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ABSTRACT
Numerous algorithms to macromodel a linear time-invariant
(LTI) system from its frequency-domain sampling data have
been proposed in recent years [1, 2, 3, 4, 5, 6, 7, 8], among
which Loewner matrix-based tangential interpolation proves
to be especially suitable for modeling massive-port systems [6,
7, 8]. However, the existing Loewner matrix-based method
follows vector-format tangential interpolation (VFTI), which
fails to explore all the information contained in the frequency
samples. In this paper, a novel matrix-format tangential in-
terpolation (MFTI) is proposed, which requires much fewer
samples to recover the system and yields better accuracy
when handling under-sampled, noisy and/or ill-conditioned
data. A recursive version of MFTI is proposed to further
reduce the computational complexity. Numerical examples
then confirm the superiority of MFTI over VFTI.

Categories and Subject Descriptors
B.7.2 [Integrated circuits]: Design aids-simulation

General Terms
Algorithms

Keywords
matrix-format tangential interpolation (MFTI), Loewner ma-
trix, state space, sampling

1. INTRODUCTION
High-frequency effects, such as signal delay and crosstalk,

have become dominant factors limiting system performance
in IC design. Accurate simulation is required to capture the
high-frequency behavior of systems, so as to ensure consis-
tent design of high-speed electronic systems. To model com-
plicated geometry structures, such as packages, boards and
RF objects, data-driven macromodeling is usually applied.
Linear macromodeling can be classified as a system identi-
fication problem [9] wherein circuits or systems are treated

as black boxes, and their responses are measured through
experiments or calculated by EM simulators. Given the
sampled frequency and/or time responses, such as admit-
tance or scattering matrices, a model is built which fits the
samples accurately with a satisfactory computational effi-
ciency. Several methods have been developed, among which
the recently proposed Loewner-matrix-based Vector-Format
Tangential Interpolation (VFTI) proves to be accurate and
efficient for modeling systems with massive ports [6, 7, 8].
VFTI is robust, non-iterative, and does not require pole ini-
tialization as in vector fitting. The order of the underlying
system is also automatically recognized. However, VFTI in-
terpolates only two vectors of a scattering matrix at a time.
Hence, it does not explore all the information contained in
the scattering matrices and loses approximation accuracy
for noisy responses. It also suffers numerical problems when
modeling ill-conditioned samples poorly distributed in the
frequency band of interest.

In this paper, the generalization of VFTI to Matrix-Format
Tangential Interpolation (MFTI) is proposed, which results
in significant improvements over VFTI in practical macro-
modeling: (i)by extending the tangential data to matrix for-
mat, MFTI interpolates the full sampling matrix instead of
two vectors. Hence, to achieve the same accuracy, MFTI
requires only 1/𝑝 samples compared to VFTI (𝑝 being the
number of ports) to recover the underlying system. This is a
significant improvement considering that frequency-domain
sampling usually involves expensive measurement or com-
putation. Also, the accuracy is improved when modeling
noisy responses; (ii)by giving different weightings to different
samples, MFTI is suitable for interpolating ill-conditioned
data (namely, when the sampling frequencies are poorly dis-
tributed in the band of interest). It also provides an option
to trade off between computational complexity and fitting
accuracy; (iii)a recursive version of MFTI is developed to au-
tomatically select the appropriate set of sampled data for ap-
proximation; (iv)a minimal sampling theorem is introduced
as theorem 3.5 that guides the number of sampling points
required for an efficient computation.

This paper is organized as follows. In Section 2, the basics
of VFTI are introduced. In Section 3, the formulation of
MFTI is presented. In Section 4, two MFTI algorithms are
summarized. Numerical examples are given in Section 5 and
Section 6 draws the conclusion.
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An LTI system can be expressed as a state-space model:

𝐸𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),

𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡),
(1)

where 𝑦(𝑡) ∈ ℝ
𝑝, 𝑢(𝑡) ∈ ℝ

𝑚, 𝑥(𝑡) ∈ ℝ
𝑛, 𝐸,𝐴 ∈ ℝ

𝑛×𝑛,
𝐵 ∈ ℝ

𝑛×𝑚, 𝐶 ∈ ℝ
𝑝×𝑛, 𝐷 ∈ ℝ

𝑝×𝑚. If 𝐸 is singular, (1) is
called a descriptor system (DS) whose transfer function is
𝐻(𝑠) = 𝐶(𝑠𝐸 −𝐴)−1𝐵 +𝐷.

