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An Efficient Projector-Based Passivity Test for
Descriptor Systems

Zheng Zhang, Student Member, IEEE, and Ngai Wong, Member, IEEE

Abstract—An efficient passivity test based on canonical projec-
tor techniques is proposed for descriptor systems (DSs) widely
encountered in circuit and system modeling. The test features
a natural flow that first evaluates the index of a DS, followed
by possible decoupling into its proper and improper subsystems.
Explicit state-space formulations for respective subsystems are
derived to facilitate further processing such as model order
reduction and/or passivity enforcement. Efficient projector con-
struction and a fast generalized Hamiltonian test for the proper-
part passivity are also elaborated. Numerical examples then
confirm the superiority of the proposed method over existing
passivity tests for DSs based on linear matrix inequalities or
skew-Hamiltonian/Hamiltonian matrix pencils.

Index Terms—Canonical projector, descriptor system (DS),
generalized Hamiltonian, passivity.

I. Introduction

PASSIVITY of a linear system is a crucial property for en-
suring the stability of global simulation [1]–[3], namely,

when the system is connected to other models for a full-system
simulation. A passive system is one that does not generate
energy internally, and a strictly passive system is a dissipative
system. In circuit and multibody dynamics macromodeling,
models are often casted as differential-algebraic equations [4]–
[7] known also as singular systems or descriptor systems
(DSs) [8]–[10]. Specifically, DSs encompass a larger set with
much higher modeling flexibility than the more restrictive
standard state space systems. In fact, a major use of DSs is
in the modified nodal analysis (MNA) [6], [7], [11] which
describes a generally multi-port electrical circuit as a DS. Elec-
tromagnetic simulations of on-chip structures normally yield
DS models [12]. Moreover, the Loewner matrix interpolation
technique [13], [14] has also been advocated recently to fit
measured/simulated data of electronic circuits/systems to pro-
duce the corresponding DS. Such framework is superior to the
traditional vector fitting (which results in regular state spaces)
in the sense that no manual pole initialization is needed and
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that the optimal model order can be automatically extracted
from the data [13], [14]. Other attempts have utilized DSs in
the first-order macromodeling of second-order systems such as
RLCK circuits where “K” denotes susceptance [15]. Although
the DS in [15] can still be reduced to a standard state space
system, a DS representation preserves the structural stamps
and facilitates fast computation through possible utilization of
matrix structures and sparsity.

However, the passivity test for a DS, usually as a pre-
processing step for verifying model validity, is far less de-
veloped than for its standard state space counterparts whose
passivity can be readily checked by the positive real lemma
or through frequency sweeping [16]–[18]. Extensions of the
positive real lemma to DSs based on linear matrix inequalities
(LMIs) and projected Lur’e matrix equations have been pre-
sented in [19] and [20], respectively. However, their numerical
implementations result in prohibitive computation due to the
expensive solution of LMIs. Although generalized Schur form
approaches [21]–[23], and a skew-Hamiltonian/Hamiltonian
(SHH) transformation [2] have been proposed for testing DS
passivity with higher efficiency, these algorithms still require
multiple expensive singular value decompositions (SVDs),
Schur, and QR factorizations.

To overcome the computational hurdle, the emerging canon-
ical projector technique [24]–[26] is revised and utilized to
formulate a highly efficient DS passivity test. In short, the
canonical projectors give rise to a spectral projector that
provides a natural and conceptually simple way to decouple
a DS into its proper (impulse-free) subsystem and improper
(impulsive) subsystem, if any. Such decoupling is considered
the major difficulty in the passivity tests for DSs [2] (this
is different from the early work of Cauer [27] on pas-
sive systems based on matrix polynomial transfer functions
where subsystem decomposition is trivial compared to the
otherwise DS formulation here). A major difference that marks
the efficiency of the proposed method over existing ones
is the early knowledge of the matrix pencil index, which
quickly manifests as a direct consequence of constructing the
matrix projector chain. Given that an (infinite) minimal passive
system is of index at most two, the test quickly screens out
nonpassive systems after two initial matrix chain iterations.
Then, depending on the need, the proper and improper parts
can be completely decoupled via spectral projectors and,
respectively, tested for passivity.

A conference version of this paper is in [1], which reports
preliminary results and standard SVD implementation for the
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DS passivity test. In this paper, we enrich the theoretical
illustration, waive the stable matrix pencil assumption, and
introduce a novel LU-based construction of projectors and an
efficient implementation of the recent generalized Hamiltonian
method [28], [29] for testing the passivity of the proper part.
Such combination has made the proposed test truly applicable
to large-scale practical DSs, as demonstrated in the much
richer numerical section in this paper wherein the model sizes
are larger than those in [1] by several orders. We also present a
concise complexity analysis of existing DS passivity tests (in
addition to those considered in [1]), which in turn confirms
the superiority of the projector approach.

The organization of this paper is as follows. Section II
reviews the problem setting and basics of passivity. Section III
introduces the matrix chain theory and canonical/spectral
projectors in a constructive and much clearer manner than the
presentation in [25]. Section IV explicitly constructs the state
spaces for the extracted proper and improper subsystems of a
DS, upon which the passivity can be easily checked. Section V
presents efficient numerical implementations for the proposed
DS passivity test and discusses the limitations of existing tests.
Numerical examples in Section VI then verify the efficiency of
the proposed test, followed by some remarks in Section VII.
Finally, Section VIII draws the conclusion.

II. Basics of Passivity

We study a LTI DS in the form

Eẋ = Ax + Bu

y = Cx + Du
(1)

where E, A ∈ Rn×n and B, CT ∈ Rn×m. Also, u, y ∈ Rm

and x ∈ Rn are the input, output, and state vectors, respec-
tively. The matrix E is generally singular with rank(E) ≤ n.
We assume that the matrix pencil λE − A is regular, i.e.,
det(λ0E − A)�0 for some λ0 ∈ C. Then, there always exist
nonsingular W, T ∈ Rn×n that transform E and A into the
so-called Weierstrass canonical form [24]

E = W

[
Iq 0
0 N

]
T, A = W

[
J 0
0 In−q

]
T (2)

where Ik denotes an identity matrix of order k (though
the dimension is sometimes omitted when it is clear from
context). The matrix J corresponds to the finite eigenvalues
of λE − A, whereas N is nilpotent and corresponds to the
infinite eigenvalues. When all eigenvalues of J have negative
real parts, the pencil λE−A is said to be stable. The nilpotency
index µ of N, viz. Nµ−1� 0 and Nµ = 0, is called the index
of the matrix pencil λE − A.

