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Abstract

This paper extends the pension funding model in Gerber and Shiu (2003) to a

regime-switching case. The market mode is modeled by a continuous-time stationary

Markov chain. The asset value process and liability value process are modeled by

Markov-modulated geometric Brownian motions. We consider a pension funding

plan in which the asset value is to be within a band that is proportional to the

the liability value. The pension plan sponsor is asked to provide sufficient funds to

guarantee the asset value stays above the lower barrier of the band. The amount by

which the asset value exceeds the upper barrier will be paid back to the sponsor. By

applying differential equation approach, this paper calculates the expected present

value of the payments to be made by the sponsor as well as that of the refunds to the

sponsor. In addition, we study the effects of different barriers and regime switching

on the results using some numerical examples. The optimal dividend problem is

studied in our examples as an application of our theory.
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1 Introduction

Pension funding problem is an important topic for the related companies as well as gov-

ernment. One essential problem is how to match the asset value process and liability

value process in a pension plan. Gerber and Shiu (2003) propose to use the strategy

which guarantees the pension asset value within a band that is proportional to the pen-

sion liability value, where the asset and liability of a company are modeled by correlated

geometric Brownian motions with constant drift and instantaneous variance parameters.

Since the states of the economy (or ”market mode”) can be significantly affected by the

changes in political policies, the impact of economic news, etc, we may need to model the

asset and liability value processes in a way with more flexibility.

In recent years, regime switching models have become popular in finance and related

fields. This type of model is motivated by the intension to reflect the state of the financial

market. For example, the state of the market can be roughly divided into ”bullish” and

”bearish” two regimes, in which the price movements of the stocks are quite different.

Generally, in a regime-switching model, the value of market modes are divided into a

finite number of regimes. The key parameters, such as the bank interest rate, stocks

appreciation rates, and volatility rates, will change according to the value of different

market modes. Since the market state may change from one regime to another, both

the nature of the regime and the change point should be estimated. If the market state

process is modeled by a continuous time Markov chain with finite states, regime switching
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models are also referred to as Markov switching or Markov-modulated models in some

literatures.

With time-varying parameters, regime switching models are obviously more realistic

than constant parameter model to reflect the random market environment. As discussed

in Neftci (1984), an appealing ability of these models is to account for the accumulating

evidence that business cycles are asymmetric. Most of the studies indicate that regime-

switching models perform well in some sense, for example, Hardy (2001) used monthly

data from the Standard and Poor’s 500 and the Toronto Stock Exchange 300 indices to fit

a regime switching lognormal model. In their paper, the fit of the regime switching model

to the data was compared with other econometric models and she found that regime-

switching models provided a significant improvement over all the other models in the

sense of maximizing the likelihood function. In a special case, if the data is in lognormal

setting, the software ”regime switching equity model workbook” developed by Hardy and

her group which can be found on SOA web site can be applied directly, which greatly

simplifies the application procedure of regime switching model.

Regime switching models are not new in statistics and economics, dating back to at

least Quandt (1958), where regime regression models are investigated. Kim and Nelson

(1999) gave a brief review of Markov switching models and presented comprehensive

exposition of statistical methods for these models as well as many empirical studies. One

influential work on the application of regime switching models is Hamilton (1989), where

dynamic models with Markov switching between regimes are introduced as a tool for

dealing with endogenous structural breaks. And after that, enormous empirical works

about regime switching structure were done in many economical aspects, such as business

cycle asymmetry, see Hamilton (1989), Lam (1990); the effects of oil prices on U.S. GDP
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growth, see Raymond and Rich (1997); labor market recruitment, see Storer (1996);

government expenditure, see Rugemurcia (1995); and the level of merger and acquisition

activity (Town, 1992). etc

However, it is recent years for the application of regime switching models in finance.

Early works are done on option pricing, see Di Masi et al. (1994), Buffington and Elliott

(2002), Boyle and Draviam (2007). After that, regime switching models are applied to

many other aspects, such as Equity-linked life insurance pricing, see Hardy (2003); Bond

Pricing, see Elliott and Siu (2008a); Portfolio selection, see Zhou and Yin (2003), Chen et

al (2008), Elliott and Siu (2008b); Optimal dividend, Li and Lu (2006,2007), Sotomayor

and Cadenillas (2008), Wei et al. (2009). etc.