2.1 Overview of VFTI
The goal of an interpolation problem is to model the

underlying system or circuit from its measured/calculated
input-output data. Assume that scattering matrices have
been sampled at different frequencies 𝑓𝑖, 𝑖 = 1, 2, . . . , 𝑘,

𝑆(𝑓𝑖) =

⎡
⎢⎢⎣
𝑆11(𝑓𝑖) . . . 𝑆1𝑚(𝑓𝑖)

.

.

.
. . .

.

.

.
𝑆𝑝1(𝑓𝑖) . . . 𝑆𝑝𝑚(𝑓𝑖)

⎤
⎥⎥⎦ . (2)

Our goal is to find a DS as (1) whose transfer function
satisfies

𝐻(𝑗2𝜋𝑓𝑖) = 𝐶(𝑗2𝜋𝑓𝑖𝐸 − 𝐴)
−1
𝐵 +𝐷 ≈ 𝑆(𝑓𝑖). (3)

In VFTI, tangential interpolation data are used instead of
the whole 𝑆(𝑓𝑖). Specifically, the right and left tangential
interpolation data are defined as [6, 7, 8]

{𝜆𝑖, r𝑖,w𝑖 ∣ 𝜆𝑖 ∈ ℂ, r𝑖 ∈ ℂ
𝑚×1

,w𝑖 = S(𝑓𝑖)r𝑖 ∈ ℂ
𝑝×1
, 𝑖 = 1..𝜌},

{𝜇𝑖, l𝑖,v𝑖 ∣ 𝜇𝑖 ∈ ℂ, l𝑖 ∈ ℂ
1×𝑝
,v𝑖 = l𝑖S(𝑓𝑖) ∈ ℂ

1×𝑚
, 𝑖 = 1..𝜈},

(4)

whereby 𝜌+ 𝜈 = 𝑘, 𝜆𝑖, 𝜇𝑖 ∈ {±2𝜋𝑓𝑖}. In (4), the vectors r𝑖
and l𝑖 are arbitrarily chosen interpolation directions. The
vectors w𝑖 and v𝑖 are called interpolation data. The right
and left interpolation data are used to generate a state space
whose transfer function satisfies

H(𝜆𝑖)r𝑖 = w𝑖 and l𝑖H(𝜇𝑖) = v𝑖. (5)

Apparently, VFTI has the intrinsic disadvantage that it can
only interpolate two vectors, either row or column, of a sam-
ple matrix. Thus (3) is not automatically satisfied by guar-
anteeing tangential constraints (5).

3. MATRIX-FORMAT TANGENTIAL INTER-
POLATION

3.1 Generation of interpolation data
Suppose we have sampled 𝑘 scattering matrices at 𝑘 dif-

ferent frequencies (𝑘 is assumed even for simplicity). The
matrix-format right and left interpolation data are in their
general forms

{𝜆𝑖, 𝑅𝑖,𝑊𝑖 ∣ 𝜆𝑖 = 𝑗2𝜋𝑓𝑖,𝑊𝑖 = 𝑆(𝑓𝑖)𝑅𝑖 for 𝑖 = 1, 3 . . . 𝑘 − 1;

𝜆𝑖 = −𝜆𝑖−1, 𝑅𝑖 = 𝑅𝑖−1,𝑊𝑖 = 𝑊𝑖−1 for 𝑖 = 2, 4 . . . 𝑘},
(6)

{𝜇𝑖, 𝐿𝑖, 𝑉𝑖 ∣ 𝜇𝑖 = 𝑗2𝜋𝑓𝑖+1, 𝑉𝑖 = 𝐿𝑖𝑆(𝑓𝑖+1), for 𝑖 = 1, 3 . . . 𝑘 − 1;

𝜇𝑖 = −𝜇𝑖−1, 𝐿𝑖 = 𝐿𝑖−1, 𝑉𝑖 = 𝑉𝑖−1 for 𝑖 = 2, 4 . . . 𝑘}.
(7)

They can also be expressed in a more compact format (wherein
𝑡1 = 𝑡2, 𝑡3 = 𝑡4, . . . , 𝑡𝑘−1 = 𝑡𝑘, and the superscript of a ma-
trix denotes its dimension) as follows