Referring to the Weierstrass canonical form (2), we define
the left and right (spectral) projectors, Pl and Pr, respectively,
as

Pl = W

[
Iq 0
0 0

]
W−1, Pr = T −1

[
Iq 0
0 0

]
T. (3)

Obviously, Pl and Pr are the projectors onto the left and
right deflating subspaces, respectively, corresponding to the
finite eigenvalues along the left and right deflating subspaces

corresponding to the eigenvalue at infinity, whereas Ql = I−Pl

and Qr = I − Pr are the complementary projectors.
Using the Weierstrass canonical form (2) and partitioning

[ Cp C∞ ] = CT −1 and [ BT
p BT

∞ ]T = W−1B conformal
to (2), the DS transfer function G(s) = D + C(sE − A)−1B

of (1) can be expressed as

G(s) = D + C(sE − A)−1B

= D +
[
Cp C∞

] [
(sIq − J)−1

−(In−q − sN)−1

] [
Bp

B∞

]
= D − C∞B∞ + Cp(sIq − J)−1Bp︸ ︷︷ ︸

Gp(s)

−sC∞NB∞ − s2C∞N2B∞ − s3C∞N3B∞ − · · ·︸ ︷︷ ︸
G∞(s)

(4)

where Gp(s) is the proper part (bounded as s → ∞) and
G∞(s) the improper part (unbounded as s → ∞) of G(s).

For an LTI system, (strict) passivity is equivalent to the
transfer function being (strictly) positive real.

Theorem 1 (See [19]): A rational matrix-valued transfer
function G(s) ∈ Cm×m is positive real (strictly positive real)
if:

1) G(s) is analytic in C+ = {s ∈ C| Re(s) > 0};
2) �(jω) = G(jω) + (G(jω))H is positive semidefinite

(positive definite) for all ω ∈ R such that jω is not
a pole of G(s);

3) jω0 or ∞ is a pole of G(s), then it is a simple pole and
the m × m residue matrix is positive semidefinite.

Based on Theorem 1, if G(s) in (4) is viewed as

G(s) =

Gp(s)︷ ︸︸ ︷
Gsp(s)︸ ︷︷ ︸

strictly proper

+M0 + sM1 +
∞∑
k=2

skMk︸ ︷︷ ︸
G∞(s)

(5)

then G(s) is positive real if and only if Gp(s) is positive real,
M1 ≥ 0 and Mk = 0 for k ≥ 2. Comparing (5) and (4), it
is obvious that (1) is passive if and only if Gp(s) in (4) is
passive and M1 = −C∞NB∞ ≥ 0, whereas C∞NiB∞ = 0,
i = 2, 3, · · ·. Consequently, a key to testing the passivity of a
DS is to first decouple it into its proper and improper parts.

III. Matrix Projector Chain

Setting E0 := E and A0 := A, we consider a matrix chain

Ej+1 := Ej + AjQj, Aj+1 := AjPj (6)

where Qj is a projector onto ker Ej , i.e., Q2
j = Qj and im Qj =

ker Ej , and Pj = I − Qj is a projector along ker Ej for j =
0, 1, . . .. Obviously, PjQj = QjPj = 0. The following theorem
establishes the properties of the matrices Ej’s.

Theorem 2 (See [24]): For a regular index-µ pencil λE −
A, the matrices E0, · · · , Eµ−1 are singular, while Eµ is non-
singular.

Consequently, for the matrix chain {Ej, Aj} we have the
following.

1) If E1 is nonsingular, i.e., µ = 1 or N = 0, then system (1)
is impulse-free [2]. In this case, a standard state space
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system can be extracted and tested for passivity, see
Section IV-A.

2) If E1 is singular but E2 is nonsingular, we then proceed
to form the spectral projector Pr (or Pl) through con-
structing canonical projectors, which allows the decou-
pling of G(s) into the proper and improper parts Gp(s)
and G∞(s), respectively.

3) If E2 is singular, then (infinite) minimality of the DS
dictates Mk�0 for k ≥ 2 [19] (see also remark 3
in Section VII), so the system is nonpassive and the
passivity test is complete.

Next, we present some important properties of the matrix
chain.

1) Post-multiplying the left equation in (6) by Qj and Pj ,
respectively, yields

Ej+1Qj = AjQj (7a)

Ej+1Pj = Ej (7b)

for j = 0, 1, · · · , µ − 1.
2) The projectors Q0, · · · , Qµ−1 are called admissible if

they satisfy QjQi = 0 for j > i. Many new properties
arise from using admissible projectors. For example, for
j = 0, · · · , µ − 1, we have

EµQj = AjQj (8a)

Aj+1 = A − Eµ(Q0 + · · · + Qj). (8b)

3) Canonical projectors are admissible projectors that fur-
ther satisfy

Qj = QjPj+1 · · · Pµ−1E
−1
µ Aj

= QjPj+1 · · · Pµ−1E
−1
µ A (9)

for j = 0, · · · , µ − 2, and

Qµ−1 = Qµ−1E
−1
µ Aµ−1 = Qµ−1E

−1
µ A. (10)

The second equality signs in (9) and (10) can be
established from (8b).

4) In the matrix chain (6), the projector Qj is, generally,
not unique as only its range is constrained. Suppose that
Q̄j = Q̄2

j is another projector onto ker Ej . Then, Q̄jQj =
Qj , QjQ̄j = Q̄j , and −Q̄jPj = QjP̄j . This permits a
relationship between the Ej+1’s generated by different
projectors. We have

Ēj+1 = Ej + AjQjQ̄j = Ej + AjQj(I − P̄j)

= (Ej + AjQj)(I + Q̄jPj)

= Ej+1(I + Q̄jPj). (11)

Provided Ej+1 is invertible, the inverse of Ēj+1 is easily
shown to be Ē−1

j+1 = (I − Q̄jPj)E−1
j+1.

The following depicts the formation of canonical and spec-
tral projectors for the non-trivial case µ = 2. Compared to [25],
our presentation is highly straightforward and the proofs in the
appendices are either new or much more elegant.