In this paper, we extend the pension funding model in Gerber and Shiu (2003) to

a regime switching model. Gerber and Shiu (2003) presented an elegant application of

Geometric Brownian motion to asset and liability management. In their formulation,

the asset value process A(t) and liability value process L(t) are modeled by correlated

geometric Brownian motions, where the drift parameters and instantaneous standard

deviations are modulated by the Markov chain. They considered a pension funding plan

in which the asset value A(t) is to be within a band bounded by L1(t) = λ1L(t) and

L2(t) = λ2L(t) for some parameters λ2 > λ1 > 0. The pension plan sponsor is asked to

provide sufficient funds to guarantee the asset value A(t) stays above the lower barrier

L1(t) of the band . On the other hand, the amount by which the asset value exceeds the

upper barrier L2(t) will be paid back to the sponsor. Then the original asset value A(t)

is replaced by the modified asset value Am(t). We adopt the same notation A(t), L(t),

L1(t) and L2(t) in our paper. Since our consideration is in a regime switching setting, all

the parameters will be modulated by a Markov chain that may change from one regime to
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another, then the parameters sets of Am(t), L1(t) and L2(t) will also change according to

the Markov chain. A path of the regime switching version of these processes are illustrated

in Figure 1, from which we can see clear change of the three processes before and after

the change point t=1.
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Figure 1. Illustration of Modified Asset Value Process.
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In this paper, we shall calculate V1(α; λ1, λ2, i0), the expectation of the present value

of the payments that have to be provided by the sponsor to guarantee that the asset is

not below the lower level L1(t), and V2(α; λ1, λ2, i0), the expectation of the present value

of the ”overflow” to maintain the upper level L2(t). Here α is the time zero asset value

which belongs to [λ1, λ2] and i0 is the market mode when the pension plan is launched. By

applying a differential equation approach, a system of second order differential equations

indexed by market modes i0 ∈M is derived for Vj(α; λ1, λ2, i0) for j = 1, 2. The equations

will be solved by linear algebra method in Section 3. We give some numerical results in

Section 4.1-4.2 to illustrate the effects of λ1 and λ2 and regime switching phenomenon.

Finally, as an application of our barrier model for asset and liability value process, the

optimal dividend problem will be studied in our numerical examples in Section 4.3.

The paper is organized as follows. Section 2 is the formulation of the model. In
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Section 3, the differential equations for Vj(α; λ1, λ2, i0), j = 1, 2, i0 ∈ M are derived

and the solution method is presented. Section 4 provides some numerical examples to

illustrate our results.

2 The Model

Throughout the paper, let (Ω,F , P ) be a fixed complete probability space and let W (t) =

(W1(t),W2(t))
′ be a bivariate standard Brownian motion with constant correlation ρ.

The market mode is divided into d different regimes which are represented by the regime

space M = {1, 2, . . . , d}. Let βt be a continuous-time stationary Markov chain taking

value in M such that W (t) and βt are independent of each other. The Markov chain has

a transition rate matrix Q = (qij) ∈ Rd×d (conventionally called Q-matrix) and stationary

transition probabilities

pij(t) = Pr(βt = j|β0 = i), t ≥ 0, i, j ∈M. (2.1)

As is implied in some empirical study, the market mode is seldom instantaneous state,

see for example, Hardy (2001). That is, for each i ∈M, we assume |qii| < +∞.

Due to the positive nature of asset and liability values, we model them by geometric

Brownian motions of the form

A(t) = αeX(t), (2.2)

L(t) = λeY (t), (2.3)
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with X(t) and Y (t) satisfying the following stochastic differential equation:

dX(t) = µX(βt)dt + σX(βt)dW1(t), X(0) = 0 (2.4)

dY (t) = µY (βt)dt + σY (βt)dW2(t), Y (0) = 0 (2.5)

where µX(i) and µY (i) for i ∈ M are given as the drift parameters corresponding to

different market modes, σX(i) and σY (i) are corresponding instantaneous standard devi-

ations. We shall study the case where A(t) is bounded by upper and lower multiples of

L(t), that is,

Lj(t) = λje
Y (t), j = 1, 2, (2.6)

with 0 < λ1 < λ2. It is assumed that between the barriers L1(t) and L2(t), the modified

asset value process Am(t) has the same instantaneous rate of return as the original asset

value process A(t). Figure 1 plots L2(t), Am(t) and L1(t) from above to below with the

assumption that the market mode switches from ”bearish” to ”bullish” at time 1, which

can be seen clearly from the paths of three processes.