Λ = diag[𝜆1..𝜆1︸ ︷︷ ︸
𝑡1

,−𝜆1..− 𝜆1︸ ︷︷ ︸
𝑡2

, ⋅ ⋅ ⋅ , 𝜆𝑘−1..𝜆𝑘−1︸ ︷︷ ︸
𝑡𝑘−1

,−𝜆𝑘−1..− 𝜆𝑘−1︸ ︷︷ ︸
𝑡𝑘

],

𝑅 = [𝑅
𝑚×𝑡1
1 , 𝑅

𝑚×𝑡2
1 , . . . , 𝑅

𝑚×𝑡𝑘−1
𝑘−1 , 𝑅

𝑚×𝑡𝑘
𝑘−1 ],

𝑊 = [𝑊
𝑝×𝑡1
1 ,𝑊1

𝑝×𝑡2 , . . . ,𝑊
𝑝×𝑡𝑘−1
𝑘−1 ,𝑊𝑘−1

𝑝×𝑡𝑘 ], (8)

𝑀 = diag[𝜇1..𝜇1︸ ︷︷ ︸
𝑡1

,−𝜇1..− 𝜇1︸ ︷︷ ︸
𝑡2

, ⋅ ⋅ ⋅ , 𝜇𝑘−1..𝜇𝑘−1︸ ︷︷ ︸
𝑡𝑘−1

,−𝜇𝑘−1..− 𝜇𝑘−1︸ ︷︷ ︸
𝑡𝑘

],

𝐿 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝐿
𝑡1×𝑝
1

𝐿
𝑡2×𝑝
1

.

.

.

𝐿
𝑡𝑘−1×𝑝

𝑘−1

𝐿
𝑡𝑘×𝑝

𝑘−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑉
𝑡1×𝑚
1

𝑉
𝑡2×𝑚
1

.

.

.

𝑉
𝑡𝑘−1×𝑚

𝑘−1

𝑉
𝑡𝑘×𝑚

𝑘−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

Here we use both the scattering matrices and their conju-
gates as tangential interpolation data to guarantee𝐻(−𝑗2𝜋𝑓𝑖)
= 𝐻(𝑗2𝜋𝑓𝑖). For systems with identical number of inputs
and outputs (𝑚 = 𝑝), if 𝑡𝑖 = 𝑚 and rank(𝐿𝑖) = rank(𝑅𝑖) =
𝑡𝑖(for 𝑖 = 1, 2 . . . 𝑘), then all entries in the scattering ma-
trices are exploited for interpolation. We can also set 𝑡𝑖 to
be different numbers to trade off between speed and accu-
racy and/or to give different weightings to ill-conditioned
samples. The goal of interpolation is to find a state-space
realization whose transfer function [cf. (3)] satisfies the left
and right constraints

𝐻(𝜆𝑖)𝑅𝑖 = 𝑊𝑖 and 𝐿𝑖𝐻(𝜇𝑖) = 𝑉𝑖. (10)

3.2 Block-format (shifted) Loewner matrix
Similar to [6, 7, 8], block-format Loewner matrix 𝕃 and

shifted Loewner matrix 𝜎𝕃 are defined as

𝕃 =

⎡
⎢⎢⎢⎣

𝑉1𝑅1−𝐿1𝑊1
𝜇1−𝜆1

⋅ ⋅ ⋅ 𝑉1𝑅𝑘−𝐿1𝑊𝑘
𝜇1−𝜆𝑘

.

.

.
. . .

.

.

.
𝑉𝑘𝑅1−𝐿𝑘𝑊1

𝜇𝑘−𝜆1
⋅ ⋅ ⋅ 𝑉𝑘𝑅𝑘−𝐿𝑘𝑊𝑘

𝜇𝑘−𝜆𝑘

⎤
⎥⎥⎥⎦ , (11)

𝜎𝕃 =

⎡
⎢⎢⎢⎣

𝜇1𝑉1𝑅1−𝜆1𝐿1𝑊1
𝜇1−𝜆1

⋅ ⋅ ⋅ 𝜇1𝑉1𝑅𝑘−𝜆𝑘𝐿1𝑊𝑘
𝜇1−𝜆𝑘

.

.

.
. . .

.

.