A. Constructing Canonical Projectors

Setting E0 := E and A0 := A, the matrix chain in the case
of µ = 2 takes the form

E1 := E0 + A0Q0 and A1 := A0P0 (12a)

E2 := E1 + A1Q1 (12b)

where E2 is nonsingular by Theorem 2. The projectors Q0

and Q1 in (III-A) are, generally, neither canonical nor admis-
sible, but a new matrix chain with canonical (and, therefore,
admissible) projectors can be derived from (III-A) with careful
reformulation, as illustrated in Appendix A. In short, the
canonical projectors Q′

1 and Q′
0 can be computed as

Q′
1 = Q1E

−1
2 A1 (13a)

Q′
0 = Q0P

′
1E

′−1
2 A0 = Q0P

′
1(I − Q′

1P1)E−1
2 A0

= Q0P
′
1E

−1
2 A0 = Q0(I − Q1E

−1
2 A1)E−1

2 A0. (13b)

B. Constructing Spectral Projectors

Following from above, an important result of canonical
projectors is that the right spectral projector Pr is readily given
by

Pr = P ′
0P

′
1 = (I − Q′

0)(I − Q′
1). (14)

The proof is shown in Appendix B. Using the expressions
in (13) and (14) [or (47)], it can be shown that simple
analytical spectral projectors are readily derived for some
structured DSs [30], [31], thereby allowing fast spectral de-
composition. Nonetheless, analytical projectors generally do
not exist and specific numerical considerations are needed for
practical spectral projector construction, as will be discussed
in Section V-A.

IV. Passivity Test

The canonical projector technique provides a natural way to
decouple the proper (impulse-free) and improper (impulsive)
parts of the DS in (1), which translates into a highly effective
way for checking passivity based on Theorem 1 and the
conditions listed after (5). Moreover, all that is needed is
one, either the left or right, spectral projector. Without loss of
generality, we assume the availability of Pr in (3). The case
when Pl is available follows analogously. In the following, we
see how Pr permits a simple and explicit construction of the
proper and improper subsystems by the additive decomposition
procedure.

A. Additive Decomposition

Assume that the proper part is realized by Gp(s) = C̃(sẼ −
Ã)−1B̃ + D̃. With spectral projectors, the proper subsystem
can be formed in various ways. By additive decomposition, a
regular system can be constructed explicitly as

Ẽ = EPr − A(I − Pr), Ã = A

C̃ = CPr, B̃ = B, D̃ = M0 (15)
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where M0 is readily obtained from (16) below. It is straight-
forward to prove that Ẽ is nonsingular by this formulation,
thus no further efforts (such as SVD) are needed to convert
this DS to a regular one. To extract G∞(s) in (4), we first
construct an improper DS using the right spectral projector

G1(s) = D + C(I − Pr)(sE − A)−1B

= D + CT −1

[
0

I

] [
sI − J

sN − I

]−1

W−1B

= D − C∞B∞︸ ︷︷ ︸
M0

−sC∞NB∞ − s2C∞N2B∞ − · · · . (16)

Contrasting (4) and (5), it follows that M1 = −C∞NB∞ which
can be shown to be

M1 = −CA−1E∞A−1B (17a)

= −C(Ef + A∞)−1E∞(Ef + A∞)−1B (17b)

where Ef := EPr and A∞ := A(I − Pr). Subsequently, M0

and Gp(s) can be decided by (15) and (16). The merit of the
alternative expression in (17b) is that the inverse of (Ef +A∞)
always exists despite the invertibility of A [or equivalently
that of J in (2)]. The positive semidefiniteness of M1 and M0,
necessary for a passive DS, can then be easily tested. In fact,
M1 and M0 are normally small-size m × m square matrices
since the number of input/output ports is usually much fewer
than the state space dimension, i.e., m � n.

At the first glance, the passivity test for Gp(s) can make
use of the Hamiltonian matrix eigenvalue test for standard state
space systems [16], since Ẽ is nonsingular such that its inverse
can be absorbed into Ã and B̃ (though this is sometimes not
preferable as Ẽ may be ill-conditioned). For large systems,
a fast numerical approach is developed [32] to compute the
eigenvalues along the imaginary axis. However, Hamiltonian-
based approach becomes computationally infeasible due to the
expensive matrix inversion of Ẽ. Further, the matrix inversion
also destroys the sparsity of system matrices, which further
slows down the calculations. An alternative approach is to
combine the fast eigenvalue solver of [32] with the recently
proposed generalized Hamiltonian method (GHM [28], [29]),
which is further elaborated in Section V-B. This method di-
rectly tests passivity on the DS-form proper subsystem without
loss of sparsity, thus it is more efficient than using Hamiltonian
method on the converted standard state-space model.

The flow of the proposed projector-based decoupled-DS
passivity test is summarized in Fig. 1. A note about the
infinite minimality assumption of the initial DS can be found
in Section VII, remark 3.

B. Reconstruction into a DS

Finally, if Gp(s) = D̃ + C̃(sẼ − Ã)−1B̃ is passive (possibly
after passivity enforcement [16]) and M1 ≥ 0, a passive DS
corresponding to the transfer function Gp(s) + sM1 can be
reconstructed for export to a simulator. Indeed, let M1 = ZZT

be a Cholesky factorization, where Z ∈ Rm×m. Then, the DS

Fig. 1. Flowchart for the proposed DS passivity test in a pseudocodes style.

can be formulated as⎡⎣ Ẽ

0 Im

0 0

⎤⎦ ẋ =

⎡⎣ Ã

Im 0
0 Im

⎤⎦ x +

⎡⎣ B̃

0
ZT

⎤⎦ u

y =
[
C̃ −Z 0

]
x + D̃u (18)

whose transfer function is easily checked to be Gp(s) + sM1.

V. Implementation and Complexity

A. Fast Spectral Projector Construction

Although there exist closed-form spectral projectors in
terms of the initial (not necessarily canonical) projectors as
in (13) and (14), or for some special cases further simplified
forms as in [30] and [31], the computation can still be ex-
pensive and constitute a bottleneck due to large-size nullspace
identification, matrix multiplication and inverse. Here we elab-
orate an efficient numerical construction of spectral projectors,
mainly by exploiting sparsity and low-rank matrix operations
inherent to many physical problems. The illustration below is
based on index-2 (µ = 2) systems, and that for index-1 (µ = 1)
systems follows similarly.