Since E[A(t)|Ft] = αe
∫ t
0 [µX(βs)+

1
2
σX(βs)2]ds, we introduce the asset growth rate corre-

sponding to market mode i ∈M as

δX(i) = µX(i) +
1

2
σX(i)2. (2.7)

Similarly, the liability growth rates are defined as

δY (i) = µY (i) +
1

2
σY (i)2, i ∈M. (2.8)

The force of interest δ(i) is also assumed to be affected by market mode i ∈ M. For
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notational simplicity, we introduce

σ(i)2 = σX(i)2 − 2ρσX(i)σY (i) + σY (i)2, i ∈M. (2.9)

Let τ be the first time when the asset value reaches one of the two barriers, then

τ = min{t ≥ 0|A(t) = L1(t) or A(t) = L2(t)}. (2.10)

With the time zero asset value α ∈ [λ1, λ2] and market mode β0 = i0, let V1(α; λ1, λ2, i0)

be the expectation of the present value of the payments that have to be provided by

the sponsor to guarantee that the asset is not below the lower level L1(t). If we treat

time τ as the new orientation time for another pension plan, then the starting condition

become A(τ), L1(τ), L1(τ) and βτ . Since no barrier is reached before time τ , no pay-

ment is made during the time period [0, τ), which results in the expected present value

of V1(A(τ); L1(τ), L2(τ), βτ ) is just V1(α; λ1, λ2, i0) given the initial condition A(0) =

α, L1(0) = λ1, L2(0) = λ2 and β0 = i0. This argument can be written as follows,

V1(α; λ1, λ2, i0) =

E[e−
∫ τ
0 δ(βs)dsV1(A(τ); L1(τ), L2(τ), βτ )|A(0) = α,L1(0) = λ1, L2(0) = λ2, β0 = i0]

(2.11)

Similarly, let V2(α; λ1, λ2, i0) be the expectation of the present value of the ”overflow” to

maintain the upper level L2(t), then

V2(α; λ1, λ2, i0) =

E[e−
∫ τ
0 δ(βs)dsV2(A(τ); L1(τ), L2(τ), βτ )|A(0) = α,L1(0) = λ1, L2(0) = λ2, β0 = i0]

(2.12)
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3 The Calculation of Vj(α; λ1, λ2, i0) for j = 1, 2

In this section, following Gerber and Shiu (2003), we apply a differential equation approach

to calculate Vj(α; λ1, λ2, i0) for j = 1, 2. Note that A(t) and L(t) are geometric Brownian

motions, then the functions Vj(α; λ1, λ2, i0) for j = 1, 2 are homogeneous of degree 1 with

respect to α, λ1 and λ2. That is, for each z > 0, we have

Vj(zα; zλ1, zλ2, i0) = zVj(α; λ1, λ2, i0), j = 1, 2. (3.1)

Based on this homogeneous property and the expressions (2.11) and (2.12), we see in

the latter part of this section that V1(α; λ1, λ2, i0) and V2(α; λ1, λ2, i0) follow the same

differential equation. The main difference between them is boundary conditions,

V ′
1(λ1; λ1, λ2, i0) = −1, (3.2)

V ′
1(λ2; λ1, λ2, i0) = 0, (3.3)

V ′
2(λ1; λ1, λ2, i0) = 0, (3.4)

V ′
2(λ2; λ1, λ2, i0) = 1, (3.5)

for each i0 ∈ M. Conditions (3.2)–(3.5) are derived by heuristic justification as follows.

If the time zero asset value α is close to λ1, the first time τ for the asset value process

to reach one of the two barriers is close to 0. Then in an infinitesimal time interval, the

market mode remains at i0, and when α falls below λ1, the amount |α− λ1| = −(α− λ1)

has to be provided to guarantee the lower bound λ1, which explains (3.2). On the other

hand, since λ1 < λ2, no dividend that has to be paid to guarantee the upper bound λ2,

which explains (3.4). Similarly, if the time zero asset value α is close to λ2, the time τ is
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close to 0 and the market mode remains at i0. Then in an infinitesimal time interval, when

α overflows λ2, the amount |α−λ2| = α−λ2 has to be paid out as dividend to guarantee

the upper bound λ2, which explains (3.5). For the similar reason as (3.4), condition (3.3)

can be explained.

