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Abstract—In multigigahertz integrated-circuit design, the extra
energy loss caused by conductor surface roughness in metallic
interconnects and packagings is more evident than ever before
and demands explicit consideration for accurate prediction of
signal integrity and energy consumption. Existing techniques
based on analytical approximation, despite simple formulations,
suffer from restrictive valid ranges, namely, either small or large
roughness/frequencies. In this paper, we propose a robust and
efficient numerical-simulation methodology applicable to eval-
uating general surface roughness, described by parameterized
stochastic processes, across a wide frequency band. Traditional
computation-intensive electromagnetic simulation is avoided via
a tailored scalar-wave modeling to capture the power loss due to
surface roughness. The spectral stochastic collocation method is
applied to construct the complete statistical model. Comparisons
with full wave simulation as well as existing methods in their
respective valid ranges then verify the effectiveness of the proposed
approach.

Index Terms—Interconnect, power loss, rough surface,
scalar-wave modeling (SWM), spectral stochastic collocation.

I. INTRODUCTION

SURFACE ROUGHNESS in metal conductors of intercon-
nects and microelectronic packagings is sometimes due to

process variations in fabrication and, more frequently, artificial
roughening processes, e.g., electronic deposition and chemical
etching, to promote interfacial adhesion between dielectrics
and conducting materials. Fig. 1(a) shows the cross section
of a metal trace with roughness around it, while Fig. 1(b)
shows an atomic-force microscopy (AFM) for the top view
of a printed circuit board (PCB) interconnect demonstrating
the 3-D rough surface. It has been reported by measurements
that the surface-profile variation in roughened copper foil can
cause an increase of resistivity by a factor of two to three in
microwave frequencies [1]. Recent experimental studies can
be found in [2] and [3]. Such impact on resistivity breaks
the predictive capacity of classical high-frequency relationship
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Rf ∝ √
f for the frequency-dependent resistance Rf . With the

ever-increasing signaling rate, particularly in offchip communi-
cations of multiprocessor architectures, an accurate estimation
of rough-surface effect is imperative for improved prediction of
insertion loss, signal integrity, and thermomechanical reliability
in interconnect-aware design methodologies and tools.

Attempts to evaluate the roughness-induced loss by incor-
porating surface variations directly into specified field solvers
have been made, e.g., in [4]. However, the computation is
highly expensive due to the huge problem size resulting from
numerical simulation with surfaces of the whole structure. A
more viable way is to scale the conducting loss by a frequency-
dependent factor that quantifies the local impact of surface
roughness, which can as well be used in ordinary simulators to
scale the reference values of resistance and inductance extracted
from smooth-surface conductor to generate more accurate sim-
ulation models. In addition, the current-density-independent
loss-scaling factor can be reused for different interconnect
structures with similar rough-surface characteristics, e.g., those
produced by the same processing techniques.

Most existing techniques simply calculate this factor in a
closed-form manner. For instance, the guideline model in indus-
trial practice, Hammerstad formula, estimates the loss-scaling
factor for 2-D rugged structures by [5]

Pr

Ps
=
[
1 +

2
π

tan−1

(
1.4

(σ
δ

)2
)]

(1)

where Pr and Ps denote the power loss of a rough-surface con-
ductor and its smooth-surface counterpart, respectively. Here,
σ is the standard deviation of surface height, δ =

√
ρ/(πfμ) is

the skin depth, ρ is the conductor resistivity, and μ is the free-
space permeability. Since only σ of the surface characteristics is
considered, (1) is subjected to frequent modifications to match
field-measurement data from different environments where sur-
face roughness depends on more than a single parameter.

More practical models for 3-D surface roughness include
the second-order small perturbation method (SPM2) [6] (which
models the surface roughness by stochastic processes) and the
hemispherical boss modeling (HBM) [7] (which models surface
irregularities as size-controlled hemispherical bosses distrib-
uted, regularly or randomly, on a flat plane). Nevertheless,
the efficiency gain of closed-form models comes at the cost
of applicability, namely, both SPM2 and HBM suffer from
restricted valid regions. More specifically, SPM2 requires the
root mean-square (rms) height of roughness, and the surface
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Fig. 1. (a) Micrograph of the cross section of a metal trace. (b) Top view of a 3-D rough surface in a PCB interconnect scanned by AFM.

Fig. 2. Valid regions of SPM2 and HBM w.r.t. the ratio of roughness to skin depth.

slope are small to validate the presumption of “perturbation,”
which limits its applicability to small roughness and low-to-
medium clock frequencies. To the opposite of SPM2, HBM
primarily works under the scenarios with large roughness or
very high frequencies, where the skin depth is small compared
with the radii of the bosses. Such restrictiveness demands a
careful selection of proper closed-form techniques for given
scenarios, and undesirable, or even impossible, model switches
if simulation domain exceeds the valid region of a single
technique. Fig. 2 roughly shows the corresponding valid regions
of SPM2 and HBM w.r.t. the ratio of roughness and skin depth
for fixed roughness with varying and fixed frequencies with
varying roughness, although, in general, there is not a solid
boundary for one’s valid region and the validity of a given
model has to be judged within the context. Consequently, the
figure suggests that there is still a lack of efficient simulation
methods for evaluating surface-roughness loss at the interme-
diate frequency/roughness ranges where the skin depth has the

same order of dimension as the roughness, which is often the
case in practice.

