Aromatic, aliphatic, and the unidentified 21 micron emission features in proto-planetary nebulae

Bruce J. Hrivnak¹, Kevin Volk², T. R. Geballe², and Sun Kwok³

¹Department of Physics & Astronomy, Valparaiso University, Valparaiso IN, 46383, USA email: bruce.hrivnak@valpo.edu

²Gemini Observatory, 670 North A'ohoku Place, Hilo, HI 96720, USA email: kvolk@gemini.edu, tgeballe@gemini.edu

³Department of Physics, University of Hong Kong, Hong Kong, China email: sunkwok@hku.hk

Abstract. Aromatic features at 3.3, 6.2, 7.7, 8.6, 11.3 μ m are observed in proto-planetary nebulae (PPNe) as well as in PNe and H II regions. Aliphatic features at 3.4 and 6.9 μ m are also observed; however, these features are often stronger in PPNe than in PNe. These observations suggest an evolution in the features from simple molecules (C₂H₂) in AGB stars to aliphatics in PPNe to aromatics in PNe. In the same carbon-rich PPNe, a strong, broad, unidentified 21 μ m emission feature has been found. We will present recent observations of the aromatic, aliphatic, and 21 μ m emission features, along with C₂H₂ (13.7 μ m) and a new feature at 15.8 μ m, and discuss correlations among them and other properties of these PPNe.

Keywords. Astrochemistry, circumstellar matter, ISM: lines and bands, infrared: ISM, stars: AGB and post-AGB, planetary nebulae: general

1. Background and New Observations

Aromatic hydrocarbon emission features at 3.3, 6.2, 7.7, 8.6, and 11.3 μ m, often attributed to PAHs, are observed in the spectra of various objects with hot irradiating sources; planetary nebulae (PNe), H II regions, reflection nebulae. They have also been observed in proto-planetary nebulae (PPNe), objects in the short-lived (~1000 yr) transitional phase between AGB stars and PNe. In PPNe, the circumstellar envelope is detached but the central star is not hot enough to photo-ionize the nebula and is typically of spectral type F-G. Aliphatic emission features at 3.4 and 6.9 μ m are also seen in PPNe and are often stronger than in PNe (Geballe 1997, Geballe *et al.* 1992). This suggests an evolution in the carbon chemistry of the circumsteller envelopes from C₂H₂ to aliphatics to aromatics as C-rich stars evolve rapidly from AGB to PPN to PN phases (Kwok 2004).

The unidentified 21 μ m emission feature, first seen in *IRAS* spectra of four C-rich PPNe (Kwok *et al.* 1989), has subsequently been observed in additional C-rich PPNe with *ISO* (Volk *et al.* 1999) and recently with *Spitzer*. This 21 μ m feature has been detected only in C-rich objects and essentially only in PPNe (and perhaps weakly in a few AGBs and young PNe). Suggested identifications include PAHs, TiC, SiC (see Speck & Hofmeister 2004 and references therein), and FeO (Guha Niyogi *et al.*, these proceedings).

New 3 μ m spectra have been obtained of seven PPNe. All show the 3.3 μ m and most show the 3.4 μ m feature (Hrivnak *et al.* 2007). New mid-IR spectra have also been obtained of six carbon-rich PPNe using *Spitzer*. These reveal one new 21 μ m source and give good observations of the others. Also seen are the 11.3 and 12.3 μ m emission bands.

Table 1. Summary of the Spectral Features of Carbon-Rich PPNe and 21 μ m Sources^a

