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Abstract

When a principal hires an agent to do searching, she needs to mo-
tivate the agent to pay effort as well as to deliver a suitable result.
Since different principals have different taste and the suitability of the
search result is not entirely determined by the agents’ effort, there
is an opportunity for agents to cooperate among themselves and use
commission sharing to match search results to principals. This paper
studies how such fee-sharing arrangement affects the agents’ incentive
when exerting effort and principals’ incentive when offering contracts.
I show that principals would offer contracts with lower piece-rates and
the agents would exert lower effort in searching when such arrange-
ment is possible. However, efficiency may increase because the search
results would be better matched to the principals.

1 Introduction

Often agents are hired to perform the function of searching. After exerting
efforts, the agents may find that the result of the search does not match the
principal’s taste perfectly. When different principals have different taste, an
outcome bad for one principal may be good for another, so opportunities
exist for agents to trade among themselves based on the realized values of
the result of their efforts to different principals. Therefore, principals have

∗Thanks to valuable comments from Yuk-fai Fong and Jin Li. All errors remain my
own. This project began when I was affiliated with Cornerstone Research.
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to simultaneously motivate the agents to exert effort and also to cooperate
among themselves to better match the principals’ taste.

Such principal and agent relationship exists in the real estate and rental
markets. Brokers pay effort to look for potential buyers for the seller, but
in the process they may find buyers that are not entirely suitable to his
contracted seller. To solve this problem, brokers cooperate with each other
through the MLS (“Multiple Listing Servic”), a cooperative arrangement
among brokers in a particular area to share their property listings with each
other. Through the MLS, the brokers can deliver the right buyers to the right
sellers and share the commission if a seller eventually makes a deal with a
buyer that is found by a broker other than the one that is directly hired by
the seller.

Such cooperative commission sharing arrangement may also be found de-
sirable among other agents who are hired to do searching, such as third party
recruiters, also called headhunters. For instance, Denise DeMan Williams,
president and chief executive of Branch International, a US-based headhunt-
ing firm, argued in Executive Recruiter News, an industry newsletter, that
acting in the client’s best interest demanded that if the retained firm could
not complete the assignment, it should partner with a firm that could finish
the job on a fee-sharing basis. Guidebooks for recruiter also have sections
about how to write fee-sharing contract1. Various websites provide sample
fee sharing agreements for recruiters to use.

In these situations, the suitability of a project is subject to some uncer-
tainty that is out of the agent’s control. The principal contracts with the
agent on the outcome of the search project, but leaves the agent the freedom
to trade with other agents. This freedom obviously increases the efficiency
in terms of matching search results to principals. However, this raises inter-
esting questions such as how the possibility of inter-agent trading affects the
incentive of the agents when exerting efforts, as well as the incentive of the
principals when offering contracts.

This paper studies a two-principal and two-agent model where each princi-
pal can contract with only one agent by offering him a linear contract. Agents
first exert effort and then consider whether or not to swap the outcome with
the other agent through monetary transfers. The fee-sharing promise is de-
termined through Nash Bargaining. Then the principals pay according to

1See, for example, “The Recruiter’s Edge: Comprehensive Recruiter Training System”
published by AuthorHouse.
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the project received and then the agents pay each other according to the fee
sharing agreement they reached.

We show that when inter-agent trading is possible, on the unique sym-
metric equilibrium, the principals offer a lower-powered incentive contract
(i.e., with a lower piece-rate) than when inter-agent trading is not possible.
These are socially sub-optimal piece-rates in the sense that they are too low
to make agents exert the efficient effort in searching.

The intuition is that the principals face a free-rider problem when moti-
vating the agents to do efficient inter-agent trading. Notice that one principal
only internalizes one agent’s payoff through the individual rationality con-
straint, even though this principal’s piece-rate affects both agents’ incentives
to trade. When a principal unilaterally decreases her piece-rate from the
first-best, the loss to the surplus from trading is shared by both agents, and
thus by the other principal as well. In other words, the principals piece-
rate also affect the shares of the two principals. A slightly lower piece-rate
from the first-best (given that the other principal uses the first-best contract)
does not change the total pie much, but gives the principal a bigger share of
the pie. This creates an incentive for both principals to shirk in motivating
inter-agent trading. The result is that the equilibrium piece-rate is lower
than the first-best level. When the cost function is quadratic, the principals
are always better-off overall if the agents can swap search outcomes. This
is because the loss from lower effort is more than compensated by the gain
from better matched outcomes.

This paper highlights several effects of the commission rate. A higher
commission rate not only makes one’s own agent work harder, it also transfers
surplus to the other agent (and ultimately to the other principal) because
trading surplus are shared between the agents before they are extracted away
by principals. Also, heterogenous commission rates will cause inefficiency in
agents’ trading decisions because they make that agents as a whole put non-
equal weights on the welfare of the different principals.