Furthermore, surface roughness is usually regarded as a
source of variation in stochastic analysis of interconnect and
packaging simulation. However, the closed-form techniques
can only calculate the mean value of loss-scaling factor and
cannot be used to compute the standard deviation or com-
plete distribution of the factor. This makes it difficult, if not
impossible, to generate models compatible with postprocess-
ing stochastic-model order reduction and statistical timing-
analysis tools [8], [9], most of which require the availability of
high-order statistics. A numerical-evaluation approach of loss-
scaling factor allowing the acquisition of second-order variance
has been proposed by [10] using direct stochastic integral
equation (IE). However, the technique is only applicable to 2-D
surface model assuming a constant magnetic field on the sur-
face, which largely restricts its accuracy, since practical prob-
lems are generally 3-D with dynamic magnetic field.
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To address these problems, namely, lack of generally valid
higher order statistical models, we employ a numerically robust
methodology, called scalar-wave modeling (SWM), to simulate
the impact of 3-D surface roughness with diverse roughness
patterns over a wide frequency range. While the preliminary
idea of SWM for rough-surface loss analysis was first proposed
in [11] by us, it is further developed into a more accurate
and usable form utilizing triangular discretization of rough
surfaces. New results are presented regarding the limitations
of SPM2 and HBM, and comparison against electromagnetic
(EM) vectorial modeling confirms the efficacy of the SWM
approach. In particular, in SWM, a rough surface is modeled by
a parameterized stochastic process. The complicated EM prob-
lem is transformed into a simplified scalar representation by
regarding the EM wave as a scalar energy flux. In this way, the
extra loss caused by surface roughness can be approximated by
the amount of energy absorbed by the rough surface upon which
the scalar flux is incident. The surface IEs thus established
are numerically solved by the method of moments (MOM).
An efficient stochastic solver, spectral stochastic collocation
method (SSCM) [12], is applied to generate the second-order
statistical model of the loss-scaling factor so that conventional
(expensive) Monte Carlo (MC) simulations can be avoided.

This paper is organized as follows. Section II reviews the
characterization of a 3-D random rough surface via stationary
stochastic processes and the formulas of SPM2 and HBM.
Formulation and solution of the proposed SWM are detailed
in Section III. Verification against vectorial EM modeling is
given in the same section. Numerical comparisons with existing
techniques in their respective valid regions are then conducted
in Section IV to verify the effectiveness of SWM. Finally,
Section V draws the conclusion.

II. BACKGROUND REVIEW

For the 3-D random rough surface of a conductor, we
describe the surface height h(r̄⊥) as a stationary stochastic
process, where r̄⊥ = (x, y) falls on the mean plane. A
stochastic process is generally characterized by the probability
density function (PDF) and the spatial correlation function
(CF) C(r̄⊥i, r̄⊥j). Without loss of generality, we use the
Gaussian PDF

PDF (h(r̄⊥)) =
1√
2πσ

exp
(
−h

2(r̄⊥)
2σ2

)
(2)

in this paper associated with different CFs. Here, σ is the
standard deviation, and the mean plane is on h = 0.

An important feature of this characterization is that the sto-
chastic process parameters, e.g., σ and C, can be quantitatively
extracted from a real interconnect surface by measuring surface
height as a function of position [13]. Subsequently, different
surface roughness, in reality, can be reproduced and simulated
by properly parameterizing the stochastic processes. Fig. 3
shows a simulated 3-D random rough surface with the common
Gaussian CF, C(d) = σ2 exp(−d2/η2), where d = |r̄⊥i − r̄⊥j |
and η is the correlation length. In general, a larger σ or a smaller
η implies a rougher surface.

Fig. 3. Simulated 3-D random rough surface with Gaussian CF and
σ = η = 1 μm.

The closed-form SPM2 and HBM techniques are succinctly
reviewed. On one hand, SPM2 [6] assumes small surface height
and slope, and uses the aforementioned stochastic surface mod-
eling for calculating the mean value of loss-scaling factor by

Pr

Ps
=1 +

2σ2

δ2
− 2
δ

∫∫
dkx dkyW (kx, ky)Re

√
2j
δ2

− k2
x − k2

y

(3)

where the spectral density function W (kx, ky) is the Fourier
transform of the CF. On the other hand, HBM [7] models
surface roughness as conducting protrusions and calculates the
loss-scaling factor by

Pr

Ps
=

∣∣∣Re
[
Ω 3π

4k2
1

(α(1) + β(1))
]∣∣∣+ μωδ

4 (Atile −Abase)
μωδ
4 Atile

(4)

where ω = 2πf , k1 = ω
√
με1 is the wavenumber, and Ω =√

μ/ε1 (ε1 being the permittivity) denotes the wave impedance
of the upper medium. Here, α(1) and β(1) are the approximated
scattering coefficients which can be analytically evaluated only
when δ is small compared with the size of the protrusion.
Atile and Abase are the tile areas of the plane surrounding
the protrusion and the base area of the hemisphere with equal
volume to the protrusion, respectively.

SPM2 generally breaks down as the dimensions of rough-
ness increase, particularly, the slope of rough surface becomes
large. HBM is a gross assumption as surface roughness in real
interconnects is substantially diverse, which is difficult to be
modeled by simple bosses (see Section IV where numerical
examples demonstrate the inadequacy of the hemispherical
modeling in HBM). Moreover, HBM becomes invalid when
δ is close to or greater than the height of protrusion, since,
in this case, the energy dissipated by a protrusion is even
smaller than that by a flat plane with an area equal to the
base of the protrusion [7]. Numerical examples are given in
Section IV to confirm the universal applicability of the pro-
posed SWM approach versus the restrictive natures of SPM2
and HBM.
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III. SWM

In principle, EM wave theory can be used to rigorously
determine the field scattered or absorbed by a conducting body,
which has been extensively studied for decades [14]. Direct
application of numerical EM simulation to predict surface-
roughness loss in microscopic interconnects, however, faces the
following difficulties.