First, a key step to forming the canonical projectors in (13)
is to find the initial projectors Q0 and Q1 spanning the
nullspaces of the usually sparse or structured E0 and E1. Stan-
dard ways of identifying the nullspace include SVD or alike,
which do not utilize matrix patterns and can be expensive for
large-size matrices. To this end, we employ the sparse LU
decomposition-based routine from [33], called LUQ, which
decomposes Ej , j = 0, 1, into

ET
j = Lj

[
Uj 0
0 0

]
Rj (19)
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where Lj, Rj ∈ Rn×n are nonsingular matrices, Uj ∈ Rr×r

is a nonsingular upper triangular matrix, r is the rank of Ej

and often n − r � n. Therefore, (19) is also used in our
implementation for checking the nonsingularity of Ej . If Ej

is singular, its nullspace is then computed via the left nullspace
of ET

j (solely due to the reason that Lj is produced with higher
numerical accuracy than Rj by the LUQ routine [33]). For
completeness, the LUQ routine is outlined in Appendix C.
Obviously, using I(r+1:n,:) to denote the last n−r rows of an n×
n identity matrix, the columns of (I(r+1:n,:)L

−1
j )T span ker Ej .

In practice, direct computation of this column matrix is not
preferred as the condition number of Lj can be large rendering
ill-conditioned inverse. Instead, we perform a LU factorization
of Lj with permutation

P̃jLj = L̃jŨj (20)

where L̃j, Ũj, P̃j ∈ Rn×n such that P̃j is the permutation
matrix with P̃T

j P̃j = I, Ũj is upper triangular and L̃j is
lower triangular with unit diagonal entries and a condition
number around unity. Then, it is easily checked that, due to
the upper triangular structure of Ũj , (I(r+1:n,:)L̃

−1
j P̃j)T spans

the same range as that by (I(r+1:n,:)L
−1
j )T and has intrinsically

better accuracy due to the low condition number of L̃j .
It is noted that computing L̃j does not really add to the
computational load since the inverse of Lj would generally
proceed with an LU decomposition, of which L̃j is a by-
product, followed by backward/forward substitutions. Next, a
(modified) Gram-Schmidt process, denoted by gs(◦) below,
leads to an orthonormal and usually thin column matrix,
namely

�j = gs((I(r+1:n,:)L̃
−1
j P̃j)T ) (21)

such that Qj = �j�
T
j forms an orthogonal projector onto

ker Ej . Subsequently, Q0 = �0�
T
0 and Q1 = �1�

T
1 are in

low-rank factored forms that facilitate fast computation of
canonical projectors in (13) by

Q′
1 := �1

(
(�T

1 E−1
2 )A1

)
(22a)

Q′
0 := �0

(
(�T

0 P ′
1E

−1
2 )A0

)
(22b)

which are again low-rank. Further computational savings can
be achieved in (14) by recognizing that

Q′
0Q

′
1 = Q′

0(Q0 + P0)Q′
1

= Q0Q
′
1 + Q0P

′
1E

′−1
2 A1Q

′
1

= Q0Q
′
1 + Q0P

′
1E

′−1
2 E′

2Q
′
1 = Q0Q

′
1

so that Pr = I − Q′
0 − Q′

1 + Q0Q
′
1 where Q′

0, Q′
1, and Q0Q

′
1

all involve low-rank factors only.

B. Fast GHM Test for Proper-Part Passivity

The spectral projector, with efficient implementation as
above, allows fast decoupling of the proper and improper parts
of a DS. However, the computational bottleneck for the DS
passivity test still lies in testing the passivity of the proper part.
To speed up the overall DS passivity test, having an efficient
test for the proper part is important. For the DS-form proper

subsystem constructed by (15), its passivity can be assessed
by the matrix pencil (J ,K) [28], [29]

J =

[
Ã − B̃(D̃ + D̃T )−1C −B̃(D̃ + D̃T )−1B̃T

C̃T (D̃ + D̃T )−1C̃ −ÃT + C̃T (D̃ + D̃T )−1B̃T

]

K =

[
Ẽ 0

0 ẼT

]
(23)

any purely imaginary generalized eigenvalue of which pin-
points a crossover point of passivity violations. The proper
part is strictly passive if and only if D̃ + D̃T > 0 and (J ,K)
has no eigenvalues on the imaginary axis. This eigenvalue
problem consumes an O((2n)3) complexity, which is infeasible
for large sparse system. In practice, the system matrices of
Gp(s) are normally sparse, and only results close to the
imaginary axis are wanted for passivity verification. Based
on this observation, the fast passivity characterization of [32]
exclusive to large sparse state-space models can be extended
to the DS case in (15).

To outline the fast Hamiltonian passivity test [32], we first
assume the proper subsystem is a standard state-space model.
In this case, eig(J ,K) = eig(J ) where K reduces to an
identity matrix. In [32], the imaginary eigenvalues of J is
computed via multi-shift Arnoldi iterations. This algorithm
first builds a p-dimensional orthogonal basis

Vp =
[
v1, v2, · · · , vp

]
(24)

of the Krylov subspace

{v1, (J − θI)−1v1, · · · , (J − θI)−(p−1)v1} (25)

(θ ∈ jR) with a randomly generated initial vector v1�0. After
that, a p × p Hessenberg matrix Hp is constructed by

Hp = VH
p (J − θI)−1Vp. (26)

Subsequently a few largest eigenvalues λ̂j of the low-
dimension Hessenberg matrix can be used to approximate the
true eigenvalues λj of J close to θ by

λj ≈ θ + λ̂−1
j . (27)

With an error control all λ’s close to θ can be accurately com-
puted. To compute all possible purely imaginary eigenvalues
of J , θ should be shifted along the imaginary axis on the upper
half plane. In [32], a bisection scheme is adopted in the interval
(0, θmax) to fix the shifted parameters, such that all imaginary
eigenvalues close to θ’s are accurately found (see [32] for the
details about error control and bisection scheme). Here θmax is
an estimated largest-magnitude imaginary eigenvalue, which
can be easily approximated by sparse power iteration. In this
section, we focus on how to extend this approach to the matrix
pencil (J ,K). Note that Ã is assumed to be diagonal in [32],
which is waived here.