This paper relates to the literature on multi-task agency, where the princi-
pal wants to motivate the agent to do two or more tasks. Multi-task problem
was studied by Holmstrom and Milgrom (1991), where they looked at the
tension between allocating risks and rewarding productive work. Itoh (1991)
studied a multi-task problem with multiple agents, where the principal wants
to motivate the agents to exert effort on their own tasks and also to help other
agents. Unlike previous multi-task problems, in this paper, the tension be-
tween two tasks arises from the fact that there are two principals. In other
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words, if the two principals can cooperate then both tasks can be achieved
with first-best outcomes.

There is also a literature that focuses on agents that are hired to do
search. Lewis and Ottaviani (2008) studies a general single-principal and
single-agent model where the agent can gain private benefits over the cause
of searching, and their focus is on the interaction of the agent’s incentives to
exert search effort with agent’s incentives to report the private information
the agent 1cquires during the search process. Other papers have modeled
search agents specifically for the real estate market, but have not looked
at the fee sharing arrangements in a principal-agent framework. Several
papers look at the conflict between the effort (search) dimension and the
informational (suggest a reservation price) dimension 2 In comparison, this
paper looks at the tension between the dimension of effort (search) and the
dimension of cooperating with other agents (share commission).

The paper is also related to the common agency models in the sense
that each agent’s action affect both principals. Bernheim and Whinston
(1986) showed that whenever collusive behavior among the principals would
implement the first-best action at the first-best level of cost, noncooperative
equilibrium is fully efficient. However, since here a principal only contract
with one agent 1nd thus does not internalize the other agent’s utility, the
first best outcome cannot be achieved even though the collusive outcome
would be first-best. Multiple-principals and multiple-agents settings have
been studied without considering directly the interaction among the agents.
Attar et. al. (2008) evaluates revelation principle in a general multiple-
principals and multiple-agents setting.

There is a literature on referral, another form of interaction among agents.
It has been studied in a non-principal-agent setting in Garicano and Santos
(2004), which focused on matching opportunities with agents’ talent, rather
than on matching outcomes with principals’ tastes.

The paper is organized as follows. Section 2 presents the model. Next,
section 3 shows the benchmark when the agents are unable to trade with each
other. Section 4 shows the main model and its results. Section 5 discusses
the assumptions and robustness of the results. Section 6 concludes.

2See Geltner, Kluger and Miller (1991) and Arnold (1992).
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2 Model

There are two principals 1 and 2. They each have an agent 1 and 2. The
principal-agent relationship is assumed to be fixed, meaning that principal 1
can only contract with agent 1 and principal 2 and only contract with agent
2. We will refer to an agent as him and a principal as her.

An agent can exert effort to find an outcome. Denote the effort by ei ≥
0, with i = 1, 2. Agents incur a cost of C(ei). Assume C is infinitely
differentiable and C(0) = 0, C ′(0) = 0, C ′(e) > 0 for all e > 0, C ′′(e) > 0 for
all e.

Principal 1 and principal 2 have differentiated taste. Whether or not
agents exerts effort, the taste element in the outcome is a random draw.
More specifically, agent 1 gets a realization x1 and agent 2 gets a realization
x2, both of which is independent random draws from a distribution on [−1

2
, 1

2
]

and with a continuously differentiable density that is symmetric around 0.
The project from agent i is worth v+ei−xit to principal 1 and v+ei +xit

to principal 2, where t > 0 and i = 1, 2.
To make the problem continuous and avoid consider the case of negative

project value, we have assumed the agent can create quality v with no effort
and he always does so. We also assume v > 1

2
t, so that there is enough base

value to the project such that a project will always have some value to any
of the two principals. We assume the agents have the same outside option if
they do not get hired, and normalize it to be 0. Denote the socially efficient
level of effort by e∗, i.e., e∗ is defined by 1 = C ′(e∗).

Both principals can offer a linear contract to her own agent. In particular,
principal 1 offers (F1, k1) and principal 2 offers (F2, k2) with k1 ≥ 0 and k2 ≥ 0
denoting the piece-rate. Denote the value of the project that principal 1
receives to be v1 and that of the project that principal 2 receives to be v2.
The contracts oblige principal 1 to pay k1(v1 − v) + F1 and principal 2 to
pay k2(v2− v) +F2. We restricted the contracts to be contingent only on the
realized value received by a principal. In other words, we assume that only
the realized value of the projects v1 and v2 are verifiable and contractible by
both the principal who receives it and the agent who delivers it. The effort
of the agents are not verifiable or contractible. We will omit the base project
value v as it does not affect the analysis.

The timing of the game is as follows.

1. Principals 1 and 2 simultaneously make take-it-or-leave-it linear con-

5



tract offers to their respective agents.

2. Agents 1 and 2 simultaneously decide whether to accept the offers or
not.

3. Agents 1 and 2 simultaneously exert efforts.

4. Project values are realized.

5. Agents 1 and 2 decide whether to swap projects or not and Nash-
bargain (with equal bargaining power) to determine the transfer be-
tween them.