1) The wavelength in dielectrics (on the order of centime-
ters) is large compared with the dimension of a conductor
surface (on the order of micrometers). This corresponds
to the well-known low-frequency problem in traditional
EM scattering from metallic objects, in which the nu-
merical solution of IE can become unstable due to the
dominant impact of hypersingular integral operator [15].
Remedies of such problem include using high-order loop
star basis or modifying the integral operators, all of which
will significantly increase the complexity of calculation.

2) The computation is intensive if direct EM formulation is
applied due to its vectorial nature, particularly when a fine
discretization of the surface is needed to properly capture
the details of surface variation. The situation becomes
worse if the low-frequency problem (requires higher
order basis or operator) and random surface modeling
(requires multiple sampling) are taken into account.

To balance the cost and performance, we choose scalar-wave
theory instead of EM wave theory to formulate the energy loss
caused by surface roughness in interconnects and packagings.
SWM has long been used as a simplifying substitute for vecto-
rial EM wave to predict wave behavior and observe important
phenomena in scattering problems [16]. It has been shown that
the results of SWM are well correlated to that from EM wave
modeling in many cases, particularly when the detailed field
distribution is not required [17].

To formulate the problem with SWM, we consider a general
two-medium case, where the upper half-space of a rough inter-
face S is filled by dielectrics (medium 1) with electrical param-
eters ε1, μ, and wavenumber k1 as in (4), and the lower half by
conducting material (medium 2) with ρ, μ, and k2 = (1 + j)/δ.
One considers a scalar plane wave normally impinging on the
rough surface ψin(r̄) = exp(−jk0z), where r̄ = (x, y, z); then
the wave functions ψi, i = 1, 2 in both media obey the 3-D
Helmholtz equation

(∇2 + k2
i

)
ψi = 0. (5)

On applying the Green’s second identity, two coupled surface
IEs can be established [17]

∫∫
S

ds′n̂′ · [G1(r̄, r̄′)∇′ψ1(r̄′) −∇′G1(r̄, r̄′)ψ1(r̄′)]

+ ψ1(r̄) = ψin(r̄), r̄, r̄′ ∈ S (6a)∫∫
S

ds′n̂′ · [G2(r̄, r̄′)∇′ψ2(r̄′) −∇′G2(r̄, r̄′)ψ2(r̄′)]

− ψ2(r̄) = 0, r̄, r̄′ ∈ S (6b)

where n̂′ is the unit surface normal vector pointing outward at
r̄′, ∇′ is the gradient w.r.t. r̄′, and Gi, i = 1, 2 is the scalar
Green’s function in the ith medium with

Gi(r̄, r̄′) =
exp (jki|r̄ − r̄′|)

4π|r̄ − r̄′| . (7)

It should be noted that, unlike electric or magnetic field, the
scalar field ψ (including ψ1, ψ2, and ψin) does not have a
physical meaning and, intuitively, can be interpreted as the
velocity potential of a scalar energy flux. Analogously, one can
view the scalar flux as a sound wave in which ψ corresponds
to the sound pressure (linearly proportional to the acoustic-
velocity potential) [18].

The essence of our formulation is to calculate the amount
of energy absorbed by a rough surface subjected to a given
incident acoustics-like scalar flux, which serves as an approxi-
mation of the real EM energy absorbed by the same surface. The
purpose of such transformation is to achieve a balance between
the extreme efficiency of closed-form techniques and the ex-
treme accuracy of rigorous EM simulation, leading to a tradeoff
that enjoys simple implementation and fast computation while
still preserving sufficient simulation capacity for generic cases.

A. Continuous Boundary Condition for Scalar Waves

To solve (6), an appropriate boundary condition must be
established to relate the field unknowns in the two media.
Considering our goal to approximate an EM wave by a
scalar wave, this boundary condition should properly model
the physical behavior of a real EM field transmitting from
dielectrics into a highly conducting medium. Since conven-
tional boundary conditions, e.g., Dirichlet (ψ = 0), Neuman
(n̂ · ∇ψ = 0), or acoustic impedance (aψ + bn̂ · ∇ψ = 0), are
insufficient to capture the continuity of EM field across the
rough boundary, a new boundary condition tailored for SWM
is derived in the following by exploiting the energy equivalence
between EM wave and acoustic wave as a representative of
scalar wave.