Based on the above observation, for notational simplicity, V (α; λ1, λ2, i0) can be either

V1(α; λ1, λ2, i0) or V2(α; λ1, λ2, i0) in the following of the paper.

Consider the infinitesimal time interval from 0 to dt. As stated in Section 2, the time

zero market mode i0 is not instantaneous state, then the force of interest δ(βt) remains

at δ(i0) during 0 to dt. With λ1 < α < λ2, we have τ > dt. In the same spirit of (2.11)

and (2.12), since no payment is made during [0, dt), we have

V (α; λ1, λ2, i0)

= E
[
e−δ(i0)dtV (A(dt); L1(dt), L2(dt), βdt)|A(0) = α, L1(0) = λ1, L2(0) = λ2, β0 = i0

]

(3.6)

Because of homogeneous property of V ,

V (A(dt); L1(dt), L2(dt), βdt) = eY (dt)V (αeX(dt)−Y (dt); λ1, λ2, βdt). (3.7)

Neglecting terms whose expectation is of order smaller than dt, we can write

e−δ(i0)dt+Y (dt) = 1− δ(i0)dt + Y (dt) +
1

2
[Y (dt)]2 (3.8)
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and

V (αeX(dt)−Y (dt); λ1, λ2, βdt)

= V (α; λ1, λ2, βdt) + V ′(α; λ1, λ2, βdt)α
{

[X(dt)− Y (dt)] +
1

2
[X(dt)− Y (dt)]2

}

+
1

2
V ′′(α; λ1, λ2, βdt)α

2[X(dt)− Y (dt)]2

= V (α; λ1, λ2, i0) +
d∑

k=1

qi0kV (α; λ1, λ2, k)dt

+
[
V ′(α; λ1, λ2, i0) +

d∑

k=1

qi0kV
′(α; λ1, λ2, k)dt

]
α
{

[X(dt)− Y (dt)] +
1

2
[X(dt)− Y (dt)]2

}

+
1

2

[
V ′′(α; λ1, λ2, i0) +

d∑

k=1

qi0kV
′′(α; λ1, λ2, k)dt

]
α2[X(dt)− Y (dt)]2. (3.9)

The product of (3.8) and (3.9) is

e−δ(i0)dt+Y (dt)V (αeX(dt)−Y (dt); λ1, λ2, βdt)

=
[
V (α; λ1, λ2, i0) +

d∑

k=1

qi0kV (α; λ1, λ2, k)dt
]{

1− δ(i0)dt + Y (dt) +
1

2
[Y (dt)]2

}

+V ′(α; λ1, λ2, i0)α
{

[X(dt)− Y (dt)] +
1

2
[X(dt)− Y (dt)]2 + Y (dt)[X(dt)− Y (dt)]

}

+
1

2
α2V ′′(α; λ1, λ2, i0)[X(dt)− Y (dt)]2. (3.10)

By (3.6) and remembering that W (t) and βt are independent of each other, we take

expectation to (3.10) to derive

V (α; λ1, λ2, i0)

= V (α; λ1, λ2, i0)[1− δ(i0)dt + δY (i0)dt] +
d∑

k=1

qi0kV (α; λ1, λ2, k)dt

+V ′(α; λ1, λ2, i0)α[δX(i0) + δY (i0)]dt +
1

2
V ′′(α; λ1, λ2, i0)α

2σ2(i0)dt (3.11)

where δX(i0), δY (i0) and σ(i0) are defined by (2.7), (2.8) and (2.9) for i = i0 ∈ M,
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respectively. Subtracting V (α; λ1, λ2, i0) on both sides and canceling dt in (3.11), we have

[δY (i0)− δ(i0)]V (α; λ1, λ2, i0) + α[δX(i0)− δY (i0)]V
′(α; λ1, λ2, i0)

+
1

2
α2σ2(i0)V

′′(α; λ1, λ2, i0) +
d∑

k=1

qi0kV (α; λ1, λ2, k) = 0,
(3.12)

which is a system of ordinary differential equations with respect to α indexed by i0 ∈M.