Assume λ ∈ eig(J ,K), the nonsingularity of K implies
eig(J ,K) = eig(K−1J ). To apply the above fast eigenvalue
solver, the main bottleneck lies in computing (K−1J −θI)−1vi.
First, (K−1J − θI) and its inverse are not sparse, which
renders the matrix-vector production inefficient. Second, the
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TABLE I

Total CPU Times in DS Index Check

System System Nos. of Nonzeros in Time (s)
Order Index A0 E0 E1 E2 SVD LU
480 2 1346 (0.584%) 18 290 (7.94%) 19 001 (8.25%) 71 521 (31.04%) 2.411 0.8125
578 2 1694 (0.507%) 25 432 (7.61%) 26 601 (7.96%) 224 130 (67.09%) 4.506 2.8231
980 2 2872 (0.299%) 83 568 (8.70%) 85 339 (8.89%) 666 669 (69.42%) 20.359 12.80
1232 2 3634 (0.239%) 3608 (0.238%) 3610 (0.238%) 5504 (0.363%) 29.250 0.0469
10 082 2 30 184 (0.030%) 29 568 (0.029%) 29 570 (0.029%) 31 464 (0.031%) fail 0.0938
10 913 2 54 159 (0.045%) 35 904 (0.030%) 36 087 (0.030%) 5 385 968 (4.522%) fail 93.28

matrix inversions involved are prohibitively expensive, time-
consuming and unstable for large-scale systems. Therefore,
fast, sparse, and stable matrix operations are needed. Since
K−1J − θI = K−1(J − θK), the matrix-vector production in
each iteration can be expressed as

(K−1J − θI)−1vi = (J − θK)−1Kvi. (28)

By the matrix inverse lemma [34], we have

(J − θK)−1Kvi

=

([
Mθ

−MH
θ

]
−

[
B̃

−C̃T

]
(D̃+D̃T )−1

[
C̃ B̃T

])−1

wi

=

[
M−1

θ

−M−H
θ

]
wi +

[
M−1

θ B̃

M−H
θ C̃T

]
×(

D̃+D̃T −C̃M−1
θ B̃−B̃T M−H

θ C̃T
)−1[

C̃M−1
θ −B̃T M−H

θ

]
wi (29)

where Mθ = Ã − θẼ, wi = Kvi. We first denote wi1 = wi(1:n)

and wi2 = wi(n + 1:2n). Making use of the sparsity of Mθ , (29)
can be implemented as follows.

1) Perform a sparse LU decomposition on the n×n matrix

Mθ = LθUθ (30)

then the sparse LU of MH
θ is readily obtained as MH

θ =
UH

θ LH
θ .

2) Compute the following vectors (or vector-like narrow
matrices)

x1 = U−1
θ L−1

θ wi1 (31a)

x2 = −L−H
θ U−H

θ wi2 (31b)

x3 = U−1
θ L−1

θ B̃ (31c)

x4 = L−H
θ U−H

θ C̃T (31d)

by forward/backward iteration. Since Lθ and Uθ ob-
tained by sparse LU are normally sparse, the above
linear system solution can be as cheap as O(n).

3) Finally, the inverse iteration can be computed by

(K−1J − θI)−1vi =

[
x1

x2

]
+

[
x3

x4

]

× (
D̃ + D̃T − C̃x3 − B̃T x4

)−1 (
C̃x1 + B̃T x2

)
. (32)

Due to the low dimension, the matrix inversion in this
step is trivial.

In the above procedures, the total computation and storage
are low since only one n×n sparse LU factorization is needed,
and only sparse upper/lower triangular matrices and vectors are
stored.

To this end, the multi-shift Arnoldi algorithm can be used
to compute all generalized eigenvalues of (J ,K) close to (or
located on) the imaginary axis. The error control and bisection
methods are the same as those of the original algorithm [32],
which is omitted here. It is clear that compared with standard
Hamiltonian method, the GHM-based method avoids large-
scale matrix inversion and preserves system sparsity.

C. Complexity Analysis

DS passivity test by the extended positive real lemma in [19]
via solution of LMIs is impractical for large systems due
to its O(n6) complexity [2] where n is the dimension of
the state vector in (1). Also, direct transformation to the
Weierstrass canonical form (2) can be numerically unstable
and expensive. For example, the generalized upper triangular
form (GUPTRI) algorithm requires essentially ≥3 × SVD,
≥2 × QR, and 1 × QZ decompositions to produce a gener-
alized Schur form, followed by solving an additional gener-
alized Sylvester equation to reach the Weierstrass form, all
costing expensive O(n3) work [35], [36]. Consequently, the
more efficient SHH transformation technique is proposed [2]
to decouple the original DS into its proper and improper
subsystems. A careful inspection reveals that the major SHH
steps call for 3 times SVD and 2 × QR factorizations, plus the
optional solution of an algebraic Riccati equation (ARE) and
a Lyapunov equation if the proper part is to be explicitly
extracted. We are also aware of an O(n3) DS decoupling proce-
dure in [22] and [23], which costs at least 3 × URV (similar to
SVD), 1 × QR, and one generalized Schur decomposition, and
therefore, has comparable complexity to the SHH test (but the
lack of implementation details in [22] and [23] allow no further
conclusion about its actual speed). A similar procedure in [21],
based on the Van Dooren technique [37], also suffers from
multiple SVDs, numerically sensitive sub-matrix annihilations
and the costly solution of an ARE. Finally, the recent DS
decoupling approach, though not exactly related to passivity
test, utilizes the iterative disk function method [38]. But
again it requires 10–20 iterations of QR factorizations (on
2n×n matrices) for convergence, followed by special subspace
extraction procedures. Another demanding requirement in all
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the above mentioned procedures, where SVD/QR of dense
matrices are necessary, is the O(n2) memory requirement.

After DS decoupling, either by the disk function,
Weierstrass-form or SHH decoupling, the improper subsystem
(specifically the residual M1) is then checked for positive
semidefinite which is fast and trivial. On the other hand, the
proper-part passivity can be checked with standard regular-
system passivity tests such as the Hamiltonian matrix eigen-
value test of O

(
(2n)3

)
work [16], or the faster but less

reliable frequency sweeping test of O(m3) to O(n3) work [17]
depending on the availability of closed-form rational transfer
function (e.g., a possible case where analytical transfer matrix
exists is when the state-space matrices are obtained from
vector fitting as in [17], but this is not always the case if the
initial model is not built from rational fitting). In this paper, we
directly perform GHM [28], [29] passivity test on the DS-form
proper subsystem, which is implemented by the fast multi-shift
Arnoldi iteration based algorithm. Assume t shift parameters
in the interval (0, θmax) are used to compute all eigenvalues
close to the imaginary axis, then t sparse LUs are needed. For
each shift, several to tens of Krylov subspace iterations are
needed to approximate the neighborhood eigenvalues, which
depends on how dense these eigenvalues are distributed. In
practice, only a small number of eigenvalues are distributed
around the imaginary axis, so usually t is in the tens. Since the
expensive matrix inversion is avoided and sparsity is preserved,
this method is much more efficient than standard Hamiltonian
test on the standard state-space model converted from (15).