As indicated in [6] and [7], the distribution of EM field
near the surface of practical quasi-transverse EM interconnect
structures is similar to that induced by an incident transverse-
magnetic wave. Since the wavelength in dielectric is much
larger than the scale of surface roughness, the magnetic field H̄
very close to the surface can be approximated by its tangential
component H̄t. If we associate ψ with a physical meaning as
the magnitude of H̄t, the following relationship for H̄t, as well
as the tangential electrical field Ēt holds:

H̄ ≈ H̄t = t̂Hψ (8)

Ēt = t̂E

[
1
jωε

(υψ − n̂ · ∇ψ)
]

(9)

where t̂H and t̂E refer to the unit tangential vectors for H̄
and Ē, respectively, and υ = |n̂× n̂× (∇× t̂H)|. The detailed
derivation of (9) is given in the Appendix. The validity of
such association can be shown by calculating the approximated
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intensity of EM energy (Poynting vector) normal to the rough
surface by

S̄EM ≈ n̂ · 1
2
Re

{
Ēt × H̄∗

t

}
=

1
2
Re

{
n̂ · (t̂E × t̂H)

[
1
jωε

(υψ + n̂ · ∇ψ)ψ∗
]}

=
1
2
Re

{
1
jωε

[υψψ∗ + ψ∗(n̂ · ∇ψ)]
}

=
1
2
Re

{
1
jωε

[ψ∗(n̂ · ∇ψ)]
}

(10)

and recognizing its consistency with the acoustic intensity
normal to the rough surface calculated by [18]

S̄Acous = n̂ · 1
2
Re

{
p∗

1
jωρm

∇p
}

=
1
2
Re

{
1

jωρm
p∗(n̂ · ∇p)

}
(11)

where p refers to the sound pressure and ρm the material density
of the medium. Here, we assume ε is real. More specifically,
it means that with the equivalence between ψ and |H̄t| at the
boundary, the intensity of energy flux of an EM wave can be
well approximated by that of a scalar wave. Note that the earlier
derivation is only valid for regions very close to the boundary,
and, for other regions, the Ēt and H̄t in (10) should be replaced
by Ē and H̄ , respectively. Finally, recalling the continuity of
tangential fields across the boundary H̄t1 = H̄t2, Ēt1 = Ēt2,
we have the following boundary conditions for ψ and n̂ · ∇ψ:

ψ1(r̄) =ψ2(r̄) (12a)

n̂ · ∇ψ1(r̄) = (1 − γ)υ(r̄)ψ2(r̄) + γn̂ · ∇ψ2(r̄) (12b)

where γ = ε1/ε2 = −jωε1ρ.

B. Doubly Periodic Surface Assumption

Equation (6) should be fundamentally solved on the whole
ensemble of realistic conductor surfaces, which, however, is
computationally prohibitive. However, significant simplifica-
tion is achievable via exploiting the particular properties of
rough-surface problems in interconnect and packaging simula-
tions. There are three important physical observations.

1) The impact of surface roughness on resistive loss is
local, i.e., mutual coupling between surface roughness on
separate conductors or different surfaces of one conductor
is negligible.

2) The roughness is globally uniform for conductor in the
same layers such that a global factor of loss enhancement
can be obtained from local analysis. For nonuniform (e.g.,
piecewise-uniform) rough structures, local loss-scaling
factors can be determined and submitted to 2-D field-
solvers to obtain self-consistent parasitic parameters [13].

3) The spatial correlation of roughness is small compared
with the geometry of conductor surfaces, which means
that the surface contains, for random modeling, many
peaks and valleys, or for HBM, a large number of bosses.
This has been confirmed by physical measurements [7].

In light of these observations, a doubly periodic condition
[17] is applied to restrict the investigation domain to within a
small patch of the whole surface by enforcing f(x+ pL, y +
qL) = f(x, y), where L is the periodical length and p and q are
integers. Note that such an assumption is only valid for surface-
based local extraction of global factor and does not apply to
global simulation involving volume domain as in [4]. Recalling
the continuity relation (12), (6) becomes

ψ(r̄)+
∫
L2

dr′
[(

−∂G
P
1 (r̄, r̄′)
∂n̄′

+ (1 − γ)υ(r̄′)GP
1 (r̄, r̄′)

)
ψ(r̄′)

+ γGP
1 (r̄, r̄′)u(r̄′)

]
= ψin(r̄) (13a)

ψ(r̄)+
∫
L2

dr′
[
∂GP

2 (r̄, r̄′)
∂n̄′

ψ(r̄′) −GP
2 (r̄, r̄′)u(r̄′)

]
= 0

(13b)

where L2 denotes the investigation patch with an area of L×L,

ψ=ψ1 =ψ2, and u=
√

1+f2
x +f2

y n̂·∇ψ2 with fx =∂f/∂x.

The periodic Green’s function and its normal derivative are

GP
i =

∞∑
p=−∞

∞∑
q=−∞

exp (jki|r̄ − r̄′ − x̂pL− ŷqL|)
4π|r̄ − r̄′ − x̂pL− ŷqL|

(14a)
∂GP

i (r̄, r̄′)
∂n̄′

=
√

1 + f ′x
2 + f ′y

2n̂′ · ∇′GP
i . (14b)

The periodic Green’s function in (14) can be efficiently
computed by the Ewald method [19], which requires very few
terms to converge.

Unlike the simplifying rectangular patches used in [11],
plane triangular patches are adopted here to discretize the
rough surface, which is more capable of conforming to rough
surface with arbitrary curvatures and, thus, helps to improve the
accuracy for large roughness. The IE (13) is solved by MOM
with point matching, which results in the following matrix
equation:

ZJ = Jin (15)

where Z =
[
A1 + (1 − γ)B1V γB1

A2 B2

]
, J =

[
Ψ
U

]
and

Jin =
[

Ψin

0

]
. The details of the matrix elements in Ai, Bi,

and V are shown in (16)–(18), respectively

Ai(m,n) =

{
1
2 + (−1)i

∫
Δsm

dr
∂GP

i (r̄m,r̄m)

∂n̄m
, m = n

(−1)i ∂GP
i (r̄m,r̄n)

∂n̄n
Δsn, m �= n

(16)