.
𝜇𝑘𝑉𝑘𝑅1−𝜆1𝐿𝑘𝑊1

𝜇𝑘−𝜆1
⋅ ⋅ ⋅ 𝜇𝑘𝑉𝑘𝑅𝑘−𝜆𝑘𝐿𝑘𝑊𝑘

𝜇𝑘−𝜆𝑘

⎤
⎥⎥⎥⎦ . (12)

Note that every diagonal block entry in (11) and (12) is a
𝑡𝑖× 𝑡𝑖 square matrix, thus 𝕃 and 𝜎𝕃 are both (𝑡1 + 𝑡2 + . . .+
𝑡𝑘) × (𝑡1 + 𝑡2 + . . .+ 𝑡𝑘) square matrices. Similar to VFTI,
MFTI data fulfill the Sylvester equations,

𝕃Λ −𝑀𝕃 = 𝐿𝑊 − 𝑉 𝑅; 𝜎𝕃Λ −𝑀𝜎𝕃 = 𝐿𝑊Λ −𝑀𝑉𝑅. (13)

3.3 State-space realization
The state-space matrices in (1) can be calculated based

on 𝑅, 𝐿, 𝑉 , 𝑊 , 𝕃 and 𝜎𝕃.

Lemma 3.1. If ∀𝑥 ∈ {𝜆1 . . . 𝜆𝑘, 𝜇1 . . . 𝜇𝑘}, det(𝑥𝕃−𝜎𝕃) ∕=
0, then 𝐸 = −𝕃, 𝐴 = −𝜎𝕃, 𝐵 = 𝑉 , 𝐶 = 𝑊 , 𝐷 = 0 con-
stitute a minimal state-space model whose transfer function
satisfies (10). Furthermore, if 𝑚 = 𝑝 = 𝑡𝑖 and 𝐿𝑖, 𝑅𝑖 are of
full rank, the transfer function also satisfies (3).

Proof: The proof of the first conclusion is similar to Ap-
pendix A-A of [8]. Note that the vector-format tangen-
tial interpolation direction and data should be replaced by
matrix-format ones and that 𝑒𝑖 there should be replaced by
𝐸𝑖 = [0𝑡𝑖×(𝑡1+..+𝑡𝑖−1), 𝐼𝑡𝑖×𝑡𝑖 , 0𝑡𝑖×(𝑡𝑖+1+..+𝑡𝑘)]𝑇 .

Then consider the second conclusion. If 𝑝 = 𝑚 = 𝑡𝑖,
(10) becomes 𝐻(𝜆𝑖)𝑅

𝑚×𝑚
𝑖 = 𝑊𝑖 = 𝑆(𝑓𝑖)𝑅

𝑚×𝑚
𝑖 for 𝑖 =

1, 3 . . . 𝑘 − 1. Because the square matrix 𝑅𝑚×𝑚
𝑖 is chosen

to be of full rank, we get 𝐻(𝑗2𝜋𝑓𝑖) = 𝐻(𝜆𝑖) = 𝑆(𝑓𝑖) for
𝑖 = 1, 3, . . . , 𝑘 − 1. Similarly, 𝐻(𝑗2𝜋𝑓𝑖) = 𝑆(𝑓𝑖) for 𝑖 =
2, 4, . . . , 𝑘. Thus (3) is guaranteed. □

This lemma indicates that if the number of inputs is iden-
tical to the number of outputs (i.e., 𝑚 = 𝑝), which is the
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case for a large group of (e.g., MNA) circuits, (3) is satisfied
exactly and 𝐻(𝑗2𝜋𝑓𝑖) = 𝑆(𝑓𝑖) for all 𝑖. Note that (3) can-
not be guaranteed by VFTI. To guarantee the state-space
matrices to be real, we have the following lemma.

Lemma 3.2. If 𝑅, 𝐿, 𝑉 , 𝑊 , 𝕃 and 𝜎𝕃 are constructed to
satisfy the conditions in Lemma 3.1, then by using ∗ to de-
note conjugate transpose, 𝐸 = −𝑇 ∗

𝕃𝑇 , 𝐴 = −𝑇 ∗𝜎𝕃𝑇 , 𝐵 =
𝑇 ∗𝑉 , 𝐶 = 𝑊𝑇 are guaranteed real and constitute a min-
imal DS whose transfer function satisfies (10). Here, 𝑇 =

𝑏𝑙𝑘𝑑𝑖𝑎𝑔[𝑇1, 𝑇3, . . . , 𝑇𝑘−1], 𝑇𝑖 = 1√
2

[
𝐼𝑡𝑖×𝑡𝑖 −𝑗𝐼𝑡𝑖×𝑡𝑖

𝐼𝑡𝑖×𝑡𝑖 𝑗𝐼𝑡𝑖×𝑡𝑖

]
, 𝑖 =

1, 3, . . . , 𝑘 − 1.