It is seen that all the above DS decomposition/decoupling
approaches require at least SVD or iterative QR operations
which can of course be employed for the matrix chain for-
mation and projector construction in Section III (e.g., [1]).
Nonetheless, a key advantage of the projector-based DS pas-
sivity test is that the singularity test and spectral projector for-
mulation can all be accomplished with the much cheaper LU-
type decomposition, with ≈ O(2n3/3) work versus ≈ O(20n3)
in SVD or ≈ O(2n3) in QR for general dense matrices [34], as
described in Section V-A. If sparsity and low-rank operations
are further exploited, the projector can be realized with O(n2)–
O(n3) work and O(n) storage, depending on the sparsity
extent. In fact, for index-2 problems, the main load in the pro-
jector construction involves only 5 × sparse LU factorizations
(viz. 3 rank tests and 2 nullspace computations). Subsequently,
sparsity-aware LU factorization has much reduced memory
storage requirement than the SHH or transformations to the
Weierstrass form, where dense SVD, QR or matrix equation
solves are generally unavoidable. Together with the fast GHM
passivity test in Section V-B, the proposed DS passivity test
features remarkable computational savings and is applicable
to large systems, as will be seen in the following numerical
examples.

VI. Numerical Examples

In this section, some practical DS benchmarks are tested for
passivity to demonstrate the effectiveness of the proposed pro-
jector framework. These examples are mostly taken from [39]
except the order-1232 and order-10 082 ones which are RC

TABLE II

CPU Times Excluding Proper-Part Passivity Check

System CPU Time (s)
Order Proposed SHH Weierstrass
480 1.73 9.53 10.92
578 3.26 15.90 18.50
980 14.84 75.83 95.41
1232 0.0625 132.2 801
10 082 0.1563 fail fail
10 913 159.68 fail fail

Fig. 2. (a) Bode plots of the original, proper and improper-subsystem
responses. (b) Error between the original system and the sum of decomposed
subsystems.

networks. The order-480 system is a patch antenna model from
partial element equivalent circuit (PEEC) modeling, while
other higher order examples are MNA benchmarks. All MNA
benchmarks are passive, while the PEEC model is nonpassive.
Nonpassive PEEC models may be caused by poor meshing
generation, inadequate numerical integration, matrix sparsi-
fication or inappropriate geometrical discretization, which is
discussed in detail by Ekman et al. [40]. All codings are
done in MATLAB and executed on a 2.66 GHz PC with 2 GB
memory.

We begin by timing the index tests based on checking
the nullities of E1 and E2 [via (19)] of these benchmarks,
which forms the initial step in the proposed DS passivity test.
Two approaches are contrasted, namely, the standard SVD
and the (sparse) LU singularity test discussed in Section V-A.
Expectedly, Table I shows that the LU way is much more
efficient than the SVD approach even though in some cases
the sparsity of E2 may not be significant due to the “fill-ins”
by matrix chain formation.

Next, the proposed DS passivity test is compared to the
SHH [2] and the Weierstrass tests in terms of proper and
improper part decoupling, where in the Weierstrass approach
the public routine GUPTRI [35] and the SLICOT [41] general-
ized Sylvester equation solver slgesg (both calling compiled
Fortran routines) are employed. The extended LMI test in [19]
has been shown by [2] to be computationally impractical and
is, therefore, not included here. Table II again demonstrates the
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Fig. 3. Eigenspectrum of the generalized Hamiltonian matrix pencil (J ,K)
for the PEEC model. Only the results close to the imaginary axis are plotted.

Fig. 4. Eigenspectrum of the generalized Hamiltonian matrix pencil (J ,K)
for the order-980 RLC model. Only the results close to the imaginary axis
are plotted.

superiority of the projector approach, owing to the techniques
presented in Section V-A and the reasonings in Section V-C.
It is noted that the much longer time in the Weierstrass
column in the order-1232 case is due to the generation of
complex entries by GUPTRI which has also been observed
in [2]. In the same example, the speed gain from the projector
approach is especially impressive (namely, four orders faster)
due to the strong sparsity of the RC network. This further
highlights the efficiency of the projector approach and in
particular its suitability for electrical networks commonly used
in very large-scale integrated interconnect/package modeling.
To confirm the accuracy of the spectral projector decoupling,
we decompose the 10 913 × 10 913 example which is a 9-
input–9-output system. The proper and improper parts are
extracted by additive decomposition (see Section IV). Fig. 2
shows the port-2 to port-2 decoupled responses, wherein the

TABLE III

CPU Times of Full-Size GHM and Fast GHM Passivity Tests on

the Proper Subsystem

System Order Full-Size GHM Fast GHM Speedup
480 21.3s 7.3s 2.9
980 83.7s 15.2s 5.6
10 913 fail 11hrs 37min N/A

error is in the order of 10−10 (and similarly for other port-
to-port responses). After the decoupling, the proper part can
be tested by SHH, Weierstrass and the proposed fast GHM
method.

We continue to show the applicability of the projector-
based DS passivity test at higher system orders than those
considered in [2] and [1], where the highest order is 800 and
the SHH and Weierstrass tests consume about 350–600 s on
a standard PC. The multi-shift Arnoldi iteration based GHM
test in Section V-B is adopted. We begin with the order-480
PEEC example which is a single-input–single-output DS. The
projector-based decomposition shows that it is impulse-free.
Its proper-part is then tested by the proposed fast GHM test.
Fig. 3 shows that some eigenvalues of (J ,K) locate on the
imaginary axis, implying that this DS is nonpassive. The next
example is the order-980 case originating from a 4-input-4-
output RLC network, which does not contain an improper
part either. The proper-part admittance transfer function is also
checked by the proposed fast GHM test. Fig. 4 shows the
corresponding passivity test matrix pencil does not contain any
purely imaginary generalized eigenvalues. This confirms the
model is passive which is expected due to the RLC nature of
the example. The third example is the 9-input-9-output order-
10 913 MNA example. The improper part contains only sM1

where M1 is a diagonal 9×9 positive definite matrix. As for its
proper part, Fig. 5 plots the GHM test results which confirm its
passivity, whereas the SHH, Weierstrass transformations and
full-size GHM test simply fail at such high orders. In [28]
and [29], the superiority of GHM over SHH and Weierstrass
tests has been illustrated. We further show the speedup of
the proposed fast GHM over the full-size GHM in Table III.
The CPU timing shows the speedup of the proposed Arnoldi
iteration based GHM (fast GHM) is faster than full-size GHM,
and the speedup is more significant as problem size grows.
Due to the expensive storage requirement, full-size GHM is
not applicable to large sparse systems, but the proposed fast
GHM algorithm can still be used to characterize passivity.