Bi(m,n) =
{

(−1)i+1
∫
Δsm

drGP
i (r̄m, r̄m), m = n

(−1)i+1GP
i (r̄m, r̄n)Δsn, m �= n

(17)

V (m,n) =
{ ∣∣n̂m × n̂m × (∇× t̂Hm

)∣∣ , m = n
0, m �= n

(18)

where Δsn is the area of the nth triangular patch projected on
the mean plane.
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Equation (15) can be efficiently solved in O(N log(N))
complexity, where N is the number of discretized elements,
with numerical solvers such as the fast-Fourier-transform-
based iterative method [20] and the UV-multilevel partitioning
method [21]. Once the scalar surface unknowns ψ and u are
solved, the energy of the scalar wave absorbed by the conductor
beneath the investigation patch is computed in an analogous
form as (11)

Pr =
1
2

∫∫∫
V

∇ψ(r̄)∇ψ∗(r̄) dv

=
1
2

∫∫
∂V

Re
{
ψ∗(r̄)

∂ψ(r̄)
∂n̂

}
ds

=
1
2

∫∫
S

Re
{
ψ∗(r̄)

∂ψ(r̄)
∂n̂

}
ds

=
1
2

∫∫
L2

Re {ψ∗(r̄)u(r̄)} dr (19)

where the second equality results from applying the Green’s
first identity and (5) and the third equality is due to the fact that
ψ vanishes at the bottom surface, and the contributions from
opposite side walls cancel out each other under the doubly pe-
riodic assumption. For a smooth conducting plane subjected to
the same incident wave, we assume the well-known exponential
decrease of ψ w.r.t. the penetration depth

ψ(r̄) = ψ0 exp(k2z) (20)

where ψ0 is the value of ψ at z = 0 and, based on (16), should
be 2|ψin|. In view of (19) and (20), the energy loss for the
smooth-surface conductor is then given by Ps = L2/(2δ).

C. Comparison With Vectorial EM Modeling

The rigorous surface-integral formulation based on EM the-
ory of rough-surface scattering from penetrable objects can
be found in a number of literature, e.g., [22]. The surface
is generally discretized by RWG triangular elements, each of
which is associated with two vectorial unknowns, usually the
electric and magnetic surface-current densities. The size of the
resultant matrix equation, if converted to corresponding scalar
equations, is roughly 6N × 6N , where N is the number of
discretized triangular patches. If the low-frequency problem
is taken into account, the common remedies, e.g., high-order
basis function or high-order operator, will significantly increase
the computational cost. In contrast, SWM gives a matrix with
size of only 2N × 2N , leading to a significant reduction in
solution time and memory storage. Since no hypersingular
operator, i.e., second derivative of Green’s function, appears in
(6), the SWM formulation is free of the involved low-frequency
problem and, thus, avoids the excessive complexity introduced
by the corresponding remediation. In addition, SWM also
enjoys much simpler implementation and less overhead than
EM modeling.

Fig. 4. SWM versus EM model for Gaussian CF (σ = η = 1 μm).

TABLE I
CPU TIMES OF SWM AND CCIE

To validate the usage of SWM to approximate vector wave
model, a recently developed EM wave model, called current
and charge IE (CCIE) [23], is implemented to compute the
loss-scaling factor. CCIE avoids the low-frequency breakdown
by using electric- and magnetic-charge densities as unknowns,
in addition to the traditional surface current densities, i.e., the
unknown vector is [εn̂ · Ē, n̂× Ē, n̂× H̄, μn̂ · H̄]T . CCIE also
leads to well-balanced systems for a wide frequency range by
a dedicated normalization scheme, which renders it a suitable
verification benchmark for SWM. The system of equations
are established based on the electric field integral equation
(EFIE) and magnetic field integral equation (MFIE) using the
periodic Green’s function. The vector surface-current densities
(n̂× Ē, n̂× H̄) are expanded with the RWG basis functions,
and the scalar charge densities (εn̂ · Ē, μn̂ · H̄) use piecewise
constant-basis functions. Once the surface-current densities are
solved, the ohmic loss in the conductor is computed by

1
2

∫∫
L2

Re

⎧⎨
⎩ n̂× Ē(r̄) · (n̂× H̄∗(r̄) × n̂

)
√
f2

x + f2
y + 1

⎫⎬
⎭ dr. (21)

In numerical experiments, SWM and CCIE are both em-
ployed to compute the frequency-dependent loss-scaling factors
for an individual rough surface generated with Gaussian CF
(σ = η = 1 μm) and discretized by triangular elements with
interval of η/8. For a fair comparison, both SWM and CCIE
use direct solver for the solution of matrix equations. As seen in
Fig. 4, SWM provides a fairly reasonable approximation to the
results from vector-wave modeling. The CPU times of SWM
and CCIE are shown in Table I with different problem sizes.
It can be seen that SWM is more than 60× faster than CCIE,
which can be attributed to its much smaller problem size and
less overhead.
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D. Spectral SSCM

Equation (15) is solved only for a deterministic surface, i.e.,
the surface heights and surface derivatives must be explicitly
given. If the surface roughness is modeled by a stochastic
process described in Section II, (15) becomes a stochastic IE
w.r.t. the N correlated random variables of surface height

Z(h̄)J(h̄) = Jin(h̄), h̄ = (h1, h2, . . . , hN ). (22)

MC simulation is widely used to solve (22) and, thus, the
rough-surface loss, by randomly sampling the solution space.
However, the number of samples might be prohibitively large
to guarantee convergence, e.g., 5000 sampling points may be
needed for convergence to within 1%. An efficient solver for
stochastic equation like (22) has been proposed in [4] that
computes the statistical model of surface unknown J via a
modified polynomial-chaos expansion and Neumann expan-
sion. Nevertheless, introduction of stochastic expansion to in-
dividual matrix elements in an equivalent sense modifies the
integral kernel in (13), which, in consequence, may destroy the
inherent structure of the system matrix and prevent the potential
numerical-acceleration techniques working exclusively for or-
dinary systems. Moreover, as the calculation of rough-surface
loss involves internal interaction between the subvectors of J
[cf. (19)], it is not straightforward to recover the statistical
model of final rough-surface loss from that of J , as the statistics
of the product of two correlated stochastic processes is much
more complicated than that of a single one.