6. Agents 1 and 2 hand projects to their respective principals and receive
the promised payments from their principals.

7. Agents 1 and 2 pay each other transfers as promised. (The timing of
this one step can be right after Nash Bargaining.)

All players are risk-neutral and they maximized their expected payoff.
We consider symmetric subgame perfect equilibrium.

3 No-trading Benchmark

When the two agents cannot trade with each other3 , the two principal-agent
pairs are not related in this game, so we can just look at one pair. The
analysis is very standard. Since the principal can extract all the surplus
from the agent through the fixed part of the linear contract, the principal is
effectively maximizing the total expected surplus of the principal-agent pair.
WLOG, we consider the pair 1-1. Principal 1 solves:

max
k1

e1 − E[x1]t− C(e1) = e1 − C(e1)

s.t. e1 = argmaxe{k1(e− E[x1]t)− C(e)} = argmaxe{k1e− C(e)}
3If one generalizes the game such that principals first choose to whether or not to ban

trading (maybe through banning the communications between agents) and trading can
only occur if both principles allow it, then this benchmark of no trading will exist as an
equilibrium, because given that one principal bans trading, the other weakly prefers to
ban trading as well.
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The unique solution clearly is to set k1 = 1. The resulting effort level is
efficient and in this benchmark F1 = −(e∗ − C(e∗)).

4 Trading Allowed

Despite that the effort levels are efficient in the no-trading Benchmark, there
exists a source of inefficiency there: the projects are not efficiently matched
to principals. principal 1 always receives the project created by agent 1 and
principal 2 always receives the project created by agent 2 in the Benchmark,
while the most efficient pairing between projects and principals depends on
the realization of x1 and x2. It is clear that it is efficient to trade if and only
if x1 ≥ x2, i.e., x1 − x2 ≥ 0.

4.1 Trading incentive given efforts

Because of the nature of Nash Bargaining between the two agents, trad-
ing will occur whenever it is subgame-efficient to do so, i.e., efficient given
the effort level e1, e2, the realized value of x1 and x2 and the contracts the
agents have accepted. Consider the subgame just after x1 and x2 are realized.
Therefore, trading happens if and only if4:

[k1(e2 − x2t) + k2(e1 + x1t)]− [k1(e1 − x1t) + k2(e2 + x2t)] ≥ 0

⇔ − (k1 − k2)(e1 − e2) + (k1 + k2)(x1 − x2)t ≥ 0

For any k1 + k2 > 0, the above trade-condition is equivalent to:

x1 − x2 ≥
(k1 − k2)(e1 − e2)

t(k1 + k2)

Let’s contrast this with the efficient condition for trading. Trading is
efficient if and only if,

x1 − x2 ≥ 0

This raises three questions:

4We assume the tie-breaking rule that they will trade if indifferent.
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• Why k1 − k2 ⇒ efficient trading?

• Why e1 − e2 ⇒ efficient trading?

• Why (k1 − k2)(e1 − e2) 6= 0 implies inefficient trading?

To answer these questions, notice that trading can increase efficiency in
only two ways.

• Case 1. Benefit both principals. ⇒ Agents will do it no matter what
contracts they are given (as long as k1 ≥ 0 and k2 ≥ 0).

• Case 2. Benefit one principal while hurt the other. ⇒ Agents may not
agree to do the trading.

When e1 = e2, i.e., when there is no vertical difference in the quality of
the outcomes, only Case 1 is possible. In other words, if trading is efficient,
then trading benefits both principals, so agents trade.

When k1 = k2, then agents collectively view the two principals as a social
planner would: equally, so through nash bargaining, they will trade whenever
trading is efficient (even when it is Case 2). Notice that the efficiency criteria
is simply a utilitarian criteria that gives the same weights to both principals’
outcomes.

When e1 6= e2 and k1 6= k2, only Case 2 will happen and the agents
collectively give different “weights” to the two principals, therefore, they do
not act like a social planner and they do not trade efficiently.

Since trading is efficient if k1 = k2, the first-best pair of contracts when
trading is allowed is simply all contracts that satisfy k1 = k2 = 1. We will
denote the total gain of trade (for all players as a whole) as S:

S ≡ 2t

∫ 1

0

sf(s)ds

Given a pair of contracts and a set of realization of x1, x2, let’s denote
the agents’ total gain of trade as g(k1, k2, x1, x2):

g(k1, k2, x1, x2) ≡ −(k1 − k2)(e1 − e2) + (k1 + k2)(x1 − x2)t

For the sake of simplicity of notation, we will sometimes suppress the
arguments of g. By Nash-Bargaining, this gain is equally shared between the
two agents, so each gets 1

2
g.
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4.2 Incentive to exert efforts