VII. Remarks

1) Compared to the Weierstrass-form or SHH-
transformation DS passivity tests, the proposed
algorithm is conceptually simple and straightforward.
As described in Section V-C, former DS passivity
tests all involve expensive SVD or QR operations for
subsystem decoupling, while the projector approach
only calls for the much cheaper LU factorizations
and much reduced memory requirement when sparsity
is exploited. To the knowledge of the authors, this
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Fig. 5. Passivity test results for the order-10 913 DS model. (a) Eigenspectrum of the generalized Hamiltonian matrix pencil (J ,K). Only the results close
to the imaginary axis are plotted. (b) Zoom-in of the eigenvalues with small real parts [circled in (a)].

projector-based passivity test flow for DSs is by far the
fastest one reported in the literature.

2) Along the same line, the speed of the proposed projector
construction (either explicitly or implicitly as in [31]) is
dependent on the sparsity degree and pattern. In many
real-world problems, E0 and E1 are highly sparse and,
therefore, the LUQ decomposition [33] is fast. If E2

is also sparse enough, the speedup can be drastic as
observed in the order-1232 and 10 082 examples in
Table I. Moreover, the nullities of practical E0 or E1

are usually low which lead to efficient low-rank formu-
lation of canonical projectors and, therefore, the spectral
projector [see (21) and (22)]. This also reinforces the
advantageous use of projector techniques in analyzing
real-world DSs.

3) Existing DS passivity tests [2], [19], [20], [22], [23]
all assume a minimal (i.e., completely controllable and
observable) initial DS, otherwise a pre-processing is
done to remove the uncontrollable/unobservable states
for minimal realization (e.g., by the O(n3) algorithm
in [10] or [2] which essentially reduces a DS into its
Kalman canonical form using orthogonal transforma-
tions). However, such pre-processing is expensive and
destroys sparsity of the system. In fact, Theorem 2
holds under the only assumption of regularity, and what
we really require in the DS is the infinite minimality
equivalent to rank

[
E B

]
= rank[ ET CT ] = n [19]

which determines the highest power of s in (5). Such
infinite minimality can be obtained by running the
reduction algorithms [2], [10], [21] only partially and
is, therefore, much cheaper to achieve than full mini-
mality. Consequently, the minimality assumption in the
proposed test is the least restrictive one among existing
tests.

4) By virtue of the explicit formulation of regular state
spaces for the proper and improper subsystems in Sec-
tion IV, further processing can be readily exercised. In
particular, standard state-space model order reduction

(MOR) and/or passivity enforcement procedures [3],
[16], [17], are all reusable on the extracted proper part
Gp(s). Perturbation of the improper part G∞(s) into a
positive semidefinite first-order residue matrix M1, due
to its small size (viz. m × m), is also trivial.

5) In [28], [29], GHM is directly performed on DS models
for passivity check. However, it terminates if the im-
proper part is nonpassive, and then the passivity of the
proper subsystem cannot be verified. With the spectral
projector technique, the proper part can still be checked
regardless of the passivity of the improper part.

VIII. Conclusion

This paper has presented a canonical projector-based passiv-
ity test for DS models commonly found in circuit modeling.
Compared to the existing LMI and SHH transformation ap-
proaches for testing DS passivity, the proposed test is theoret-
ically straightforward and exhibits simple codings and superior
computational speed. The index of a DS comes at an early
stage which immediately reveals the possible passivity of a
DS. Fast sparse LU-based construction of the spectral projector
then permits efficient decomposition of the DS into its proper
and improper subsystems, whose individual passivity can be
efficiently evaluated with existing passivity check techniques.
State spaces for these subsystems have also been explicitly
formulated for utilization in subsequent MOR and/or passivity
enforcement. A sparse LU factorization approach to projector
construction, together with a fast GHM algorithm based on
multi-shift Arnoldi iteration, have made possible the efficient
passivity test of high-order DSs unamendable before.
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Appendix A

Matrix Chain with Canonical Projectors

We begin by making the projector in (12b) canonical. This
is done by replacing Q1 with

Q′
1 := Q1E

−1
2 A1. (33)

To see Q′
1 is a valid projector onto ker E1, we note that

Q′
1Q1 = Q1E

−1
2 A1Q1 = Q1E

−1
2 E2Q1 = Q1 and Q1Q

′
1 =

Q′
1, which implies Q′

1(= Q′2
1 ) is a projector onto the same

range as Q1. To show Q′
1 and Q0 are admissible, we have

Q′
1Q0 = Q1E

−1
2 A1Q0 = Q1E

−1
2 A0P0Q0 = 0. Using Q′

1 in
place of Q1, (III-A) is updated to

E1 := E0 + A0Q0 and A1 := A0P0 (34a)

E′
2 := E1 + A1Q

′
1. (34b)

Note that Theorem 2 again guarantees E′
2 to be nonsingular.

Now to verify the canonicity of Q′
1 in (34b), we make use of

the property in (11) to get E′
2 = E2(I + Q′

1P1) and have

Q′
1E

′−1
2 A1 = Q′

1(I − Q′
1P1)E−1

2 A1

= Q′
1Q1E

−1
2 A1 = Q1E

−1
2 A1 = Q′

1 (35)

thus completing the proof. Next, we set

Q′
0 := Q0P

′
1E

′−1
2 A0. (36)

Noting A0Q0 = E′
2Q0, it follows that Q′2

0 = Q′
0 is a projec-

tor onto ker E0. Recompute (34a) with this new projector to
give

E′
1 := E0 + A0Q

′
0 and A′

1 := A0P
′
0. (37)

Again, from (11), E′
1 = E1(I + Q′

0P0) and it turns out Q′
1 is

also a projector onto ker E′
1, namely

E′
1Q

′
1 = E1(I + Q′

0P0)Q′
1 = E1(I + Q0P

′
1E

′−1
2 A0P0)Q′

1

= E1Q
′
1 + E1Q0P

′
1E

′−1
2 A1Q

′
1 = 0

since A1Q
′
1 = E′

2Q
′
1. With Q′

0, (A) is further updated as

E′
1 := E0 + A0Q

′
0 and A′

1 := A0P
′
0 (38a)

E′′
2 := E′

1 + A′
1Q

′
1. (38b)