In view of the aforementioned difficulties and the fact that
there are efficient ways to solve the regular IE for each de-
terministic surface sample, we choose to apply the spectral
SSCM [12] to compute the statistical model of rough-surface
loss. SSCM is free of the aforementioned difficulties owing to
its “sampling” nature, which does not alter the basic solution
mechanism in each individual solution [24]. The essence of
SSCM is to model the solution of stochastic IE as the homo-
geneous chaos (HC) expansion

Pr(ξ̄) ≈
k∑

|i|=0

ai1,...,iD
Hi1,...,iD

(ξ̄) (23)

where ξ̄ is a set of independent random variables of
D-length decorrelated from the original surface heights h̄ by
the Karhunen–Loeve (K–L) expansion. The stopping criteria of
K–L expansion is that the ratio between the sum of the first D
largest eigenvalues and that of all the eigenvalues of the CF is
larger than a user-defined value r, i.e.,

∑D
d=1λd/

∑N
d=1λd≥r.

Here, Hi1,...,iD
(ξ̄) is a D-variable polynomial chaos con-

structed according to the PDF of h̄ [25], which, for Gaussian
PDF, is a Hermite polynomial, and |i| = i1 + · · · + iD. Note
that in (23) k = 1 corresponds to the first-order modeling, and
k = 2 refers to the second-order modeling which is sufficient
for most physical processes. The coefficients of the HC expan-
sion are determined by the D-dimensional infinite integration

ai1,...,iD
=

+∞∫
−∞

dD ξ̄Pr(ξ̄)Hi1,...,iD
(ξ̄)PDF(ξ̄) (24)

Fig. 5. SWM versus SPM2 and Hammerstad formula for Gaussian CF
(σ = 1 μm, η = 1, 2, 3 μm).

which can be efficiently computed by the sparse-grid (SG)
quadrature [26]. Once the HC coefficients are determined, the
common statistical quantities, mean and variance, of Pr can be
easily calculated by

P̄r = a0,...,0

Var(Pr) =
k∑

|i|=1

a2
i1,...,iD

〈
(Hi1,...,iD

)2
〉

(25)

where 〈(Hi1,...,iD
)2〉 =

∫ +∞
−∞ dM ξ̄Hi1,...,iD

(ξ̄)PDF(ξ̄). The
major computational cost of SSCM lies in the solution of
(15) for the sampling points selected by SG quadrature,
to which the aforementioned efficient linear solvers are
applicable. Compared with MC simulation, SSCM can achieve
a second-order accuracy with much fewer sampling points.

IV. NUMERICAL RESULTS

In the following numerical experiments, we assume a con-
ductor with resistivity ρ = 1.67 μΩ · cm and a dielectric with
relative permittivity 3.7 of common silicon dioxide (ε1 =
3.7 × 8.854 × 10−12). The periodic length L is 5η, and the
discretized interval is η/8. The loss-scaling factors used for
comparisons with closed-form models are their mean values
computed by SSCM using r = 0.95 in K–L expansion. All
programming and simulation were done with Matlab on a
2.4-GHz 2-Gb-RAM PC.

A. Comparison With SPM2

We first compare SWM with SPM2 which is known to be
accurate for small roughness while invalid for large roughness.
In Fig. 5, results of SWM and SPM2 are shown for Gaussian CF
with various levels of roughness, i.e., σ is fixed at 1 μm, while
η varies from 1 to 3 μm. For the smoothest case (η = 3 μm),
the two methods are in almost perfect match. The deviation,
however, gradually grows as the degree of roughness increases
and becomes significant for the roughest case of η = 1 μm. We
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Fig. 6. Influence of the choice of periodic length (Gaussian CF with
σ = 1 μm, η = 2 μm).

Fig. 7. Simulated rough surface with the extracted CF (26).

also plot the results from the empirical Hammerstad formula
(1). As expected, (1) cannot differentiate these distinct cases as
they all have the same σ. The effect of using different periodic
lengths is shown in Fig. 6 with Gaussian CF, which justifies the
selection of L.

We further compare SWM with SPM2 using the CF

C(d) = σ2 exp
{
− d

η1

[
1 − exp

(
− d

η2

)]}
(26)

extracted from practical measurement [13]. A surface generated
with CF (26), which is illustrated in Fig. 7, is also continuous
as C ′(0) = 0, which implies that the surface will turn out to
be smooth if sufficiently zoomed in. The partial derivatives
of the surface also exist due to the existence of the second-
order derivatives of C(d) at d = 0 [27]. It has been shown in
[13] and [28] that under this roughness setting, SPM2 can give
an accurate prediction of surface-roughness loss. The testing
frequency is from 100 MHz to 10 GHz. As shown in Fig. 8,
there is a good agreement between SWM and SPM2. The
aforementioned two experiments suggest that SWM is accurate
for small roughness cases. Note that HBM is not applicable for
these scenarios as the skin depth generally exceeds the height
of surface roughness.