Now we go one step backward in the game. Let Pr() denote the probability
of the event in the bracket. Agent 1’s problem in choosing effort is:

max
e1

E[k1(e1 − x1t)|no trade]Pr(no trade)+

E[k1(e1 − x1t) +
1

2
g|trade]Pr(trade)− C(e1) =

k1(e1 − E[x1]t)− C(e1)+

E

[
1

2
g|g ≥ 0

]
Pr (g ≥ 0)

Since the fall-back from breaking up of the Nash-Bargaining is to supply
the project to one’s own principal, the payoff from a trading is k1(e1−x1t)+

1
2
g

for agent 1.
Notice that when k1 = k2 two things are true. First, the gain from trade,

g, does not depend on e1 (as explained in Subsection 4.1), and second (as a
result of the first) the probability of trading does not depend on e1 either.
In other words, as long as k1 = k2, the trading decision in the subgame will
be efficient.

The agent’s problem highlights the three effects of a commission rate.

• The term k1e1−C(e1) shows that k1 has the normal effect of motivating
agents to work harder.

• If k1 = k2, then the rest of the agent 1’s objective function becomes
the following.

E[
1

2
g|g ≥ 0]Pr(g ≥ 0) =

1

4
(k1 + k2)E[x1 − x2|x1 − x2 ≥ 0]

By the same logic, there is a term in agent 2’s objective function that
is also

1

4
(k1 + k2)E[x1 − x2|x1 − x2 ≥ 0]

Therefore, higher commission rate transfers surplus to both agents.
This is a crucial effect because as we will see, principal 1 is only able
to extract back the part given to agent 1 through individual rationality
constraint but not the part given to agent 2.
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• When k1 6= k2, trading is inefficient because trading happens if and
only if x1 − x2 ≥ (k1−k2)(e1−e2)

t(k1+k2)
(as explained in Subsection 4.1).

Let f denote the the density of the distribution of x1−x2. By definition,
f is symmetric around 0 and is positive over [−1, 1].

Lemma 1. Given any k1 and k2, a pure strategy subgame equilibrium exists
in the effort game. Let (ẽ1(k1, k2), ẽ2(k1, k2)) denote an equilibrium.

On the equilibrium, the probability of trading is strictly less than one. If
an equilibrium is such that the probability of trading is positive, then it is
characterized by:

k1 − C ′(e1)−
1

2
(k1 − k2)

∫ 1

(k1−k2)(e1−e2)
t(k1+k2)

f(s) ds = 0 (FOC1)

k2 − C ′(e2)−
1

2
(k2 − k1)

∫ 1

(k1−k2)(e1−e2)
t(k1+k2)

f(s) ds = 0 (FOC2)

Proof. In the Appendix.

Remark: The proof for existence of equilibrium is essentially an applica-
tion of results from supermodular game. Notice that trading may not happen
in the subgame equilibium.

The term k1−C ′(e1) in the FOC condition is the same as that in the no-
trading Benchmark. The rest in the FOC condition is the incentive provided
by the possibility of trading. Notice that this term disappears if k1 = k2. In
other words, if k1 = k2, the effort incentive is the same as in the Benchmark:
agents exert efforts as if trading is banned. However when k1 6= k2, there is
“spill over” of incentive and 2) “free-riding” in efforts.

When principal 1 increases k1 slightly above k2, it also motivates agent 2
to work harder because now agent 2 gets a share of principal 1’s commission
through Nash-bargaining if agent 2’s project is supplied to principal 1. How-
ever, at the same time, when k1 > k2, there is a free-riding problem. Agent
1 gains from agent 2’s effort, so higher effort from agent 2 reduces agent 1’s
incentive to work. 5

These “spill-over” and “free-riding” effects causes e1 to go down when k1

is increased if we only consider the effects coming from trading. However, the

5Let e1(e2) denote a’s reaction function as implied by Condition FOC1, then around
(ẽ1, ẽ2), we have:

10



effort level is still higher for the agent who is promised a higher piece-rate, as
shown in Lemma 3 below. This is because the direct motivating effect from
the piece-rate dominates the indirect effects through trading.

The above lemma however does not establish that the subgame equilib-
rium to be unique.

Lemma 2. When the cost function is quadratic and when the distribution of
x1 − x2 is uniform, the subgame equilibrium given any non-negative k1, k2 is
unique.

Proof. See the Appendix.

Lemma 3. k1 > k2 ⇒ ẽ1 > ẽ2.

Proof. WLOG, let k1 > k2. There are two possible cases. Either there is
positive probability of trading on the equilibrium or there is not.