Object	$_{\rm SpT}$	C/O	$\mathrm{C}_{2},\!\mathrm{C}_{3}$	3.3	3.4	6.2	6.9	7.7	8.6	$8\mathrm{br}$	11.3	12.3	$Class^b$	$\mathrm{C}_{2}\mathrm{H}_{2}$	15.8	21	$30 \ \mu { m m}$
02229 + 6208	G8 Ia		Y,Y	Υ	Y:*	Y:	Υ	Ν	Ν	Υ	Υ	Υ	А			Υ	Y
20000 + 3239	G8 Ia		Υ,	Υ	Y^*	Υ	Υ	Ν	Ν	Υ	Υ	Υ	Α			Υ	Υ
$05113\!+\!1347$	G8 Ia	2.4	Y,Y	Y:	Y:						Υ	Υ		N:*	Y:*	Υ	Υ
22272 + 5435	G5 Ia	1.6	Y,Y	Υ	Υ	Υ	Υ	Υ	Ν	Υ	Υ	Υ	В		Y:	Υ	Υ
$07430\!+\!1115$	G5 Ia		Y,Y	Υ	Υ					Y:	Y:		Α			Y^*	Υ
$23304\!+\!6147$	G2 Ia	2.8	Y,Y	Y^*	$Y:^*$	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Α	Y:*	Y^*	Υ	Υ
$05341\!+\!0852$	G2 Ia	1.6	Y,Y	Υ	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Y^*	В	Y^*	Y^*	Υ	Υ
22223 + 4327	G0 Ia	1.2	Y,Y	Υ	Ν						Υ		Α			Υ	Υ
$04296 \!+\! 3429$	G0 Ia		Y,Y	Υ	Υ			Υ			Υ	Υ	В			Υ	Υ
AFGL 2688	F5 Iae	1.0	Y,Y	Υ	Υ	Υ	Y:	Ν	Ν	Υ	Υ	N :	Α	Υ		Y:	Υ
06530 - 0230	F5 I	2.8	Y,Y	Y^*	Ν						Y^*	Y^*	Α	Y^*	Y^*	Y^*	Y^*
$07134 \! + \! 1005$	F5 I	1.0	Y,N	Υ	Y:		Υ	Υ	Ν	Υ	Υ	Υ	Α		Y:	Υ	Υ
19500 - 1709	F3 I	1.0	N,N	Ν	Ν					Y:	Υ	Y:			Y:	Υ	Υ
$16594\!-\!4656$	B7		N,N	Υ	Ν	Υ	Ν	Υ	Υ	Y:	Υ	Y:	Α			Υ	Υ
01005 + 7910	B0 I	1.2	N,N	Υ	Y^*	Υ	Ν	Υ	Υ	Ν	Υ	Ν	Α			N :	Υ
$22574\!+\!6609$,			Υ	Υ	Υ	Ν	Υ	Υ	Y^*		Y^*	N^*	Υ	Υ
$19477\!+\!2401$,													Y*	Υ

Note 1: Colon indicates a marginal or uncertain detection, blank indicates lack of information, "..." indicates that the object has not been observed in this spectral region.

Note 2: Asterisk indicates a new detection from Hrivnak et al. (2007) or Hrivnak et al. (2008).

^a Table does not include three newly discovered C-rich PPNe IRAS 08143-4406, 08281-4850, 14325-6428 (Reyniers *et al.* 2004, 2007) that have not been observed in the IR.

^bClassification scheme of Geballe (1997) at 3.3, 3.4 μ m.

Two other emission features are seen. At 15.8 μ m is a new, relatively strong, unidentified feature seen in four sources; it is strongest in the two with the strongest 21 μ m feature. At 13.7 μ m is seen the C₂H₂ feature in four sources, including the first report of C₂H₂ in emission in a post-AGB object (Hrivnak *et al.* 2008). Results are listed in Table 1.

2. Summary

• 3.3, 3.4 μ m: All C-rich PPNs have 3.3 μ m and most have 3.4 μ m emission features.

• 21 μ m: (a) All have the same shape and central wavelength (20.1±0.1 μ m) but differ in strength; (b) all are C-rich, (almost) all show C₂, C₃, 3.3, 11.3, 30 μ m emission.

• C_2H_2 : (a) Detected in four 21 μ m sources; all show P-Cygni profiles; (b) first detection in emission in post-AGB stars.

• 15.8 μ m: New feature seen in several of the PPNe including previous *ISO* spectra; unidentified; (b) correlated with 21 μ m emission?

• Trends: (a) All 21 μ m sources are C-rich, (almost) all show C₂, C₃, 3.3, 11.3, 30 μ m emission; (b) no correlation found between 3.4/3.3 ratio and spectral type.

Acknowledgements

BJH acknowledges support from NASA (JPL/Caltech 1276197) and NSF (AST-0407087).

References

Geballe, T. R. 1997, in: Y. J. Pendleton & A. G. G. M. Tielens (eds.), From Stardust to Planetesimals, (ASP: San Francisco), p. 119

Geballe, T. R., Tielens, A. G. G. M., Kwok, S., & Hrivnak, B. J. 1992, ApJ (Letters), 387, L89

Hrivnak, B. J., Geballe, T. R., & Kwok, S. 2007, ApJ, 662, 1059

Hrivnak, B. J., Volk, K., & Kwok, S. 2008, ApJ, submitted

Kwok, S. 2004, Nature, 430, 985

Kwok, S., Volk, K., & Hrivnak, B. J. 1989, ApJ (Letters), 345, L51

Reyniers, M., van Winckel, H., Gallino, R., & Straniero, O. 2004, A&A, 417, 269

Reyniers, M., Van de Steene, G. C., van Hoof, P. A. M., & van Winckel, H. 2007, *A&A*, 471, 247

Speck, A. K. & Hofmeister, A. M. 2004, ApJ, 600, 986

Volk, K., Kwok, S., & Hrivnak, B. J. 1999, ApJ (Letters), 516, L99