Fig. 8. SWM versus SPM2 with extracted CF (σ = 0.85 μm, η1 = 1.4 μm,
η2 = 0.53 μm).

To demonstrate the inapplicability of SPM2 for roughness
with large slope, the loss-scaling factor is plotted w.r.t. varying
σ ranging from 1 to 3 μm and varying the frequency ranging
from 1 to 10 GHz. The Gaussian CF is used with the correlation
length η fixed at 2 μm. Fig. 9(a) shows that for large roughness
(the right upper corner), the loss-scaling factors calculated by
SPM2 can go beyond three, which is physically impractical.
In contrast, Fig. 9(b) shows that SWM can correctly pre-
dict the saturation of loss-scaling factor for Gaussian rough
surfaces.

B. Comparison With HBM

In order to verify the effectiveness of SWM under large
roughness, we use the results from HBM as the benchmark,
whose accuracy has been confirmed by practical measurements
for a specific setting in high frequency [7]. Since the CF
of randomly distributed hemispherical bosses is not easy to
extract, we only compute the loss-scaling factor of a single
deterministic half-spheroid located on a conducting plane with
the parameters specified in [7]. The rms base radius b of the
half-spheroid, which is not explicitly given in [7], is set to
be 2.45 μm. The triangular mesh of the half-spheroid and the
remaining plane is shown in Fig. 10. The testing frequency
ranges from 1 to 20 GHz in order to keep the skin depth
small compared with the height of protrusion. Two types of
discretization schemes, rectangular and triangular, are used
with the same discretized interval set to be δ/5 to model the
rapid variation of the field inside the conductor. Simulation
results are shown in Fig. 11. It can be observed that the
two SWM curves track the trend of HBM and saturate at
sufficiently high frequencies. The accuracy of the triangular
discretization is better than that of the rectangular one while at
the cost of doubling the number of unknowns. This comparison
demonstrates that SWM remains valid for cases with large
roughness and high frequencies. Despite the fact that a direct
comparison with SPM2 is unavailable due to the difficulty in
extracting spectral-density function, the validity of SPM2, in
this case, is dubious as the rms height and surface slope are
both large.
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Fig. 9. Loss-scaling factor w.r.t. roughness (σ = 1 ∼ 3 μm) and frequency (f = 1 ∼ 10 GHz) for Gaussian CF (η = 2 μm). (a) SPM2. (b) SWM.

Fig. 10. Single half-spheroid located on a conducting plane (h = 5.8 μm,
L = 9.4 μm, b = 2.45 μm).

Fig. 11. SWM versus HBM for conducting half-spheroid (h = 5.8 μm,
L = 9.4 μm, b = 2.45 μm).

Again, to demonstrate the inapplicability of HBM for small
roughness/low frequencies, the loss-scaling factor is plotted
w.r.t. varying σ ranging from 1 to 3 μm and varying frequency
ranging from 0.1 to 1 GHz. Single half-spheroid modeling is
used with L = 9.4 μm and b = 2.45 μm. Fig. 12(a) shows that
for small roughness/low frequencies, HBM predicts erroneous

loss-scaling factors that are less than 1 and should be replaced
by other closed-form models, e.g., the Hammerstad formula
[7]. In contrast, Fig. 12(b) shows that the loss-scaling factor
calculated by SWM are all larger than 1. It is worth noting
that the major factors that limit the validity of SPM2 and HBM
have different emphases. The former is largely related to the
geometrical properties of the roughness under investigation,
while the latter relies more on the frequency range that the
simulation is conducted. Similar conclusion can be drawn for
other analytical techniques. Therefore, it is not a trivial task
to select the most appropriate models for a given problem,
particularly when generic wideband simulation is considered.

One important advantage of SWM is that it can be used
for fast verification of the accuracy of closed-form techniques
under specific scenarios. A good example is that, in HBM, a
spheroid is actually transformed into an equivalent hemisphere
with the same volume [7], since the analytical solution is only
available for a hemisphere. Such transformation, however, will
inevitably incur an accuracy loss. Fig. 13 shows the loss-
scaling ratios calculated by SWM and HBM for three half-
spheroids with different height-to-base ratios but the same
volume πL3/128. It can be seen that HBM treats the three
cases as the same, whereas SWM differentiates them correctly.
This suggests that HBM is more appropriate for roughness with
even shapes and may fail for roughness with either very large or
small height-to-base ratios. This example also demonstrates the
usefulness of an efficient numerical-simulation methodology
in verifying the accuracy of closed-form techniques without
resorting to expensive experimental measurements.

As reported in [6], the loss-scaling factor for a 3-D rough sur-
face is much higher than that of a 2-D one with the same degree
of roughness. Fig. 14 compares the 3-D SWM with a simplified
2-D SWM formulation where the surface height is uniform
along y-axis. The results also confirm a significant increase of
loss with 3-D roughness over 2-D roughness, thereby justifying
the necessity of 3-D consideration for roughness analysis.

C. Stochastic Analysis With SSCM

To verify the accuracy of the statistical model constructed
by SSCM, Fig. 15 shows the cumulative distribution function
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Fig. 12. Loss-scaling factor w.r.t. roughness (σ = 1 ∼ 3 μm) and frequency (f = 0.1 ∼ 1 GHz) for half-spheroid modeling (L = 9.4 μm, b = 2.45 μm).

