive, like the

signal x(k) to be estimated. Thus, to ensure the positivity of

x̂(k), it is natural to require that the observer (4) should be a

positive system, which is equivalent to require, according to

Lemma 1, matrices Â and B̂ in (4) are positive. In addition,

when there is no time delay in the original system (3), it

can be seen from [6] that the induced error signal is positive

for the identity Luenberger observer case. Thus, it is hoped

that such a specification should be also preserved for the

general observer in (4). In fact, the positivity of signal e(k) is

embedded for the consideration of both consistency with the

case of identical observer and synthesis convenience. Based

on the above discussion, we formulate the positive observer

problem in this paper as follows.

Problem POD (Positive Observer Design): Given a positive

system with both parameter uncertainties and time delay in

(3), design a positive observer in the form of (4) such that

the augmented system in (5) is positive and asymptotically

stable for any (A, Ad, C, Cd) ∈ S, that is, the following two

requirements should be satisfied simultaneously:

• System (5) is positive and asymptotically stable for any

(A, Ad, C, Cd) ∈ S;

• Observer matrices Â and B̂ are positive.

Remark 1: In the observer (4), the Schur stability of

matrix Â is a prerequisite for the augmented system (5) to

be asymptotically stable. In addition, since the observer (4)

cannot affect the system state of (3), the stability of x(k)
then is a necessary condition for the asymptotic stability of

ξ(k).

III. MAIN RESULTS

The problem to be discussed in this section is to synthesize

the positive observer for the positive systems with both

interval parameter uncertainties and time delay. To achieve

this, we first present equivalent conditions on the asymptotic

stability of positive systems (3), and then consider the

observer synthesis problem in the sequence. In particular, we

will show that observer matrices can be constructed through

the solutions of a set of LMIs, which is dependent upon the

time delay when the positivity of error signals is considered.

A. Stability of PLDT Systems with Time Delay

In this subsection, the objective is to give conditions on the

global asymptotic stability of positive time-delayed systems

in (3), which play an essential role in the synthesis of positive

observers.

Theorem 1: Given positive system (3), the following state-

ments are equivalent:

(i) System (3) is asymptotically stable for any d ∈ N.

(ii) The following positive system

x(k + 1) = (A + Ad)x(k) (6)

is asymptotically stable.

(iii) Matrix A+Ad is Schur stable, that is, ρ (A + Ad) < 1.

(iv) There exists a positive diagonal matrix P ≻ 0 satisfying

(A + Ad)
T

P (A + Ad) − P ≺ 0. (7)

(v) There exists a positive diagonal matrix P ≻ 0 satisfying

[

−P (A + Ad)
T

P

# −P

]

≺ 0. (8)

(vi) There exist positive diagonal matrices P0 ≻ 0 and Pn ≻
0 such that

[

AT P0A + Pn − P0 AT P0Ad

# AT
d P0Ad − Pn

]

≺ 0. (9)

Proof: We prove the equivalence of these statements by the

following line.

(ii)⇐⇒(iii) The equivalence of (ii) and (iii) can be ob-

tained immediately form the definition of Schur stability.

(iv)⇐⇒(v) Based upon Schur complement, the equiva-

lence of (iv) and (v) is obtained immediately.

(i)=⇒(ii) It follows from (i) that (6) is asymptotically

stable if we let d = 0 in system (3).

(ii)=⇒(iv) Since (6) is a positive system, according to

Lemma 3, we have the conclusion in (iv).

(iv)=⇒(i) It follows from (7) that the following system

y(k + 1) = (A + Ad)
T

y(k) (10)

is positive and asymptotically stable, thus, ρ
(

(A + Ad)
T
)

<

1. Then, choose y(0) >> 0 such that

p ,

∞
∑

k=1

y(k) >> 0.
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Moreover, from (10), we have

∞
∑

k=1

y(k) =

∞
∑

k=0

[

(A + Ad)
T
]k

y(0)

=
[

I − (A + Ad)
T
]

−1

y(0). (11)

Let r , y(0) >> 0, we further obtain

p =
[

I − (A + Ad)
T
]

−1

r,

or equivalently,
[

I − (A + Ad)
T
]

p = r >> 0. (12)

Choose the Lyapunov functional

V (k) = pT x(k) +

d
∑

l=1

pT Adx(k − l). (13)

Calculating the difference of V (k) along the solution of

system (3), one has

V (k + 1) − V (k)

= pT (Ax(k) + Adx (k − d)) − pT x(k)

+pT Adx (k) − pT Adx (k − d)

= −pT [I − (A + Ad)] x(k),

which together with (12) yields that V (k + 1) − V (k) <

0. Then it follows from standard Lyapunov theory that the

positive time-delay system in (3) is asymptotically stable.