Case 1, positive probability of trading.
Let ∆ = k1 − k2 > 0. Let Prob(∆) =

∫ 1
(k1−k2)(e1−e2)

t(k1+k2)
f(s) ds, then FOCs

imply that:

C ′(ẽ1)− C ′(ẽ2) = (k2 + ∆− 1

2
∆Prob(∆))− (k2 +

1

2
∆Prob(∆))

= ∆−∆Prob(∆)

≥ 0

This implies that ẽ1 ≥ ẽ2
6. Next, we prove the inequality by contradic-

tion. Suppose ẽ1 = ẽ2, then we have:

∆−∆Prob(∆) = 0⇒ Prob(∆) = 1

de1(e2)
de2

=
1
2

(k1−k2)
2

t(k1+k2)
f
(

(k1−k2)(e1−e2)
t(k1+k2)

)
−C ′′(e1) + 1

2
(k1−k2)2

t(k1+k2)
f
(

(k1−k2)(e1−e2)
t(k1+k2)

) < 0 when k1 6= k2

The inequality follows from the necessary condition that second order conditions must
be satisfied at (ẽ1, ẽ2).

6We will suppress the arguments of ẽ1(k1, k2), ẽ2(k1, k2) when there is no ambiguity.
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However, because of the symmetry of the density function f around 0,
we know that Prob(∆) =

∫ 1

0
f(s) ds = 1

2
when ẽ1 = ẽ2. Therefore, it is a

contradiction, and we know that ẽ1 6= ẽ2.
Case 2, zero probability of trading.
This implies that ẽ1 = (C ′)−1(k1) and ẽ2 = (C ′)−1(k2). Therefore, ẽ1 >

ẽ2.

4.3 Principal’s choices of piece-rates

The equilibrium fixed rates are implied by the agents’ individual rationality
constraints, so an equilibrium is characterized by a pair of piece-rates, which
we denote by k̃1 and k̃2. Recall that S denotes the total gain of trading under
efficient trading, i.e., when agents trade if and only if x1 − x2 ≥ 0.

Proposition 1. (Necessary Condition)
If a pure strategy symmetric equilibrium exists such that k̃1 = k̃2 = k, we

have the following results.
First, we must have k < 1. In other words, the equilibrium piece-rates

must be lower than those in the no-trade Benchmark and the first-best.
Second, k is unique and is decreasing in S.
For S < 2

C′′(0)
, k is uniquely determined by the necessary condition:

1− k

C ′′((C ′)−1(k))
= t

∫ 1

0

sf(s)ds =
S

2

For S ≥ 2
C′′(0)

, k = 0.

Proof. See the Appendix.

Remark:
In the Benchmark, principal 1 fully internalizes the effect of her piece-

rate: even though higher piece-rate gives her agent 1 higher cut of the result
of his effort, she extracts all of the agent’s cut back through her fixed rate.
Now when there is trading, higher piece-rate by principal 1 increases the
total gain from trading for the agents, but that gain is shared by agent 1
and 2, so the value accrued to agents from principal 1’s sacrifice (in the sense
of a higher piece-rate) cannot be fully recovered through principal 1’s fixed
rate. There is a “leakage”. This gives principal 1 an incentive to reduce her
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piece-rate. In other words, decreasing k1 helps principal 1 to grab a bigger
share of the trading surplus. To see that, given any symmetric contracts:

Principal 1 gets

e1 − C(e1) +
(1− k1) + 1

2
(k1 + k2)

2
S

Principal 2 gets

e2 − C(e2) +
(1− k2) + 1

2
(k1 + k2)

2
S

The effects of decreasing k1 on e1, e2, and S are second order given k1 =
k2 = 1 as the initial condition, while the effect on the sharing of S is first
order. Therefore, Principal 1 has a unilateral incentive to reduce k1 from
k1 = 1.

The intuition for the comparative statics result is that higher S increases
the incentive to lower the piece-rate because the principal wants to capture
a larger share of the gain of trading. Several things can increase S: higher
level of heterogeneity in principal’s taste, such as higher t; and higher chance
of getting extreme characteristic projects, such as an f that is heavier on the
two ends. When S = 0, we go back to the standard case where agents do
not trade and the only equilibrium involves k = 1.

Sufficiency of the equilibrium has been proved for uniform f distribu-
tion and quadratic cost function, and the search for more general sufficient
condition for the existence of the equilibrium is under progress.

Proposition 2. (Welfare) If the cost function is quadratic then allowing
trading increases social surplus for any parameters.

Proof. Let W (S) denote the total social surplus on the symmetric equilibrium
when trading is allowed and let W denote the total social surplus when
trading is not allowed. We will show W (S) > W for any S ≥ 0.

From the benchmark analysis, we already know that W = 2(e∗ −C(e∗)).

W (S) = 2(ẽ− C(ẽ)) + S

Quadratic cost function implies that C ′′(e) is a positive constant, which
we will simply denote by C ′′. This implies that e∗ = 1

C′′
. To see this, we

know that e∗ satisfies the FOC:
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1− C ′(e∗) = 1− C ′′e∗ = 0

Therefore, we have 2
C′′

> 2(e∗ − C(e∗)). We will look at two cases:
Case 1. For S < 2

C′′
, by Proposition 1,

dW

dS
= 2

1− C ′

C ′′

(
−

C ′′ + S
2
C ′′′

(C ′′)2

)
+ 1 = −2

1− C ′

(C ′′)2
+ 1

d2W

d2S
= − 2

(C ′′)2
< 0

Therefore, the social surplus is strictly concave over S ∈ [0, 2
C′′

]. Note
W (0) = W and recall that W (S) = S when S = 2

C′′
, which implies W ( 2

C′′
) =

2
C′′

> W . Therefore, W (S) 6= W for S ∈ [0, 2
C′′

], with the inequality strict
for S > 0.