In the case that there is no regime-switching phenomenon, that is, qij = 0 for all

i, j ∈M, equation (3.12) turns out to be

[δY (i0)− δ(i0)]V (α; λ1, λ2, i0) + α[δX(i0)− δY (i0)]V
′(α; λ1, λ2, i0)

+
1

2
α2σ2(i0)V

′′(α; λ1, λ2, i0) = 0,

(3.13)

which is consistent with the result in Gerber and Shiu (2003).

Within complex domain, the general solutions for (3.12) and (3.13) always exist and

unique under the boundary conditions (3.2) to (3.5). To guarantee a real-valued solution

of (3.13), Gerber and Shiu (2003) introduced an assumption

δY < δ. (3.14)

However, for a system of ordinary differential equations (3.12), it is not easy to find such

neat and simple condition as (3.14) to guarantee real-valued solutions. Even if we can

find some conditions, they may not be applicable in practice. To solve (3.12), we first

notice that it is in the same type of a system of differential equations

aiα
2f ′′i (α) + biαf ′i(α) + cifi(α) +

∑

j 6=i

cijfj(α) = 0, i, j ∈M, (3.15)
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where fi(α) is a function with respect to α for i ∈ M and ai, bi and cij are constant

coefficients corresponding to i, j ∈ M. Since α is the initial asset value which should be

positive, let α = es > 0 for s ∈ R and define gi(s) := fi(e
s) for i ∈ M, then (3.15) is

transformed into

aig
′′
i (s) + (bi − ai)g

′
i(s) + cigi(s) +

∑

j 6=i

cijgj(s) = 0, i, j ∈M, (3.16)

which is a system of second-order linear differential equations. To solve (3.16), let

hi(s) := g′i(s), i ∈M (3.17)

and

H(s) = (g1(s), ..., gd(s), h1(s), ..., hd(s))
′. (3.18)

Under the condition that for each i ∈M,

ai 6= 0 (3.19)

and based on (3.16) and (3.17), an equivalent system of linear differential equations to

(3.15) can be derived

dH(s)

ds
= AH(s), (3.20)
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where A is a 2d× 2d square matrix defined as

A = −




0 0 · · · 0 −1 0 · · · 0

0 0 · · · 0 0 −1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · −1

c11
a1

c12
a1

· · · c1d

a1

b1
a1
− 1 0 · · · 0

c21
a2

c22
a2

· · · c2d

a2
0 b2

a2
− 1 · · · 0

...
...

. . .
...

...
...

. . .
...

cd1

ad

cd2

ad
· · · cdd

ad
0 0 · · · bd

ad
− 1




. (3.21)

Note that (3.20) is a homogeneous first-order linear differential equation system, the

closed-form solutions of which can be derived by investigating the eigenvalues and eigen-

vectors of matrix A. We also note that if d = 1, that is, in the case of no regime-switching

phenomenon, we have

A = −




0 −1

c11
a1

b1
a1
− 1


 . (3.22)

whose characteristic function corresponding to θ is

θ2 +
b1 − a1

a1

θ +
c11

a1

= 0. (3.23)

Plugging the original coefficients in (3.12) into the above equation, we have

1

2
σ2(i0)θ(θ − 1) + [δX(i0)− δY (i0)]θ + δY (i0)− δ(i0) = 0 (3.24)

which admits two different real-valued roots under the condition (3.14). However, in
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the case that d ≥ 2, it is not easy to add constrains to all the coefficients to guarantee

real-valued eigenvalues for matrix A. This is also the reason that (3.12) may not admit

real-valued solutions. Based upon a lot of numerical examples, we find that real-valued

solutions exist in many cases, which are not merely confined to the condition (3.14). In the

next section, we shall show by examples how this solving procedure works and illustrate

the effects of some main parameters on the solution.

4 Numerical Result

In this section we give several examples in three subsections to illustrate our result.

In all the following examples, the market mode is divided as ”bullish” and ”bearish”

two regimes, which corresponds to regime 1 and regime 2 in M = {1, 2}, respectively.