3.4 SVD and minimal sampling

Lemma 3.3. Suppose that the interpolation data are gen-
erated by sampling an underlying system with state-space ex-
pression 𝐸0𝑥̇ = 𝐴0𝑥 + 𝐵0𝑢 and 𝑦 = 𝐶0𝑥 + 𝐷0𝑢. Then for
𝑥 ∈ {𝜆𝑖}∪{𝜇𝑖}, rank(𝑥𝕃− 𝜎𝕃) ≤ size(𝐴0) + rank(𝐷0).

Proof: Note that

𝑥𝕃 − 𝜎𝕃 =

⎡
⎢⎢⎣
𝐿1𝐶0(𝜇1𝐸0 − 𝐴0)

−1

.

.

.

𝐿𝑘𝐶0(𝜇𝑘𝐸0 − 𝐴0)
−1

⎤
⎥⎥⎦ (𝐴0 − 𝑥𝐸0)×

[
(𝜆1𝐸0 − 𝐴0)

−1
𝐵𝑅1 . . . (𝜆𝑘𝐸0 − 𝐴0)

−1
𝐵𝑅𝑘

]
− 𝐿𝐷0𝑅□

The Lemma indicates that when the size of 𝕃 or 𝜎𝕃 is
larger than size(𝐴0)+rank(𝐷0), the assumption of Lemma 3.1
will not hold. Subsequently, to build appropriate state-space
matrices, we need to perform singular value decomposition
(SVD) to get rid of the irregular part.

Lemma 3.4. Suppose that for some 𝑥0 ∈ {𝜇𝑖}∪{𝜆𝑖},
rank(𝑥0𝕃 − 𝜎𝕃) = rank[𝕃 𝜎𝕃] = rank

[
𝕃

𝜎𝕃

]
≜ 𝑟. Then

we perform an economic SVD: (𝑥0𝕃−𝜎𝕃) = 𝑌 𝐾×𝑟𝑆𝑟×𝑟(𝑋𝑟×𝐾)∗,
then 𝐸 = −𝑌 ∗

𝕃𝑋, 𝐴 = −𝑌 ∗𝜎𝕃𝑋, 𝐵 = 𝑌 ∗𝑉 , 𝐶 = 𝑊𝑋 is
a realization of the sampling data.

Here 𝐾 ≜ 𝑡1 + 𝑡2 + . . .+ 𝑡𝑘 is the order of 𝕃 and 𝜎𝕃. The
proof is similar to that in [6] except that 𝐸𝑖 = [0𝑡𝑖×(𝑡1+..+𝑡𝑖−1),

𝐼𝑡𝑖×𝑡𝑖 , 0𝑡𝑖×(𝑡𝑖+1+..+𝑡𝑘)]𝑇 should be used instead of 𝑒𝑖
The SVD approach relies on the assumption made in Lemma

3.4. In real implementation, this assumption is generally
true provided that the sampling is sufficient and thus the
size of 𝕃 (𝜎𝕃) is large enough. The test results [see exam-
ple 1] show that the ranks of 𝕃 and 𝜎𝕃 satisfy rank(𝕃) ≈
order(Γ) and rank(𝜎𝕃) ≈ rank(𝑥𝕃 − 𝜎𝕃) ≈ order(Γ) +
rank(𝐷0). Here Γ represents the underlying system (𝐸0, 𝐴0,
𝐵0, 𝐶0, 𝐷0) and order(Γ) = rank(𝐸0) represents the num-
ber of poles of Γ. This is partially because that the norm
of 𝜎𝕃 is often much larger than that of 𝕃. If 𝑥 is chosen to
be 𝜆1 or 𝜇1, 𝑥𝕃− 𝜎𝕃 is close to 𝜎𝕃, thus they have similar
singular value pattern. To recover the system, we should
perform SVD and use the singular values to determine the
regular part to be kept. Thus, the order of 𝕃 and 𝜎𝕃 (i.e. 𝐾)
cannot be smaller than order(Γ)+rank(𝐷0). The following
theorem follows.