(vi)⇐⇒(i) If we define

x(k) =
[

xT (k), xT (k − 1), . . . , xT (k − d)
]T

,

then system (3) can be described equivalently as follows.

x(k + 1) = Ax(k) (14)

where

A =















A 0 · · · 0 Ad

I 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · I 0















.

From Lemma 3, we have that system (3) is asymptotically

stable, if and only if there exists a diagonal matrix P =
diag (P0, P1, . . . , Pn) ≻ 0 such that A

T
PA − P ≺ 0. After

some mathematical manipulation, we have condition (9). For

details, we refer readers to [15]. This completes the whole

proof. �

Remark 2: From the above theorem, one can see that

the size of time delay does not affect the asymptotic

stability of positive linear discrete-time systems [7], [15].

Moreover, from (iii) and the inequality ρ (A + Ad) ≥
max{ρ (A) , ρ (Ad)}, we can further conclude that matrices

A and Ad are both Schur stable.

Remark 3: It can be easily seen that conditions (iv),

(v), and (vi) are all expressed in the form of linear ma-

trix inequalities, which can be easily verified by existing

software. Different from those in [7] and [13], where the

stability criteria are given in the form of vector inequalities

and characteristic polynomial, respectively, the present LMI-

type characterization will greatly facilitate the synthesis of

positive observers to be considered in the sequel. On the

other hand, note that these three conditions are equivalent

among each other and delay-independent, with the number

of decision variables in (iv) and (v) less than the one in

(vi), which may further indicate that conditions (iv) and

(v) may perform more effectively in the sense of numerical

computation.

B. Positive Observer for Interval PLDT Systems with Time

Delay

In this subsection, we shall focus on the synthesis of

positive observers for interval PLDT systems with time delay.

We establish a necessary and sufficient condition to guarantee

the positivity and asymptotic stability of the augmented

system in (5) for any (A, Ad, C, Cd) ∈ S, and the observer

matrices are expressed explicitly through the solution of

LMIs.

Theorem 2: Problem POD is solvable if and only if there

exist diagonal matrices P = diag (p1, p2, . . . , pn) ≻ 0, Q =
diag (q1, q2, . . . , qn) ≻ 0, and positive matrices L ≥≥ 0,

G ≥≥ 0 such that the following LMIs hold:

Ξ ,









−P 0 Ξ13 Ξ14

# −Q 0 LT

# # −P 0
# # # −Q









≺ 0, (15)

QAm − L − GCM ≥≥ 0, (16)

QAdm − GCdM ≥≥ 0, (17)

where

Ξ13 = (AM + AdM )T
P,

Ξ14 = (AM + AdM )T
Q − LT − (Cm + Cdm)T

GT .

In this case, a desired observer in (4) can be obtained with

Â = Q−1L, B̂ = Q−1G. (18)

Proof: (Sufficiency) When (15)–(18) are satisfied, we first

show that the augmented system (5) is positive. To this end,

we note from (16)–(18) that
{

QAm − QÂ − QB̂CM ≥≥ 0,

QAdm − QB̂CdM ≥≥ 0.
(19)

Note Q ≻ 0 is diagonal, we have
{

Am − Â − B̂CM ≥≥ 0,

Adm − B̂CdM ≥≥ 0.
(20)

Observe that for any (A, Ad, C, Cd) ∈ S, we obtain
{

A ≥≥ Am, Ad ≥≥ Adm,

B̂CM ≥≥ B̂C, B̂CdM ≥≥ B̂Cd.
(21)

This together with (20) yields that
{

A − Â − B̂C ≥≥ 0,

Ad − B̂Cd ≥≥ 0,
(22)
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which further implies that A ≥≥ 0, and Ad ≥≥ 0 in system

(5). Then, based on Lemma 2, we conclude that system (5)

is positive. In the following, we will show that system (5) is

asymptotically stable for any (A, Ad, C, Cd) ∈ S.

From (15) and (18), we have

Ξ̃ ,









−P 0 (AM + AdM )
T

P Ξ̃14

# −Q 0 ÂT Q

# # −P 0
# # # −Q









≺ 0,

(23)

where

Ξ̃14 =
(

(AM + AdM ) − Â − B̂ (Cm + Cdm)
)T

Q. (24)

Based on Schur complement, (23) is equivalent to

[

AM + AdM 0

AM + AdM − Â − B̂ (Cm + Cdm) Â

]T

×

[

P 0
0 Q

]

×

[

AM + AdM 0

AM + AdM − Â − B̂ (Cm + Cdm) Â

]

−

[

P 0
0 Q

]

≺ 0.

Note that P ≻ 0 and Q ≻ 0, we have

ρ

([

AM + AdM 0

AM + AdM − Â − B̂ (Cm + Cdm) Â

])

< 1.

(25)

On the other hand, for any (A, Ad, C, Cd) ∈ S, it is obvious

that

0 ≤≤ A + Ad

≤≤

[

AM + AdM 0

AM + AdM − Â − B̂ (Cm + Cdm) Â

]

.