Vj(α; λ1, λ2, i0) for j = 1, 2 are calculated based on the solving method for (3.12), which

is roughly stated in the latter part of the Section 3. Specifically, it follows from the

equivalence of (3.12) and (3.15) that

ai =
1

2
σ2(i),

bi = δX(i)− δY (i),

cii = δY (i)− δ(i) + qii,

cij = qij, j 6= i

(4.1)

with i, j = 1, 2. Plugging all the parameters above into matrix A (see (3.21)) and calcu-

lating the corresponding eigenvalues θi (assume they are real-valued) and eigenvectors ηi

for i = 1, ..., 4, we have

H(s) =
4∑

i=1

Cie
θisηi, (4.2)

15



where constants Ci can be calculated through conditions (3.2)–(3.5). Remember that

g1(s) and g2(s) are the first two-dimension of H(s), and α = es, then the original solution

for (3.15) corresponding to α can be solved.

4.1 The effect of barriers λ1 and λ2

Generally, the barrier λ1 and λ2 are given beforehand in a pension funding plan. Heuris-

tically, whatever the market mode would be when the plan is launched, the larger the

λ1, the more amount of money needs to be provided by the sponsor to guarantee the

lower bound, that is, the larger the V1(α; λ1, λ2, i) for i = 1, 2. Meanwhile, if λ2 maintains

unchanged, since the sponsor injects more funds into the plan, it is more likely to pay

out money to the sponsor than before, that is, the larger of V2(α; λ1, λ2, i) for i = 1, 2.

Similarly, the less the λ2, the larger amount will be paid to the sponsor, that is, the

greater of V2(α; λ1, λ2, i) for i = 1, 2. Meanwhile, if λ1 maintains unchanged, since more

money is paid back to the sponsor, it is more ”tough” for the value process to stay above

λ1, that is, more funds is needed to guarantee the lower bound, which results in a larger

V1(α; λ1, λ2, i) for i = 1, 2. This argument can be illustrated by the following example.

Example 4.1. Let ρ = 0.3, λ1 = 0.9 and λ2 = 1.2. All the other parameters that related

to regime switching are listed in Table 1.

Table 1

δ µX σ2
X µY σ2

Y transition rate

regime 1 (bullish) 0.3 0.4 0.18 0.2 0.09 q12 = 0.4

regime 2 (bearish) 0.1 0.12 0.09 0.06 0.04 q21 = 0.6

Calculating based on (2.7), (2.8) and (2.9), the defined parameters are
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Table 2

δX δY σ

regime 1 (bullish) 0.49 0.245 0.1936

regime 2 (bearish) 0.165 0.08 0.08

Based on equations (4.1), plugging all the parameters above into matrix A in (3.21), the

corresponding eigenvalues and eigenvectors can be derived. Following the steps stated at

the beginning of this Section, we have

V1(α; 0.9, 1.2, 1) = −0.0022α3.7105 + 0.0056α−4.7059 + 3.7802α0.3187 + 1.0179α−1.6624,

V2(α; 0.9, 1.2, 1) = −0.0028α3.7105 + 0.0070α−4.7059 + 8.1545α0.3187 + 1.2381α−1.6624,

V1(α; 0.9, 1.2, 2) = 0.0078α3.7105 − 0.0139α−4.7059 + 3.7607α0.3187 + 1.1039α−1.6624,

V2(α; 0.9, 1.2, 2) = 0.0101α3.7105 − 0.0173α−4.7059 + 8.1124α0.3187 + 1.3426α−1.6624,

(4.3)

which are illustrated by Figure 2. Since larger α will result in less supplementary fund to

guarantee the lower barrier L1(t) and more likely to pay back the ”overflow” of L2(t) to

the sponsor, which are equivalent to the less V1(α; λ1, λ2, i0) and the larger V2(α; λ1, λ2, i0).

This prospective judgement can be verified by the decreasing trend of V1(α; 0.9, 1.2, i0)

and the increasing trend of V2(α; 0.9, 1.2, i0) for i0 = 1, 2 in Figure 2.

As for the effects of different barriers on the result, we plot in Figure 3 four cases for

comparison. In Figure 3, we take the subplots (I) and (II) as reference case, in which

λ1 = 0.9 and λ2 = 1.2. All of the four subplots in each column have the same starting

market mode i0 and the same initial asset values, which make the comparison more clear.