Case 2. For S ≥ 2
C′′

, we have W (S) = S > W .

Remark: Trading increases the efficiency gain from matching the projects
to principals, but reduces the surplus from stage of exerting efforts because
agents are under-incentivized. However, when the cost function is quadratic,
the first effect dominates.

5 Discussion

This paper assumes that fee sharing is determined though Nash Bargaining.
In reality however, often it is already a industry consensus that fee should
always be shared half and half between two “cooperating” agents. This
alternative will not change the qualitative results. The main driving force
still remains the same in the sense that trading surplus will be shared between
agents and thus there is a free-riding problem between the principals on
contributing to the public good of “trading”. However, trading cannot be
efficient in any equilibrium. To see that, given that any fee has to be shared
half and half, trading only happens if both agents find it better to get the
half of the total fee after swapping projects:
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1

2
k1(e2 − x2t) +

1

2
k2(e1 + x1t) ≥ max{k1(e1 − x1t), k2(e2 + x2t)}

⇔ x1 ≥
(k1 − k2)e1

t(e1 + e2)
and x2 ≤

(k1 − k2)e2

t(e1 + e2)

This means that on a symmetric equilibrium (if exists), the agents trades
only when x1 ≥ 0 and x2 ≤ 0, while complete trading efficiency calls for
trading whenever x1 − x2 ≥ 0.

This paper also assumes that uncertainty only lies in the horizontal aspect
of the search results. That is, there is no uncertainty in the vertical quality
of the search results. If the vertical quality is also uncertain, then it creates
a competition between the principals as they can offer higher piece-rate to
influence the direction of the inter-agent trading so that they can get the
better of the two results. This will be a countervailing force that pushes
up the equilibrium piece-rate. That implies this consideration will pressure a
home seller not to lower her commission rate below other sellers’, not because
it will reduce cooperation from other agents, but because she would not want
bad buyers be sent her way.

6 Conclusion

This paper shows that when inter-agent trading is possible, on the unique
symmetric equilibrium, the principals offer a lower-powered incentive con-
tract (i.e., with a lower piece-rate) than when inter-agent trading is not pos-
sible. These are socially sub-optimal piece-rates in the sense that they are too
low to make agents exert the efficient effort in searching. Here the principals
need to motivate the agents to pay effort in searching and also to cooperate
with other agents to deliver the most suitable result to the principals.

Motivating effort calls for paying the agents a high piece-rate. However,
principals face negative externality when motivating the agents to do efficient
inter-agent trading. Note that the principals internalize the agents’ payoff
through the individual rationality constraints. When a principal unilaterally
decreases her piece-rate, the loss to the surplus from trading is born by both
agents, and thus by the other principal as well. This creates an incentive for
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both principals to shirk in motivating efficient inter-agent trading. The result
is that the equilibrium piece-rate is lower than the efficient level. When the
cost function is quadratic, the principals are always better-off overall if the
agents can swap search outcomes. This is because the loss from lower effort
is more than compensated by the gain from better matched outcomes.

7 Appendix

Proof of Lemma 1.

Proof. Step 1. Proving equilibrium exists.
A game is a supermodular game if the strategy set is bounded, the payoff

is upper-semi continuous and the payoff has increasing difference between
strategies.

To be able to use results from supermodular game, we need to prove that
the choice set for efforts is effectively bounded for both players.

Fix any k1 > k2 ≥ 0.
Fix ∀e2 ≥ 0. Define two functions e and ē as follows:

(k1 − k2)(e(e2)− e2)

t(k1 + k2)
= −1

(k1 − k2)(ē(e2)− e2)

t(k1 + k2)
= 1

k1 − k2 > 0⇒ e(e2) < e2 < ē(e2)

Note that the payoff to agent 1 depends on which segment e1 is in. For
e1 ≤ e(e2), the probability of trading is 1 and thus the payoff is u1(e1, e2) =
k1e1 − C(e1) − 1

2
(k1 − k2)(e1 − e2) = 1

2
(k1 + k2)e1 − C(e1) + 1

2
(k1 − k2)e2 ≥

k1e1−C(e1) + 1
2
t(k1 + k2). For e1 ≥ ē(e2), the probability of trading is 0 and

thus the payoff is just u1(e1, e2) = k1e1 − C(e1).
Case 1. The argmax (e1)(e2) ∈ [0, e(e2)), then we have e1(e2) = e∗(1