(26)

Then, considering (25) and (26), it can be deduced that

ρ (A + Ad) < 1.

Therefore, by Theorem 1, we have that the positive delay

system (5) is asymptotically stable.

(Necessity) If there exist matrices Â and B̂ such that

system (5) is positive and asymptotically stable for any

(A, Ad, C, Cd) ∈ S, then we have

[

Am 0

Am − Â − B̂CM Â

]

≥≥ 0,

[

Adm 0

Adm − B̂CdM 0

]

≥≥ 0.

These two inequalities directly imply that

{

Am − Â − B̂CM ≥≥ 0,

Adm − B̂CdM ≥≥ 0.

Considering the fact that Q ≻ 0 is diagonal, we have
{

QAm − QÂ − QB̂CM ≥≥ 0,

QAdm − QB̂CdM ≥≥ 0.
(27)

By setting L , QÂ, G , QB̂, we are ready to obtain, from

the diagonal positivity of Q, that L ≥≥ 0, G ≥≥ 0. Then it

follows from (27) that (16) and (17) hold.

In addition, since the positive delay system (5) is asymp-

totically stable, from Theorem 1, we obtain that there

exist matrices P = diag (p1, p2, . . . , pn) ≻ 0, Q =
diag (q1, q2, . . . , qn) ≻ 0 such that









−P 0 (AM + AdM )T
P Ξ̃14

# −Q 0 ÂT Q

# # −P 0
# # # −Q









≺ 0,

where Ξ̃14 is defined in (24). Note that ÂT Q = LT and

B̂T Q = GT , we further obtain (15). This completes the

whole proof. �

Remark 4: It should be emphasized that the introduction

of parameter uncertainties destroy some nice properties, such

as the identical Luenberger approach and structural decom-

position techniques, which was broadly adopted previously,

can no longer be applicable. In Theorem 2, we develop a nec-

essary and sufficient condition to design positive observers

for positive systems in the presence of interval parameter

uncertainties and time delay, which is effective for the case

when a priori knowledge about the size of time delay d in

(3) is not available.

Remark 5: The obtained results in this paper can be easily

extended to the case where positive linear discrete-time

systems (3) are with multiple time delays, since one may use

the approach in [13] (Chap. 8, Page 423) to formulate the

positive delayed system to be an augmented positive system.

Then, by applying the same idea developed in the proof of

Theorem 2, we can derive the analogous results readily.

IV. NUMERICAL SIMULATION

In this section, we present an example to demonstrate the

applicability of the proposed approach.

Consider a positive linear discrete-time system in (3) with

parameters as follows:

Am =

[

0.2681 0.2576
0.0728 0.3455

]

, Cm =
[

1 0
]

,

Adm =

[

0.1892 0.1756
0.0000 0.1145

]

, Cdm =
[

0 0
]

,

AM =

[

0.2810 0.3012
0.0788 0.3520

]

, CM =
[

1.1 0
]

,

AdM =

[

0.2014 0.1860
0.0000 0.1145

]

, CdM =
[

0 0
]

.

It can be verified that the eigenvalue of matrix AM +AdM is

λ1 = 0.6764 and λ2 = 0.2846, which further indicates that,

based on Theorem 1, this positive system is asymptotically

stable. The aim of this example is to design a general

observer in the form of (4) such that the augmented system
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is positive and asymptotically stable. By virtue of standard

software, we obtain the feasible solution of (15)–(17) as

follows:

P =

[

0.9975 0.0000
0.0000 1.9736

]

, Q =

[

1.7024 0.0000
0.0000 2.6842

]

,

L =

[

0.1802 0.1094
0.1094 0.6083

]

, G =

[

0.1503
0.0396

]

.

Thus, from (18), the desired observer matrices are given as

Â =

[

0.1059 0.0643
0.0408 0.2266

]

, B̂ =

[

0.0883
0.0148

]

,

that is,
{

x̂1(k + 1) = 0.1059x̂1(k) + 0.0643x̂2(k) + 0.0883y(k),
x̂2(k + 1) = 0.0408x̂1(k) + 0.2266x̂2(k) + 0.0148y(k).

V. CONCLUSION

In this paper, the problem of positive observer design

for positive linear discrete-time systems with both interval

parameter uncertainties and time delay has been investigated.

Necessary and sufficient conditions are established to ensure

the asymptotic stability of positive systems with time delay,

which are expressed under the framework of linear matrix

inequalities. In addition, an easily verifiable condition is

developed to study the existence of positive observers for

interval PLDT systems with time delay, and the observer

matrices can be obtained through the solution of a set of

LMIs, which can be easily computed by means of standard

software. The effectiveness of the derived condition has been

demonstrated by a numerical example.
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