The upper lines in all of the eight subplots are V2(α; λ1, λ2, i0) and the lower ones are

V1(α; λ1, λ2, i0). In (III) and (IV), we adjust λ1 to 0.95 (larger) with λ2 unchanged, then
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Figure 2. Illustration of Results (4.3)
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Figure 3. Illustration of Barriers Effect for Example 1
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we find both V1(α; λ1, λ2, i0) and V2(α; λ1, λ2, i0) become larger than in (I) and (II). In (V)

and (VI), we adjust λ2 to 1.1 (smaller) with λ1 unchanged, which also results in larger

values of both V1(α; λ1, λ2, i0) and V2(α; λ1, λ2, i0). In (VII) and (VIII), both λ1 and λ2

are adjusted, which results in even larger values of V1(α; λ1, λ2, i0) and V2(α; λ1, λ2, i0)

than the former three cases. These observations illustrate our argument appropriately.

Remark 4.1. An interesting special case in Example 1 is there is no need to pay the

dividend (to the sponsor), which can be seen as the limiting case when λ2 goes to +∞.

Then V2(α; λ1, λ2, i0) for i0 = 1, 2 go to 0, and the expected present payment to guarantee

λ1 = 0.9 in two regimes are plotted in (I) in Figure 4. Note that α ∈ [0.9, +∞) in this

case. Similarly, if no further support is needed from the sponsor after the pension plan

is launched, let λ1 = 0, then α ∈ (0, 1.2] and V1(α; λ1, λ2, 1) = V1(α; λ1, λ2, 2) = 0, the

corresponding expected dividend is plotted in (II) in Figure 4.

19



0.9 1 1.1 1.2
4

4.5

5

5.5

6

6.5

7

7.5

8

α

Figure 5. To Guarantee Lower Barrier λ
1
=0.9 for Example 2

 

 
V

1
(α;0.9,1.2,1)

V
1
(α;0.9,1.2,2)

V
11

(α;0.9,1.2)

V
12

(α;0.9,1.2)

4.2 The effects of regime switching

In this subsection, we are concerned with the regime switching aspect of the model. With

all the parameters the same as Example 1, we study in Example 2 the present expected

value to guarantee the lower barrier λ1 = 0.9 in purely bullish case and purely bearish

case separately, which are denoted by V11(α; 0.9, 1.2) and V12(α; 0.9, 1.2), respectively.

Example 4.2. Let q11 = q12 = q21 = q22 = 0 in Example 1 and all the other param-

eters unchanged. Equations system (3.12) turns out to be (3.13), which can also be

solved by the same method as in Example 1. To make a convenient comparison, we plot

the regime switching case V1(α; 0.9, 1.2, 1) and V2(α; 0.9, 1.2, 2) in Figure 5 together with

V11(α; 0.9, 1.2) and V12(α; 0.9, 1.2).

We observe in Figure 5 that the purely bullish case the V is the smallest among the

four cases. That is because in a bullish market mode, the asset value process is less

likely to fall below λ1, which indicates a less payment from the sponsor. Conversely, in a

bearish market mode, more support is needed to guarantee λ1. However, when the risk of

a bad economic situation exists, the sponsor has to increase the support. Then with the
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same starting market mode i0 = 1, the value V1(α; 0.9, 1.2, 1) is larger than V11(α; 0.9, 1.2).

With i0 = 2, the value V1(α; 0.9, 1.2, 2) is even larger. Moreover, due to the similar reason,

V12(α; 0.9, 1.2) has the largest value among all the four cases.

4.3 Optimal dividend

From the sponsor point of view, an interesting problem is how to optimize the amount

paid back to the sponsor. We can think of the payment as dividend, so the problem is

related to the optimal dividend problem. De Finetti (1957) studies the optimal dividend

problem under a simple discrete model. Subsequently, Gerber (1972). Recently, the topic

was discussed extensively by many authors. Some recent papers are Asmussen and Taksar

(1997), Højgaard and Taksar (1999), Siegl and Tichy (1999), Højgaard (2002) and Gerber

and Shiu (1998, 2004). All these authors study the problem in arithmetic growth models

for assets and liabilities. Gerber and Shiu (2003) study the problem when the asset value,

the liability value, and the dividend barrier are modeled by geometric Brownian motion.