Theorem 3.5. The least number of noise-free samples 𝑘𝑚𝑖𝑛

to recover the underlying system satisfies order(Γ)/min(𝑚, 𝑝)
≤ 𝑘𝑚𝑖𝑛 ≤ (size(𝐴0) + rank(𝐷0)) /min(𝑚, 𝑝). Empirically
𝑘𝑚𝑖𝑛 = (order(Γ) + rank(𝐷0)) /min(𝑚, 𝑝).

The above theorem implies that the minimum samples
required in MFTI are smaller than those in VFTI. The latter
needs at least order(Γ) samples.

4. SUMMARY OF ALGORITHMS
Algorithm 1 is proposed by summarizing the results in

Section 3.

Algorithm 1 MFTI of noise-free data

1: Set 𝑡𝑖 ∈ [1,min(𝑚, 𝑝)] for 𝑖 = 1 . . . 𝑘, construct orthonormal
matrix-format interpolation direction 𝐿𝑖, 𝑅𝑖;

2: Construct MFTI data following (6) & (7);
3: Construct 𝕃, 𝜎𝕃 from (11) & (12) or solve 𝕃, 𝜎𝕃 from (13);
4: Calculate projected 𝑊 ,𝑉 ,𝕃,𝜎𝕃 following Lemma 3.2;
5: Select an 𝑥0 ∈ {𝜆𝑖}

∪{𝜇𝑖}, perform SVD on (𝑥0𝕃 − 𝜎𝕃);
6: Obtain state-space representation (𝐸,𝐴,𝐵,𝐶) of the recovered

system following Lemma 3.4.

Real-world data are often noisy, thus the singular values
in the above algorithm may be disturbed. To achieve a bet-
ter accuracy, more samples need to be taken as interpola-
tion data in order to minimize random error. But as the
complexity of the algorithm increases quickly with the num-
ber of samples and orders of 𝕃 (𝜎𝕃) and we cannot estimate
how many samplings are required, algorithm 2 (with Matlab-
style matrix notations) is proposed to reduce the complex-
ity. When interpolating ill-conditioned samples, 𝑡𝑖 can be
set as different numbers to give appropriate weightings to
these samples. In each loop, 𝑘0 new columns and rows of
tangential data are taken into consideration. In Step 4, we
only need to update 𝑊 , 𝑉 , 𝕃 and 𝜎𝕃 instead of calculating
them all from the beginning, which avoids repetitive compu-
tation. “𝑇ℎ” can be manually set to trade off between speed
and accuracy.

Algorithm 2 MFTI of noisy data

1: Set 𝑡𝑖 ∈ [1,min(𝑚, 𝑝)] for 𝑖 = 1 . . . 𝑘, construct matrix-format
interpolation data 𝑅, 𝐿, 𝑊 , 𝑉 , Λ, 𝑀 as Algorithm 1;

2: Set II = ∅, iI = {1, 2, . . . , 𝐾}, 𝑖𝑛𝑑𝑒𝑥 = [1 : 𝑘0 : 𝐾, 2 : 𝑘0 :
𝐾, . . . , 𝑘0 − 1 : 𝑘0 : 𝐾];

3: Do {
Set ii to be equal to the set of the No. 𝑖𝑛𝑑𝑒𝑥(1), 𝑖𝑛𝑑𝑒𝑥(2), . . .,
𝑖𝑛𝑑𝑒𝑥(𝑘0) elements of iI; II = II

∪
ii, iI = iI − ii;

4: Use 𝑅(:, II), 𝐿(II, :), 𝑊 (:, II), 𝑉 (II, :), Λ(II, II), 𝑀(II, II) to up-
date 𝑊 , 𝑉 , 𝕃 and 𝜎𝕃;

5: Construct 𝐸, 𝐴, 𝐵, 𝐶 following Algorithm 1. Calculate 𝐻(𝑠);
6: Calculate 𝑒𝑟𝑟 = ∥𝑤𝑖 − 𝐻(𝜆𝑖)𝑟𝑖∥ + ∥𝑣𝑖 − 𝑙𝑖𝐻(𝜆𝑖)∥ for 𝑖 ∈ iI;

[𝑣𝑎𝑙𝑢𝑒, 𝑖𝑛𝑑𝑒𝑥] = 𝑠𝑜𝑟𝑡(𝑒𝑟𝑟);
7: If iI = ∅, break;