2
(k1 +

k2)) < e∗(k1).
Case 2. If e1(e2) > ē(e2), then we have (e1) = e∗(k1).
Case 3. If e1(e2) ∈ [e(e2), ē(e2)], then it solves the following problem:
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max
e1

k1e1 − C(e1)+

1

2
[(k1 + k2)t

∫ 1

(k1−k2)(e1−e2)
t(k1+k2)

sf(s) ds−

(k1 − k2)(e1 − e2)

∫ 1

(k1−k2)(e1−e2)
t(k1+k2)

f(s) ds]

s.t. − 1 ≥ (k1 − k2)(e1 − e2)

t(k1 + k2)
≤ 1

The first order derivative of the objective function is:

k1 − C ′(e1)−
1

2
(k1 − k2)

∫ 1

(k1−k2)(e1−e2)
t(k1+k2)

f(s) ds

For e1 ∈ [e∗(k1), ē(e2)), the derivative is strictly negative. Therefore
again, e1(e2) ≤ e∗(k1).

This proves that e1(e2) ≤ e∗(k1).
We do the same analysis for agent 2’s problem. The above defined func-

tion ē and e implies:

(k1 − k2)(e1 − e(e1))

t(k1 + k2)
= 1

(k1 − k2)(e1 − ē(e1))

t(k1 + k2)
= −1

The payoff to agent 2 also depends on which segment e2 is in. For e2 ≤
e(e1), the probability of trading is 0, thus the payoff is just u2(e1, e2) =
k2e2 − C(e2). For e2 ≥ ē(e1), the probability of trading is 1, so u2(e1, e2) =
k2e2 − C(e2) − 1

2
(k1 − k2)(e1 − e2) = 1

2
(k1 + k2)e2 − C(e2) − 1

2
(k1 − k2)e1 ≤

k2e2 − C(e2)− 1
2
t(k1 + k2).

Case 1. The argmax e2(e1) ∈ (ē(e1), +∞), then trading happens with
probability 1, which implies e2(e1) = e∗(1

2
(k1 + k2)).

Case 2. If e2(e1) < e(e1), then trading happens with probability 0, which
implies that e2(e1) = e∗(k2).

Case 3. e2(e1) ∈ [e(e1), ē(e1)].
Notice that the following inequality:
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ē(e∗(k1)) > e∗(k1) > e∗(
1

2
(k1 + k2)) > e∗(k2)

Therefore, when e1 is bounded by e∗(k1), agent 2’s best response is
bounded above by ē(e∗(k1)).

By symmetry of the setup, the case for k1 < k2 will yield the same result.
Therefore, given any non-negative k1, k2, we can find two bounded choices
set for e1 and e2 that are without loss of generality.

Note that the payoff functions are continuous in e1 and e2.
Now look at the cross derivative of agent 1’s payoff when (k1−k2)(e1−e2)

t(k1+k2)
∈

(−1, 1) (elsewhere the cross derivative trivially equals zero):

∂2u1

∂(−e2)∂(e1)
=

1

2

(k1 − k2)
2

t(k1k2)
f

(
(k1 − k2)(e1 − e2)

t(k1 + k2)

)
≥ 0

Therefore, u1 has increasing difference in e1 and −e2. Similarly, for u2.
Now we can conclude that the subgame given k1 and k2 is a supermodular

game. Therefore, we can apply the result that a pure-strategy equilibrium
exists.

Step 2. Prove uniqueness of equilibrium.
We show that on equilibrium, probability of trading is less than 1. [to be

filled in]

Proof of Lemma 2

Proof. There are only two cases: either the probability of trading is zero, or
it is one.

Step 1. We show that there are at most only one equilibrium with trading
probability of zero. Let (ẽ1, ẽ2) be an equilibrium. WLOG, suppose k1 > k2.
Then we must have e∗(k1) ≥ ē(ẽ2) because otherwise agent 1’s best response
is not in a range that makes trading probability zero. It also implies that
ẽ1 = e∗(k1). Similarly, we have ẽ2 = e∗(k2). Therefore, there can at most be
only one equilibrium that has trading probability equals zero.

Step 2. We show that if an equilibrium with trading probability zero
exists then there does not exist any equilibrium with positive trading prob-
ability. WOLG, suppose k1 > k2. Step 1 already implies that if an equi-
librium with trading probability zero exists, then e∗(k1) ≥ ē(e∗(k2)) and

18



e∗(k2) ≤ e(e∗(k1)). Suppose another equilibrium with positive trading prob-
ability exists. Then ē(ẽ2) > ē(e∗(k2)) ⇒ ẽ2 > e∗(k2) because otherwise
agent 1’s best response is one that makes trading probability zero. How-
ever, this forms a contradiction, because agent 2’s payoff is decreasing over
[e∗(k2), ē(ẽ1)].

Step 3. We show that there exists at most one equilibrium that has
strictly positive trading probability using quadratic cost function and uniform
distribution of x1 − x2.