Fig. 13. Power-loss ratios for half spheroids with different h and b
(L = 9.4 μm).

Fig. 14. 3-D SWM versus 2-D SWM for Gaussian CF (σ = 1 μm,
η = 1, 2 μm).

(CDF) of the loss-scaling factor calculated by first- and second-
order SSCM. The surface is of Gaussian CF with σ = 1 μm,
η = 2 μm, and f = 5 GHz. Results from MC simulation with
5000 sampling points are used as the benchmark. It can be
seen that second-order SSCM is necessary and sufficient to
model the distribution of loss-scaling factor under random

Fig. 15. CDF of Pr/Ps (σ = 1 μm, η = 2 μm, f = 5 GHz).

TABLE II
MEAN OF LOSS-SCALING FACTOR COMPUTED BY MC AND SSCM

(σ = 1 μm AND f = 5 GHz)

TABLE III
VARIANCE OF LOSS-SCALING FACTOR COMPUTED BY MC AND SSCM

(σ = 1 μm AND f = 5 GHz)

surface roughness. Tables II and III give the corresponding
mean and variance of loss-scaling factors for rough surfaces
with different η’s, which also demonstrates the improvement
of accuracy resulting from second-order SSCM. The number
of sampling points of SSCM w.r.t. to different accuracy in
K–L expansion is tabulated in Table IV for Gaussian CF (σ =
1 μm, η = 2 μm). It shows that SSCM can offer a significant
reduction in the amount of sampling points compared with the
MC simulation.
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TABLE IV
NUMBER OF SAMPLING POINTS OF SSCM

(GAUSSIAN CF WITH σ = 1 μm, η = 2 μm)

Several remarks are in order:
1) The proposed SWM approach significantly expands the

valid range compared with existing analytical techniques
like SPM2 and HBM and, thus, enables a generic simula-
tion for different surface roughness over a wide frequency
range. It also offers an efficient and convenient way to
test the validity of other closed-form techniques without
resorting to costly experimental verification.

2) Compared with rigorous EM wave modeling, SWM leads
to remarkable computational savings by reducing the
number of unknowns and using low-order basis function.
In addition, SWM avoids the low-frequency problem that
is difficult to handle in EM modeling and, thus, the
subsequent expense on correction measures.

3) Complete statistical model of loss-scaling factor bene-
ficial for further stochastic processing is available with
SWM. The increased computational cost from random-
surface modeling has been well alleviated by the appli-
cation of SSCM, by which, much fewer sampling points
than MC simulation are needed to achieve a satisfactory
second-order accuracy.

4) For rough surface with exponential CF, the major diffi-
culty in simulation arises from the gradient discontinuity
of Ce(d) = σ2 exp(−|d|/η) at d = 0, which indicates
that the surface includes short-length variations down to
an arbitrarily small scale, and, as a result, the surface
derivatives do not exist. However, in practice, the obser-
vation of fine-scale roughness is restricted by the limit of
measurement tools and the required modeling accuracy.
In this sense, an exponential surface can be viewed as
“piecewise continuous” between any two adjacent sam-
pling points provided that the inherent exponential statis-
tics of the surface is properly captured by such sampling,
which suggests a viable solution to modeling exponential
roughness, e.g., [29].

V. CONCLUSION

The main contribution of this paper has been the develop-
ment of a generic and efficient methodology SWM for the sim-
ulation of rough-surface loss in interconnects and packagings.
The key idea is to approximate the complicated EM wave prob-
lem with a simplified scalar-wave problem. The major merits
of SWM are twofold. First, the significantly enhanced simula-
tion capacity and flexibility eliminate the need of undesirable
model selections and model switches and the need of expensive
experiments for verifying closed-form techniques. Second, the
availability of statistical model in terms of independent random
variables is achieved efficiently using SSCM, which in turn
enables further stochastic analyses. The excellent applicability
of SWM has been verified by benchmarking against a rigorous
EM implementation as well as existing closed-form techniques,
namely, SPM2 and HBM, in their respective valid regions.

APPENDIX

The derivation of (9) is given as follows:

Ēt = − n̂× (n̂× Ē)

= − n̂×
[
− 1
jωε

n̂× (∇× (t̂Hψ)
)]

=
1
jωε

n̂× [
n̂× (ψ∇× t̂H + ∇ψ × t̂H)

]
=

1
jωε

n̂× {
ψn̂× (∇× t̂H)

+
[∇ψ(n̂ · t̂H) − t̂H(n̂ · ∇ψ)

]}
=

1
jωε

{
n̂× n̂× (∇× t̂H)ψ − (n̂× t̂H)(n̂ · ∇ψ)

}
=

1
jωε

{
t̂E
∣∣n̂× n̂× (∇× t̂H)

∣∣ψ − (n̂× t̂H)(n̂ · ∇ψ)
}

= t̂E

[
1
jωε

(υψ − n̂ · ∇ψ)
]

(27)

where the fourth equality results from the vector triple product
and the fifth equality is due to n̂ · t̂H = 0. The components of
t̂H are determined by the following relationship:⎧⎨

⎩
−fxtHx − fytHy + tHz = 0
t2Hx + t2Hy + t2Hz = 1
tHy = tan(θ)tHx

(28)

where θ denotes the azimuth angle of incident H̄ field. θ can be
chosen arbitrarily provided the rough surface is isotropic, and,
for simplicity, it can be set as 0.
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