Because Q′
1Q0 = 0, so is Q′

1Q
′
0 = 0 (i.e., admissible) and

Q′
0Q

′
1 = Q0P

′
1E

′−1
2 A0Q

′
1 = Q0P

′
1E

′−1
2 A0(Q0 + P0)Q′

1

= Q0P
′
1E

′−1
2 E′

2Q0Q
′
1 + Q0P

′
1E

′−1
2 A1Q

′
1

= Q0Q
′
1 + Q0P

′
1E

′−1
2 E′

2Q
′
1 = Q0Q

′
1. (39)

This also implies P ′
0Q

′
1 = P0Q

′
1 and A′

1Q
′
1 = A1Q

′
1, from

which a link can be found between E′′
2 and E′

2 as

E′′
2 = E1(I + Q′

0P0) + A1Q
′
1

= E′
2P

′
1(I + Q′

0P0) + E′
2Q

′
1 = E′

2(I + Q′
0P0). (40)

Still, we need to show both Q′
0 and Q′

1 in (A) are indeed
canonical. Utilizing properties (39), (40) and noting that A1 =
A0P0 = A0P0P

′
0 = A′

1 − E′
2Q0P

′
0, we get

Q′
0P

′
1E

′′−1
2 A0 = Q′

0(I − Q′
1)(I − Q′

0P0)E′−1
2 A0

= (Q′
0 − Q′

0Q
′
1 − Q′

0P0)E′−1
2 A0

= (Q′
0Q0 − Q′

0Q
′
1)E′−1

2 A0 [see (39)]

= Q0P
′
1E

′−1
2 A0 = Q′

0 [see (36)]

Q′
1E

′′−1
2 A′

1 = Q′
1(I − Q′

0P0)E′−1
2 A′

1

= Q′
1E

′−1
2 (A1 + E′

2Q0P
′
0)

= Q′
1E

′−1
2 A1 = Q′

1 [see (35)].

Of course, in practice, only the canonical projectors Q′
0 and

Q′
1 are required for computing the spectral projectors, and the

matrix chain updates from (III-A) to (A) and then to (A) never
need to be computed explicitly.

Appendix B

Spectral Projectors from Canonical Projectors

We give a constructive proof for Pr = P ′
0P

′
1 for the case

µ = 2. This complements, and is also in contrast to, the indirect
argument toward spectral projector presented in [25]. Taking
the Weierstrass viewpoint for E0 and A0 (wherein N2 = 0)
and assuming canonical Q′

0 and Q′
1, we can easily show

Q′
0 = T −1

[
0 0
0 Q̂′

0

]
T and Q′

1 = T −1

[
0 0
0 Q̂′

1

]
T (41)

where Q̂′
0, Q̂

′
1 ∈ R(n−q)×(n−q) project onto ker N and ker(N +

Q̂′
0), respectively. Moreover

N2 := N + Q̂′
0 + P̂ ′

0Q̂
′
1 = N + I − P̂ ′

0P̂
′
1 (42)

is nonsingular due to Theorem 2. By canonicity

Q̂′
0 = Q̂′

0P̂
′
1N

−1
2 , Q̂′

1 = Q̂′
1N

−1
2 and Q̂′

1Q̂
′
0 = 0. (43)

Next, we prove P̂ ′
0P̂

′
1 = 0. First

NN2 = N2 + NQ̂′
0 + NP̂ ′

0Q̂
′
1 = NQ̂′

1. (44)

Post-multiplying N−1
2 to (44) and using (43) we have N =

NQ̂′
1 or equivalently NP̂ ′

1 = 0. Next, recognizing P̂ ′
0P̂

′
1 is a

projector by itself, i.e., (P̂ ′
0P̂

′
1)2 = P̂ ′

0P̂
′
1, and post-multiplying

it to (42), we obtain

N2P̂
′
0P̂

′
1 = NP̂ ′

0P̂
′
1 = NP̂ ′

1 = 0. (45)

Nonsingularity of N2 then implies P̂ ′
0P̂

′
1 = 0. Consequently,

the right (spectral) projector Pr in (3) is given by

Pr = P ′
0P

′
1 = T −1

[
Iq 0
0 P̂ ′

0P̂
′
1

]
T = T −1

[
Iq 0
0 0

]
T. (46)

To obtain the left projector, canonical projectors are con-
structed from the matrix chain starting instead with E0 := ET

and A0 := AT . It is then easily verified that

Pl = (P ′
0P

′
1)T = W

[
Iq 0
0 0

]
W−1. (47)
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Appendix C

An outline of the LUQ routine

Given a sparse n × n matrix Z, the LUQ routine gives

Z = LZ

[
UZ 0
0 0

]
QZ (48)

with LZ, UZ, QZ being nonsingular and UZ being upper
triangular. In the first step of LUQ, Z is factorized by sparse
LU with permutation

Z = PL

[
U1 U2

0 U3

]
Q. (49)

Here, P and Q are permutation matrices, L is lower trian-
gular, U1 is an upper triangular matrix with nonzero diag-
onal elements, U3 ∈ Rs×s is a very sparse upper triangular
matrix with zero diagonals, and U2 is a nonzero matrix. The
zero/nonzero diagonal elements can be distinguished by setting
a small numerical threshold as adopted in economic SVD in

MATLAB. Denoting L :=
[
L1 L2

]
and Q :=

[
Q1

Q2

]
, (49)

can be rewritten as

Z = P
[
L1 L2

] [
U1 0
0 U3

] [
Q1 + U−1

1 U2Q2

Q2

]
. (50)

If U3 (which is normally of low dimension if Z has a low
nullity) has nonzero elements, we can recursively perform
LUQ on this block such that

U3 = LU3

[
UU3 0

0 0

]
QU3 (51)

with UU3 being a nonsingular upper triangular matrix. Then,
LZ, UZ and QZ in (48) can be decided by

LZ =
[
PL1 PL2LU3

]
(52a)

UZ =

[
U1 0
0 UU3

]
(52b)

QZ =

[
Q1 + U−1

1 U2Q2

QU3Q2

]
. (52c)

The cost of LUQ mainly comes from the sparse LU of Z,
since U3 is highly sparse and of low dimension. From (C) it
is clear that LZ is a product of a permutation matrix and a
sparse lower triangular matrix. Nevertheless, QZ might be full
and inaccurate since U−1

1 is involved. That is why we perform
LUQ on ET

j [see (19)] to construct the null space of Ej .
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