} while (𝑚𝑒𝑎𝑛(𝑒𝑟𝑟) > 𝑇ℎ)

5. NUMERICAL EXAMPLES
[Example 1] Example 1 is used to illustrate the advan-
tages of using MFTI over VFTI in the under-sampled case.
The 8 scattering matrices are sampled from an order-150
system with 30 ports. As illustrated in Fig. 1, no obvious
singular value drop can be detected by VFTI, but a sharp
drop can be found in MFTI. Fig. 2 shows the Bode diagram
(input 1-output 1) of the original system and the recovered
system via both VFTI and MFTI. The MFTI-model fits
well with the original system while the VFTI-model does
not, which demonstrates that the samples are inadequate
for VFTI while adequate for MFTI. Further experiments
show that VFTI (using 180 matrix samples) requires about
30 times the samples of MFTI (6 matrix samples) to recover
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Table 1: Interpolation of noisy data
Algorithms Test 1 Test 2

reduced order time(s) relative error reduced order time(s) relative error

VF(10 iterations)
n=140 140 3.1734 3.72e-1 140 2.8014 4.89e-1
n=280 278 5.2518 7.33e-2 265 3.8492 9.11e-2

VFTI 95 0.4307 1.32e-1 98 0.2563 4.16e-1

MFTI-1
𝑡𝑖 = 2 (weight 1) 190 0.8254 9.60e-3 195 0.7178 3.14e-2
𝑡𝑖 = 3 (weight 2) 252 1.4369 1.70e-3 260 1.3026 4.20e-3

MFTI-2(recursive) 130 0.6002 9.91e-3 147 0.4129 2.51e-2
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Figure 2: Bode diagrams of original and recovered
systems using VFTI and MFTI.

the system. Besides, it is noticed that the singular values of
𝕃, 𝜎𝕃 and 𝑥𝕃 − 𝜎𝕃 drop at 150, 180 and 180, respectively,
which confirms theorem 3.5.
[Example 2] The data in this example are measured from
a 14-port power distribution network for INC board [10],
with the order of the underlying system unknown. Table 1
shows the results. The data in Test 1 come from 100 uni-
formly distributed frequency samples, while those in Test
2 are 100 poorly distributed samples concentrated in the
high-frequency band. VF (vector fitting), VFTI, MFTI-1
(Algorithm 1) and MFTI-2 (Algorithm 2) are all tested.

The error vector is computed as 𝑒𝑟𝑟𝑖 = ∥𝐻(𝑗2𝜋𝑓𝑖)−𝑆(𝑓𝑖)∥2
∥𝑆(𝑓𝑖)∥2

for 𝑖 = 1, 2 . . . , 𝑘, whereas 𝐸𝑅𝑅 is defined as ∥𝑒𝑟𝑟∥2/
√
𝑘.

The CPU times are also recorded to compare the speeds of
these algorithms. For Test 1, 𝑡𝑖 = 2 and 𝑡𝑖 = 3 demon-
strate the dimension of the interpolation matrices. For Test
2, 𝑡𝑖 = 2 and 𝑡𝑖 = 3 represent two weighting choices (weight
1 and weight 2). They both satisfy the condition that 𝑡𝑖 ≥ 𝑡𝑗
for 𝑖 < 𝑗 but more data are utilized for the latter. From Ta-
ble 1, we conclude that MFTI is more accurate than VFTI,
especially for ill-conditioned samples. Accuracy improves
as 𝑡𝑖 increases, which provides option to trade off between
speed and accuracy. By employing recursive MFTI-2, the
CPU time is only slightly greater than that of VFTI while
the accuracy is significantly improved. Note that MFTI-2
automatically selects appropriate samples and thereby can

yield good accuracy with moderate model size. Besides, it is
shown that MFTI is much faster than the popular VF while
at the same time achieves better accuracy.

6. CONCLUSION
Matrix-format tangential interpolation (MFTI), which gen-

eralizes vector-format tangential interpolation (VFTI), has
been proposed and validated in this paper. The most sig-
nificant advantage of MFTI over VFTI is that MFTI uti-
lizes more information contained in the sampled matrices,
and thus requires fewer samples to recover the system and
yields better accuracy when interpolating under-sampled,
noisy and/or ill-conditioned data. Besides, a minimal sam-
pling theorem has been proposed. Numerical examples have
confirmed the superiority of MFTI over VFTI in practical
macromodeling.
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