The problem is formulated as follows. Consider a company that pays dividends to its

sponsors. The market mode space is still defined by M = {1, 2, ..., d}. The asset value

process is modeled by A(t) in (2.2) and the liability value process is modeled by L1(t) in

(2.6) (not L(t) here). We adopt a barrier strategy for paying dividends. When A(t) reaches

the barrier L2(t) in (2.6), the overflow are paid out as dividends. As a consequence, the

original asset values process turns out to be a modified asset value process, which still be

denoted by Am(t). The dividends is paid out continuously until the company is ”ruined”–

the time that Am(t) falls below the liability value process L1(t). We are interested in

the expectation of the present value of dividends paid out until ruin time, which are

denoted by V (α; λ1, λ2, i0) (different meaning from the abbreviated version in Section 3)
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for different starting market mode i0 ∈M.

Since L1(t), L2(t) and A(t) are all geometric Brownian motions, similar to Vj(α; λ1, λ2, i0)

for j = 1, 2, the function V (α; λ1, λ2, i0) is also homogeneous of degree one with respect

to α, λ1 and λ2. Based on the same calculation described in Section 3, we have the

same system of ordinary differential equations (3.13) for V (α; λ1, λ2, i0). Because L1(t)

becomes the ruin barrier and L2(t) is still be the dividend barrier, the boundary condition

at α = λ1, λ2 is

V (λ1; λ1, λ2, i0) = 0, (4.4)

V ′(λ2; λ1, λ2, i0) = 1, (4.5)

for i0 ∈ M. Then the solution to (3.13) based on the above boundary conditions is

unique. The calculation based on all the parameters is the same as Example 4.1, we

plot the solution in Figure 6. We can see that with any initial market mode and with

more initial asset value α, it is more likely to pay out dividends, that is, V (α; λ1, λ2, i0)

is increasing with respect to α under any i0 ∈M.

In practice, the company has to decide what the λ2 is based on its time zero liability

value λ1 and asset value α. A natural idea is to choose λ2 in order to maximize the

expected present value of all future dividend payments starting from some market mode.

That is, with fixed α, λ1 and i0, we choose λ2 ∈ [α, +∞) to maximize V (α; λ1, λ2, i0).

In this case, V (α; λ1, λ2, i0) can be seen as a function with respect to the single variable

λ2. However, this optimal λ2 may not exist. We plot an example in Figure 7 for the

parameters given in Example 4.1. We can see that with α = 1 and λ1 = 0.9, the value

V (1; 0.9, λ2, i0) for i0 = 1, 2 keeps increasing with respect to λ2. That is, we can not

22



0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

α

Figure 6. When λ
1
=0.9 Is Set As the Ruin Barrier

 

 
V(α;0.9,1.2,1)
V(α;0.9,1.2,2)

find a finite λ2 to reach the supreme of the function, which means that there is no need

to pay any dividends. This can be explained by observing in Table 1 that the asset

growth rate µX is higher than the force of interest δ in both regimes i0 = 1, 2, then it

is more profitable that all earnings are reinvested in the company’s assets. As a result,

the increasing profit brings in more chance to pay dividends, which corresponding to an

increasing V (α; λ1, λ2, i0) for i0 = 1, 2.

By varying some of the parameters in Example 4.1, we find some cases in which the

optimal λ2 is finite. This is illustrated in the next example.

Example 4.3. Let λ1 = 0.9, α = 1, µX(1) = 0.3, δ(1) = 0.5 and all the other parameters

are the same as that in Example 4.1. We plot V (1; 0.9, λ2, i0) for i0 = 1, 2 in Figure 8,

which shows clearly that the optimal λ2 that maximizes the function is finite.
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5 Conclusion

In this paper, we have extended the model in Gerber and Shiu (2003) to a regime switching

version. By adapting the techniques in Gerber and Shiu (2003), systems of differential

equations satisfied by Vj(α; λ1, λ2, i0) for j = 1, 2 are derived. We have discussed the

methodology of how to solve this system of differential equations. We use some numerical

examples to illustrate the ideas and methodology.

How to match the asset and liability is one main concern in many asset liability man-

agement problems. The problem becomes difficult if the model is more complex and

reasonable. There are many interesting problems in this area. We will investigate the

problem under a jump-diffusion mode. How to make the model more realistic and some

practical aspects of the results are interesting further research topics.
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