Quadratic cost function implies that C ′(e) to e is a linear function. Let
it be C ′(e) = pe + q where p 6= 0.

Then we can solve for the equilibrium efforts through the following equa-
tions:

k1 − pe1 − q =
1

4
(k1 − k2)(1−

(k1 − k2)(e1 − e2)

t(k1 + k2)
)

k2 − pe2 − q = −1

4
(k1 − k2)(1−

(k1 − k2)(e1 − e2)

t(k1 + k2)
)

Since both equations are linear, there are at most one solution.

Proof of Proposition 1.

Proof. A solves the following problem:

max
k1

U1(k1) ≡E[(1− k1)(ẽ1(k1, k2)− x1t)|no trade]Pr(no trade)

+ E[(1− k1)(ẽ2(k1, k2)− x2t)|trade]Pr(trade)

+ E[k1(ẽ1(k1, k2)− x1t)|no trade]Pr(no trade)

+ E[k1(ẽ1(k1, k2)− x1t) +
1

2
g|trade]Pr(trade)− C(e1)

=ẽ1(k1, k2)− C(ẽ1(k1, k2))

− (ẽ1(k1, k2)− ẽ2(k1, k2))[(1− k1) +
1

2
(k1 − k2)]Pr(trade)

+ [(1− k1) +
1

2
(k1 + k2)]E[x1 − x2|trade]tPr(trade)
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Take derivative with respect to k1 and evaluate the derivative at k1 =
k2 = k, which also implies that ẽ1 = ẽ2 ≡ ẽ. 7

dU1

dk1

∣∣∣∣
k1=k2=k

= (1− C ′(ẽ1))
∂ẽ1

∂k1

∣∣∣∣
k1=k2=k

−(1− k)
∂(ẽ1 − ẽ2)Pr(trade)

∂k1

∣∣∣∣
k1=k2=k

+
∂E[x1 − x2|trade]tPr(trade)

∂k1

∣∣∣∣
k1=k2=k

+(−1

2
)t

∫ 1

0

sf(s)ds

= (1− k)
∂ẽ1

∂k1

∣∣∣∣
k1=k2=k

− 1

2
(1− k)

∂(ẽ1 − ẽ2)

∂k1

∣∣∣∣
k1=k2=k

−1

2
t

∫ 1

0

sf(s)ds

=
1

2
(1− k)

∂(ẽ1 + ẽ2)

∂k1

∣∣∣∣
k1=k2=k

− 1

2
t

∫ 1

0

sf(s)ds

If k ≥ 1, then we have and 1
2
(1 − k) ∂(ẽ1+ẽ2)

∂k1

∣∣∣
k1=k2=k

≤ 0. Therefore, the

above derivative is strictly negative when k ≥ 1. This shows that principal 1
has unilateral incentive to deviate downward when k ≥ 1, therefore we must
have k < 1

From Conditions FOC1 and FOC2, we get:

∂ẽ1

∂k1

∣∣∣∣
k1=k2=k

=
1− 1

2

∫ 1

0
f(s)ds

C ′′(ẽ)
=

3
4

C ′′(ẽ)

∂ẽ2

∂k1

∣∣∣∣
k1=k2=k

=
1
2

∫ 1

0
f(s)ds

C ′′(ẽ)
=

1
4

C ′′(ẽ)

7Note that ∂ẽ1
∂k1

∣∣∣
k1=k2=k

and ∂ẽ2
∂k1

∣∣∣
k1=k2=k

exists. This is because when k1 and k2 are

close enough, the objective function of agents in the subgame is strictly concave, which
implies that the subgame equilibrium of efforts is unique and continuously differentiable
in the “parameters” k1 and k2.
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Since a necessary condition for a symmetric equilibrium where k > 0 is

that dU1

dk1

∣∣∣
k1=k2=k

= 0, k should satisfy:

(1− k)
∂(ẽ1 + ẽ2)

∂k1

∣∣∣∣
k1=k2=k

= t

∫ 1

0

sf(s)ds⇒

1− k

C ′′((C ′)−1(k))
= t

∫ 1

0

sf(s)ds

Denote the left-hand-side of the necessary condition as h(k), and let ẽ ≡
ẽ1(k, k). By symmetry of f , we have S = 2t

∫ 1

0
sf(s)ds, so we can rewrite

the necessary condition for k as:

h(k) =
S

2

Since h(1) = 0 < S
2
, we only need to show that h(k) is decreasing in k:

dh(k)

dk
= −

C ′′(ẽ) + (1− k)C′′′(ẽ)
C′′(ẽ)

(C ′′(ẽ))2
= −

C ′′ + S
2
C ′′′

(C ′′)2
< 0

When h(0) < S
2
, for any k < 1, we have h(k) < S

2
. This implies that

dU1

dk1

∣∣∣
k1=k2=k

< 0 for any k < 1, therefore, if a symmetric pure strategy exists

it must be k = 0.
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